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Abstract Huntington’s disease (HD) is caused by a CAG repeat expansion in the huntingtin
(HTT) gene. Knock-in mice carrying a CAG repeat-expanded Htt will develop HD phenotypes.
Previous studies suggested dysregulated molecular networks in a CAG length genotype- and
the age-dependent manner in brain tissues from knock-in mice carrying expanded Htt CAG re-
peats. Furthermore, a large-scale phenome analysis defined a behavioral signature for HD ge-
notype in knock-in mice carrying expanded Htt CAG repeats. However, an integrated analysis
correlating phenotype features with genotypes (CAG repeat expansions) was not conducted
previously. In this study, we revealed the landscape of the behavioral features and gene
expression correlations based on 445 mRNA samples and 445 microRNA samples, together with
behavioral features (396 PhenoCube behaviors and 111 NeuroCube behaviors) in Htt CAG-
knock-in mice. We identified 37 behavioral features that were significantly associated with
CAG repeat length including the number of steps and hind limb stand duration. The behavioral
features were associated with several gene coexpression groups involved in neuronal dysfunc-
tions, which were also supported by the single-cell RNA sequencing data in the striatum and
the spatial gene expression in the brain. We also identified 15 chemicals with significant re-
sponses for genes with enriched behavioral features, most of them are agonist or antagonist
for dopamine receptors and serotonin receptors used for neurology/psychiatry. Our study
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provides further evidence that abnormal neuronal signal transduction in the striatum plays an
important role in causing HD-related phenotypic behaviors and provided rich information for
the further pharmacotherapeutic intervention possibility for HD.
Copyright ª 2021, Chongqing Medical University. Production and hosting by Elsevier B.V. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/
by-nc-nd/4.0/).
Introduction

Huntington’s disease (HD) was first described by George
Huntington in 1872.1 It is an autosomal dominant condition
that typically presents in middle age with a combination of
movement, cognitive, and psychiatric problems, and it
leads to death 20e25 years later.2 Currently, HD has no
effective treatment. The disease-causing gene mutation
consists of an expanded CAG tract (>35 repeats) within the
first exon of the huntingtin (HTT) gene, which is translated
into a corresponding poly-glutamine stretch (polyQ). Pro-
teins with the expanded repeats make the medium spiny
neurons in the striatum particularly vulnerable to cell death
and cause the dysfunction and death of neurons in other
brain regions. HTT protein is essential for embryogenesis
and is ubiquitously expressed in moderate amounts in and
outside the nervous system; the mutant HTT protein is toxic
and initiates the disease.3 Although multiple pathologic
mechanisms have been proposed, the exact mechanism by
which mutant HTT causes neuronal dysfunction is still un-
known. Recent studies demonstrated the mRNA transcrip-
tional dysregulation as a central mechanism.4

Knock-in mice carrying a CAG repeat-expanded Htt have
been shown to develop neurological and neurodegenerative
phenotypes similar to HD.5 Using this model, a previous
study provided a large-scale, comprehensive transcriptomic
characterization of the molecular pathogenic effects of
CAG repeat expansion, identifying a consistent set of genes
and networks that were dysregulated in HD mouse brains.6

Patients with early HD do not have impairments in decision
making, but those with later HD have decreased attention,
perseveration, construction, conceptualization, and mem-
ory in comparison with normal people.7 Another released
behavioral feature dataset used a machine learning
approach and analyzed the behavioral effects of CAG
repeat length in the Htt CAG-knock-in mouse model,8 and it
revealed sufficient discriminatory power to accurately
predict the genotype-required combined analysis of more
than 200 behavioral features. These previous works raised
an open question about the gene network associated with
the behaviors in HD conditions. Moreover, the shared data
with the research community provides support for a
focused understanding of the mechanism that links behav-
ioral consequences to a genetic mutation in HD.8

Understanding the behavioral features of HD patients
requires clinical knowledge within the larger context of a
person’s life. The interaction between disease mechanisms
and behaviors may be complex. In the CAG repeat knock-in
mouse model, previous studies only examined the gene
expression profiles with the CAG repeat length genotype or
the behavioral feathers with the CAG repeat length
genotype, respectively, thus providing a limited view of
understanding the disease mechanism. In this study, we
present a combinatorial analysis of brain transcriptomes
and behavioral features by using the Htt CAG-knock-in
mouse model to establish the network of HD behavioral
features and gene expressions linked to the CAG repeat
length genotype to find the biomarkers and behavior
markers for HD.

Methods

mRNA sequencing datasets of brain tissues from
knock-in mice

As the main affected tissue of HD is the brain, we used the
transcriptomic study (i.e., mRNA and microRNA) of the four
brain regions (i.e., striatum, cortex, hippocampus, and
cerebellum) with an allelic series of CAG repeat lengths HD
knock-in mice (Q7, Q20, Q80, Q92, Q111, Q140, and Q175)
at three ages (2, 6, and 10 months), from the previous
research.6 In total, the transcriptomes of 445 mRNA sam-
ples and 455 microRNA samples were combined and
analyzed in this study. These datasets included GSE65770,
GSE65774, GSE65775, GSE73468, GSE73503, GSE65769,
GSE65773, GSE73505, and GSE73507 from the Gene
Expression Omnibus repository (https://www.ncbi.nlm.nih.
gov/gds). In these datasets, mRNA was extracted and
prepared using the Illumina TruSeq RNA sample prep kit
and sequenced on an Illumina HiSeq2000 sequencer using
strand-specific, paired-end, and 50-mer sequencing pro-
tocols to a minimum read depth of 40 million reads per
sample.6 The sequencing was performed in two separate
batches (6-month samples in batch 1 and 2, and 10-month
samples in batch 2).6 Raw data were downloaded and
aligned to the mouse genome mm9 using the STAR aligner,
and read counts for the individual genes were obtained
using HTSeq.6

PGI high-throughput behavioral datasets

PGI’s comprehensive high-throughput systems (i.e., Phe-
noCube, NeuroCube, and SmartCube systems) capture the
different domains of behavior, namely, cognitive, motor,
circadian, social, anxiety-like, and gait, among others,
using custom-built computer vision software and machine
learning algorithms.8,9 PhenoCube is a high-throughput
platform that assesses the circadian, cognitive, social,
and motor behaviors exhibited by group-housed mice.8

NeuroCube uses computer vision to detect the stance
characteristics, gait geometry, and dynamics in rodent
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models of disorders.8 These two platforms detected the
behaviors of HD knock-in mice (Q7, Q20, Q80, Q92, Q111,
Q140, and Q175) at three ages (2, 6, and 10 months) were
used in this study.8 The behavior datasets were downloaded
from the Open Source Science for the HD Research Com-
munity (HDinHD: https://www.hdinhd.org/). The
behavioral features used in this study are listed in Table S1.

Data preprocessing

We first conducted a quick check of the samples in each
tissue using a sample correlation heat map to determine
the sample cluster and delete the outgroup sample. This
step resulted in 143 samples in the striatum, 104 samples in
the cortex, 104 samples in the hippocampus, and 103
samples in the cerebellum for further analysis. The low
count was filtered out from the data to keep only the genes
that were informative during the differential expression
analysis and network construction. We then performed a
series of differential expression contrasts using the samples
in each tissue to remove the non-differentially expressed
genes using the limma R package, which uses raw counts10

and using the results to further filter out the genes that did
not have a significant amount of variance. The properly
normalized and preprocessed data were necessary for the
downstream analyses of WGCNA. Thus, 17,548 genes in the
striatum, 9,291 genes in the cortex, 755 genes in the hip-
pocampus, and 5,802 genes in the cerebellum were ob-
tained for further analysis. The average values of a group of
each mouse line of PhenoCube 396 behaviors and 111
NeuroCube behaviors were used.

Gene coexpression module detection

The WGCNA11 starts by constructing a matrix of pairwise
correlations between all pairs of genes across the measured
samples in a dataset.6 Constructing a weighted gene
network entails the choice of the soft thresholding power b
to which coexpression similarity is raised to calculate ad-
jacency.12 We chose the candidate powers for which the
scale-free topology index reaches at least 0.80 to perform
the analysis of network topology. We calculated the adja-
cencies using the soft thresholding power of each tissue and
time point. To minimize the effects of noise and spurious
associations, we transformed the adjacency into a topo-
logical overlap matrix and calculated the corresponding
dissimilarity. To quantify the coexpression similarity of all
the modules, we calculated their eigengenes and clustered
them according to their correlation. As we already had a
summary profile (eigengenes) for each module, we simply
correlated the eigengenes with behavioral features and
looked for the most significant associations. We quantified
the associations of individual genes with our behavior of
interest by defining the gene significance (GS) as the cor-
relation between the gene and the behavior. For each
module, we also defined a quantitative measure of module
membership (MM) as the correlation of the module eigen-
gene and the gene expression profile. This step enabled us
to quantify the similarity of all genes on the array to every
module. Using the GS and MM measures, we can identify the
genes with a high significance for the significant behavior
and the high module membership in the modules of inter-
est. The main code used in the WGCNA analysis was shown
in supplementary file 1.

Gene functional annotation clustering and
visualization

The DAVID functional annotation clustering13 uses a similar
fuzzy clustering concept as the functional classification by
measuring the relationships among the annotation terms
based on the degree of their co-association with the genes
within the users’ list to cluster somewhat heterogeneous,
yet highly similar, annotation into functional annotations.14

This process reduces the burden of associating different
terms related to similar biological processes, thus enabling
the biological interpretation to be more focused on the
“biological module” level.14 This type of grouping of func-
tional annotation can give a more insightful view of the
relationships between annotation categories and terms
than the traditional linear list of enriched terms. The
enriched functional annotation terms associated with the
users’ gene list were identified and listed according to their
enrichment P value by DAVID. The DAVID-enriched func-
tional annotation tables (FDR < 0.05) served as the input
data for the network visualization by the Enrichment Map
app15 of Cytoscape 3.3.16

Gene functional group network analysis and
visualization

GeneMANIA searches many large, publicly available bio-
logical datasets to find related genes, including
proteineprotein, proteineDNA and genetic interactions,
pathways, reactions, gene and protein expression data,
protein domains, and phenotypic screening profiles.17e19

The gene lists in the category of the DAVID functional
annotation table were used for network analysis by Gene-
MANIA. The results of the visualization were performed by
the GeneMANIA app in Cytoscape 3.3.19

Single-cell RNA sequence data cluster analysis

GSE82187 data was downloaded.20 The genes were extrac-
ted from the significant GO terms in the GO network of
Fig. 4B, 6C, 7B and 8B. The gene expression values of each
cell type were calculated by the mean values in each cell’s
populations. The gene expression cluster was down by
cluster 3.0 by using hierarchical methods.

Gene small chemical targets

We aimed to identify the potential small chemical targets
by searching for behavior-enriched genes for HD in Con-
nectivity Map21 (CMap dataset, https://clue.io/). The CMap
dataset of cellular signatures catalogs the transcriptional
responses of human cells to chemical and genetic
perturbations (1.3 M L1000 profiles and the tools for their
analysis). A total of 27,927 perturbations have been
profiled to produce 476,251 expression signatures.22 We
searched the chemicals by the gene for interaction with the
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existing CMap database. Fisher’s test was then used to
identify the significant small chemicals. The P values of the
Fisher’s test were adjusted by Bonferroni correction. An
FDR of less than 0.05 was considered significant.

Results

Study design

As the main affected tissue in HD is the brain, we used the
published transcriptomic data of CAG repeat knock-in HD
mice (mRNA and microRNA) of the four brain regions,
namely, striatum, cortex, hippocampus, and cerebellum,
for data analysis. For each tissue, the data contain an
allelic series of CAG repeat lengths (Q7, Q20, Q80, Q92,
Q111, Q140 and Q175) at three ages (2, 6 and 10 months).
For the behavior data, we used the PhenoCube and Neu-
roCube platform-generated data from mouse lines matched
to the transcriptomic data. PhenoCube is a high-throughput
platform that assesses circadian, cognitive, and motor be-
haviors, whereas NeuroCube� is a platform that uses com-
puter vision to detect stance characteristics, gait
Figure 1 Overview of the experimental design and data analysi
scriptome data of 445 mRNA samples, 445 microRNA samples, 396
by consensus weighted gene coexpression network analysis (WGCN
disease mechanisms in the WGCNA detected modules.
geometry, and dynamics in the HD mouse model. The
transcriptome data of the 445 mRNA samples, 445 micro-
RNA samples, 396 PhenoCube behaviors, and 111 Neuro-
Cube behaviors were combined and analyzed in this study
(Fig. 1). These samples are expected to provide crucial
systems-level insight into CAG length-dependent networks
linked to behaviors in HD. We used a consensus weighted
gene coexpression network analysis (WGCNA)23 with the
behavioral features to define the modules of the genes
related to the CAG length genotype (Fig. 1). Afterward, a
gene ontology network analysis was performed to address
the disease mechanisms (Fig. 1). Besides, single-cell-based
expression patterns of ontology network genes in the most
affected tissue striatum were analyzed to reveal the most
affected cell type in the striatum. Finally, we predicted
small molecules targeted to behavior-enriched genes.

The landscape of the behavioral features and gene
expression correlations

We first used WGCNA to analyze all the datasets to give an
overview of our data. The results demonstrated that the
s strategy. An allelic series of CAG repeat lengths of the tran-
PhenoCube behaviors, 111 NeuroCube behaviors were analyzed
A), followed by gene ontology network analysis, to address the



Figure 2 Integrated effect of the gene expression and behavioral features in the striatum at 10 months. (A) The gene co-
expression network and (B) bar plot of the module significance defined as the mean gene significance across all genes in the
module. MEbrown and MEturquoise are the two modules with a correlation of more than 0.6 detected in the striatum at 10 months.

Figure 3 Moduleebehavioral feature associations in the striatum at 10 months of the PhenoCube behavior (A) and NeuroCube
behavior (B). Each row corresponds to a module eigengene and each column to a behavioral feature. Each cell contains the
corresponding correlation and P-value. The full names of the behaviors are listed in Table S1.
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batch and tissue effects played the main role and that some
behavior sets have a similar pattern (Fig. S1). We then
separated the batch (tissues) and combined the similar
behavior phenotypes (see methods) for the module detec-
tion. The results suggested that the batch and age effect
played a larger effect than the CAG repeat length (Fig.
S2eS5). To detect the real network linked to the CAG
repeat length and behavior, we separated the dataset in
each tissue and each time point for behavioral analysis. The
separate analysis provided a reasonable pattern for the
CAG repeat length-associated behaviors. In general, the
striatum, which is HD’s most affected tissue, showed the
strongest correlation of gene expression changes and
behavioral changes in both PhenoCube and NeuroCube. For
the time course, the correlation at 10 months was the most
significant time point. The WGCNA module analyses pro-
vided the strength and significance of the associations be-
tween the modules and the behavioral features according
to the CAG repeat length. Among the four brain tissues,
namely, the cortex, hippocampus, cerebellum, and



Figure 4 Networks shared by the CAG repeat length and behaviors. (A) A scatter plot of the gene significance for CAG repeat
length vs. module membership in the brown module. (B) Gene ontology networks for the CAG repeat length. (CeG) Gene networks
of the significant ontologies for the CAG repeat length. Blue lines, physical interactions. Brown lines, co-localization. Green lines,
pathway. Dark pink lines, coexpression. Light green lines, shared protein domains. (C) Postsynaptic density (GO: 0014069), (D)

Calcium, (E) Signal transduction inhibitor function, (F) Amphetamine ontology, and (G) Neuronal cell body ontology (GO: 0043025).
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striatum, we detected the strongest association of gene
expression profile and behavioral features in the striatum,
consistent with the previous studies.6 At 10 months, two
modules were detected in the striatum tissue associated
with the CAG repeat length and behaviors, with a correla-
tion score of more than 0.6 (Fig. S6). We also detected a
weak association between the CAG repeat length and
behavior phenotype in the cerebellum (Fig. S7). No signifi-
cant behaviors were found in each of the four tissues during
the seven CAG repeat lengths at the 2-month and 6-month
time points. However, at 6 months, the significant behav-
iors driven by gender difference were detected in the
cortex, striatum, and cerebellum. Especially in the cortex,
most of the PhenoCube and NeuroCube behaviors were
significantly correlated with gender differences (Fig. S8,
S9).
Behavioral features and CAG repeat length-
dependent gene coexpression network in the
striatum

Our results suggested several special behavioral changes in
HD condition linked to the CAG repeat length controlling
gene expression profiles in the striatum at 10 months. The
most significant module is the brown module, which was
shared by the CAG repeat length and behavioral features
(Fig. 2). In the striatum at the 10-month time point, we
detected 29 significant (P < 7.25 � 10�4, 0.05/69 behav-
ioral feathers for Bonferroni correction) PhenoCube be-
haviors associated with CAG length (Fig. 3A, Table S1). The
grouping and clustering of the behaviors were negatively
correlated with the CAG repeat length. This result suggests
that these behavioral features decreased according to the



Figure 5 The graphical representation of the DAVID FDR of the enriched functional terms for gene modules that are associated
with representative PhenoCube and NeuroCubebe behaviors.
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CAG repeat length increase in the HD condition (Fig. 3A).
On the contrary, most of the visit activities showed the
same direction of correlation with the CAG repeat length,
thus indicating that these behaviors increased according to
the CAG repeat length expansion in the HD condition
(Fig. 3A). We also found eight significant (P < 4.63 � 10�4,
0.05/108 behavioral features) NeuroCube behaviors asso-
ciated with the CAG repeat length in one or more modules.
These behaviors presented the stance characteristics, gait
geometry, and dynamics (Fig. 3B, Table S1). The behavioral
features, including the number of steps and hind limb stand
duration, among others, were negatively related to the CAG
repeat length, whereas the other behavioral features,
including the hind limb, mean angle, among others, were
positively related to the CAG repeat length (Fig. 3B).

Highlighted networks shared by the CAG repeat
length and behaviors

As most of the significant genes were shared by the CAG
repeat length and significant behavioral features, we
initially focused on the CAG repeat length-modified
genes. In total, 1111 genes were significantly altered
according to the CAG repeat length (false discovery
rate, FDR < 0.05). A highly significant correlation was
found between the gene significance for the CAG repeat
length versus the brown module membership detected
by WGCNA (Fig. 4A). This gene set highlighted 12 sig-
nificant functional groups by the DAVID analysis
(FDR < 0.05) (Fig. 4B).14 The basic striatal functional
proteins involved in phosphoprotein, membrane, and
alternative splicing were the largest gene groups
enriched according to the CAG repeat lengths and sig-
nificant behaviors (Fig. 4B). Postsynaptic density (GO:
0014069) was the most significant ontology enriched
(FDR Z 8.33 � 10�7) by the DAVID annotation. This
result is consistent with those of previous studies in
which postsynaptic density was reduced in the HD con-
dition (Fig. 4C).24e28 The next significant ontology is the
calcium term (FDR Z 4.08 � 10�6). This result is also
consistent with the previous finding that neuronal cal-
cium signaling is abnormal in HD.29,30 A set of 43 genes
was enriched in this ontology (Fig. 4D). This ontology
was followed by the signal transduction inhibitor func-
tion (FDR Z 4.80 � 10�5) with 10 genes enriched
(Fig. 4E). As expected, the response to amphetamine
ontology (GO: 0001975) was also enriched
(FDR Z 9.12 � 10�3) (Fig. 4F). The neuronal cell body
ontology (GO: 0043025) gene set enriched 28 genes
(FDR Z 1.62 � 10�2), and most of them were co-
expressed as markers of the neuronal cell body
(Fig. 4G).31

Highlighted networks in the motor and visit
behaviors in the PhenoCube platform

The brown module showed that the PhenoCube-detected
motor behavioral features, namely, grouping, clustering,
and locomotion, were positively correlated with gene
expression. The most significant behavior was the number
of grouping (number of short bouts together, PZ 1 � 10�7).
A total of 725 genes were significantly altered in the Phe-
noCube feature (FDR < 0.05). The summary of the DAVID
FDR of the enriched functional terms for gene modules that
are associated with representative PhenoCube behaviors
was shown in Fig. 5 and Table S2. Fig. 6A illustrates the
visualization of the eigengene network representing the
relationships between the modules and the number of
grouping. Fig. 6B presents the scatter plot of the gene
significance for the number of grouping versus the module



Figure 6 Highlighted networks in the grouping behaviors in the PhenoCube platform. (A) Visualization of the eigengene network
representing the relationships between the modules and the number of groupings. The upper panel shows a hierarchical clustering
dendrogram of the eigengenes in which the dissimilarity of eigengenes EI and EJ is given by 1 - cor (EI; EJ). The heat map in the
lower panel shows the eigengene adjacency AIJ Z (1 þ cor (EI; EJ))/2. (B) A scatter plot of the gene significance for number of
groupings vs. module membership in the brown module. (C) Gene ontology networks for number of groupings. (DeH) Gene net-
works of the significant ontologies for the number of grouping. Blue lines, physical interactions. Brown lines, co-localization. Green
lines, pathway. Dark pink lines, coexpression. Light green lines, shared protein domains. (D) Dendritic spine, (E) Synapse, (F) S_TKc
domain, (G) Cell junction, and (H) Oxytocin signaling pathway.
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membership in the brown module. This gene set highlighted
20 significant functional groups through the DAVID analysis
(FDR < 0.05) (Fig. 6C). Besides the functional ontologies
detected in the CAG repeat previously, the other five
functional groups were enriched in this behavior. The
dendritic spine functional group (FDR Z 4.03 � 10�4) con-
tained 13 genes, as shown in Fig. 6D. This result is consis-
tent with those of previous reports in which the dendritic
spine was found to be unstable and reduced in the HD
condition.32e34 The synapse functional group
(FDR Z 6.31 � 10�3), which included 21 genes, was also
enriched for motor behavior (Fig. 6E). This result is
consistent with those of previous reports in which HD was
found to be partially caused by abnormal synaptic trans-
mission.35,36 The S_TKc domain functional group with 20
genes was also enriched (FDR Z 0.017) (Fig. 6F). The cell
junction function group (FDR Z 0.02), which contained 22
genes, was also enrich (Fig. 6G). This result is consistent
with those of previous reports in which the signal trans-
mission was reduced in the HD condition.37 Eleven oxytocin
signaling pathway genes were enriched in this study
(FDR Z 0.03) (Fig. 6H). This result is consistent with those
of previous reports in which oxytocin was found to affect
HD patients.37,38

A set of visit behaviors, such as the NumExplVi-
sitsWithCorrInitialNP behavior (number of visits to non-
reinforced corners with a first pseudocorrect nose poke),
was also associated with gene expression (P Z 9 � 10�6)
(Fig. 3A). A total of 263 genes contributing to 13 functional
terms were significantly regulated in the NumExplVi-
sitsWithCorrInitialNP behavior. The significant gene func-
tional annotation terms were similar to the number of
grouping behavior, but the correlation pattern was the
opposite. The significant ontologies were postsynaptic
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density (FDR Z 1.49 � 10�8), calcium (FDR Z 4.05 � 10�5),
and dendritic spine (FDR Z 3.08 � 10�4), among others.

Highlighted networks in the gait characteristics in
the NeuroCube platform

The gait characteristics are known to be abnormal in
HD.39,40 In the NeuroCube platform, we detected eight gait
characteristics that were significantly changed in the brown
module (Fig. 3B). The summary of the DAVID FDR of the
enriched functional terms for gene modules that are asso-
ciated with representative NeuroCubebe behaviors was
shown in Fig. 5. The expression of the gene set was posi-
tively correlated with the number of steps feature
(FDR Z 7 � 10�6); 371 genes were significantly altered in
this behavior (FDR < 0.05). Along with the CAG repeat
length, the number of steps should be lower in the HD
condition than in the normal one. Fig. 7A shows the visu-
alization of the eigengene network, which represents the
relationships between the modules and the number of
steps. Fig. 7B illustrates the scatter plot of the gene sig-
nificance for the number of steps versus the module
membership in the brown module. Twelve functional on-
tologies were significantly enriched in the number of steps
behavior (Fig. 7C). Except for the ontologies previously
mentioned, namely, the response to amphetamine
Figure 7 Highlighted networks in gait characteristics and numbe
eigengene network representing the relationships between the m
erarchical clustering dendrogram of the eigengenes in which the d
The heat map in the lower panel shows the eigengene adjacency
nificance for number of steps vs. module membership in the brown m
Gene networks of the significant ontologies for number of steps.
Green lines, pathway. Dark pink lines, coexpression. Light green l
Locomotor, and (F) Perikaryon.
(FDR Z 3.97 � 10�5), postsynaptic density
(FDR Z 5.52 � 10�5), phosphoprotein (FDR Z 7.26 � 10�4),
synapse (FDR Z 2.55 � 10�3), plasma membrane
(FDR Z 2.79 � 10�3), neuronal cell body
(FDR Z 4.69 � 10�3), cell junction (FDR Z 1.41 � 10�2),
and dendritic spine (FDR Z 1.45 � 10�2), the other three
ontologies were specifically highlighted in this feature. The
postsynaptic membrane was enriched in the number of
steps feature (FDR Z 2.82 � 10�3) (Fig. 7D). This result is
consistent with the previous results that the postsynaptic
membrane is a dysfunction in the HD condition.41e43 A set
of genes with the locomotor behavioral feature was also
enriched (FDRZ 3.03 � 10�3) (Fig. 7E). Most of these genes
are connected by physical interaction. The remaining gene
ontology is perikaryon, with eight genes assigned in this
ontology (FDR Z 0.016). These genes tightly interacted
mainly by co-localization (Fig. 7F).

The other behavioral characteristic gene sets, including
the imaging features, body motion, and rhythmicity, were
also significantly associated with the HD behavior state.
Another significant behavioral feature is the Hin-
dLimbMeanAngle (hind limb mean angle of orientation of
the maximal diameter to the direction of the run [X])
(FDR Z 6 � 10�7, Fig. 3B). Fig. 8A shows the scatter plot of
the gene signature of the number of hind limb angles versus
the module membership in the brown module. A total of
r of steps in the NeuroCube platform. (A) Visualization of the
odules and the number of steps. The upper panel shows a hi-
issimilarity of eigengenes EI and EJ is given by 1 e cor (EI; EJ).
AIJ Z (1 þ cor (EI; EJ))/2. (B) A scatter plot of the gene sig-
odule. (C) Gene ontology networks for number of steps. (DeF)

Blue lines, physical interactions. Brown lines, co-localization.
ines, shared protein domains. (D) Postsynaptic membrane, (E)
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1087 genes, consisting of 19 gene ontologies (Fig. 8B), were
significantly altered in this behavioral feature (FDR < 0.05).
This behavior shared the most ontologies with other be-
haviors, such as phosphoprotein (FDR Z 8.47 � 10�8),
postsynaptic density (FDR Z 1.83 � 10�6), and calcium
(FDR Z 2.80 � 10�6), among others (Fig. 8B). Two specific
ontologies were enriched in this behavior. The first one is
cytoskeleton ontology (FDR Z 3.12 � 10�3) (Fig. 8C). This
result is consistent with those of previous reports in which
cytoskeleton abnormalities were found in the HD condi-
tion.44,45 The second one is the proton acceptor ontology
(FDR Z 0.03), in which 32 genes were detected (Fig. 8D).
Single cell-based RNA expression patterns and
spatial expression patterns of the HTT
repeatedependent behavior genes

To investigate the expression patterns of the HTT
repeatedependent behavior genes in the striatum cell
populations, we downloaded the mouse striatum single-Cell
RNA-Seq data.20 We searched the cell population expres-
sion patterns of genes in the GO network of CAG repeat
length (Fig. 9A), number of grouping (Fig. 9B), number of
Figure 8 Highlighted networks in the gait characteristics of the
maximal diameter to the direction of the run [X]) in the NeuroCube
of hind limb angles vs. module membership in the brown module. (
networks of the significant ontologies for the hind limb angle. Blue
lines, pathway. Dark pink lines, coexpression. Light green lines, sha
steps (Fig. 9C), and hind limb angle (Fig. 9D). All the ten
cell populations in the striatum can detect some gene
expression, with the strongest expression in neuron cells
(Fig. 9). These results suggested that HD patients’ neurons
are highly impacted in the striatum. Other cell types were
also impacted to a different degree. Cbx4, Tcf7, Cap1, and
Tmc3 were highly expressed in all the ten cell populations
in GO network of CAG repeat length genes (Fig. 9A). Cbx4,
Cap1, and Tmc3 were also involved in the behavior number
of grouping (Fig. 9B). Cap1 and Tmc3 were also involved in
behavior hind limb angle (Fig. 9D). In the behavior number
of steps, only Cnr1 was highly expressed in all the ten cell
populations (Fig. 9C).

To validate the gene expression patterns in brain space,
we selected some of the enriched functional terms for gene
modules that are associated with representative Pheno-
Cube and NeuroCubebe behaviors. We looked up the genes’
spatial expression patterns involved in behavior, locomotor
behavior, learning or memory, dendritic spine, postsynaptic
density in C57BL/6 mice and AppNL-G-F mice (a model for
Alzheimer’s diseases, AD) (Fig. S10) (https://alzmap.org/).
These genes showed dynamic expression in corresponding
brain regions with age (3 months vs. 18 months).
Comparing to the wild type, these genes generally down-
hind limb angle (hind limb mean angle of orientation of the
platform. (A) A scatter plot of the gene significance for number
B) Gene ontology networks for the hind limb angle. (C, D) Gene
lines, physical interactions. Brown lines, co-localization. Green
red protein domains. (C) Cytoskeleton and (D) Proton acceptor.

https://alzmap.org/


Figure 9 Single-cell-based RNA expression patterns of the HTT repeat-dependent behavior genes in the Striatum cell population.
The cell population expression patterns of genes in the network of CAG repeat length (A), number of grouping (B), number of steps
(C), and hind limb angle (D). Ependy-C: Ependy cilia; NSCs: neuronal stem cells; OPCs: oligodendrocyte precursor cells.
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regulated their expression in the other typical neurode-
generative diseaseeAD, which is consistent with the
expression patterns observed in the HD in our previous
analysis.
Enriched small molecule response to behaviors
defines the HTT repeat-dependent genes

We aimed to identify the interactions between genes and
small molecules (using the Connectivity Map21; https://
clue.io/repurposing-app) in HD based on the behavior-
enriched genes to provide the potential targets for phar-
macotherapeutic intervention. The 15 significant small
molecules are listed in Table 1, most of them are dopamine
receptor agonist or antagonist, serotonin receptor agonist
or antagonist. Staurosporine, an inhibitor for CDK, CHK, and
PKC, was reported to be an inducer of apoptosis for HD
cells.46 At the present stage, Chlorprothixene is used as a
dopamine receptor antagonist for schizophrenia and bipolar
disorder. Naltrexone is used as an opioid receptor antago-
nist for abstinence from alcohol. Levomepromazine is used
as a dopamine receptor antagonist for psychosis, schizo-
phrenia, bipolar disorder, nausea, and insomnia. Prami-
pexole is a clinically effective non-ergot dopamine agonist
and interacts with dopamine D2 subfamily receptors,
namely, the D2, D3, and D4 receptor subtypes.47 It has a
positive effect on HD.47 Aripiprazole was well tolerated and
remarkably improved some of the motor and behavioral
symptoms in patients affected by HD.48 Ziprasidone, as a
dopamine receptor antagonist and serotonin receptor
antagonist, was improved several categories of the motor
function of HD.49 Nortriptyline is a tricyclic antidepressant,
is used for depression. Dantrolene was neuroprotective in

https://clue.io/repurposing-app
https://clue.io/repurposing-app


Table 1 Fifteen significant chemicals for HD based on genes with enriched behavior features.

Name P FDR ATC code Target Mechanism of
actiona

Disease areaa

Staurosporine 1.46 � 10�8 3.44 � 10�6 CDK2, GSK3B, CAMK2B, CDK1, CDK5, CHEK1, CHRM1,
CHRM2, CHRM4, CSK, DAPK1, GPR 35, IKBKB, ITK, LCK,
LRRK2, MAP2K4, MAP2K6, MAPKAPK2, PAK2, PDPK1,
PHKG2, PIK3CG, PIM1, PKN1, PRKACB, PRKCI, PRKCQ,
RPS6KA1, STK3, SYK, TNIK, ZAP70

CDK inhibitor, CHK
inhibitor, PKC
inhibitor

undefined

Quinpirole 4.58 � 10�5 4.95 � 10�3 DRD2, DRD3, DRD4, DRD1, HTR1A, HTR2A, HTR2B, HTR2C dopamine
receptor agonist

undefined

Chlorprothixene 7.92 � 10�5 5.33 � 10�3 N05AF03 DRD2, CHRM1, CHRM2, CHRM3, CHRM4, CHRM5, DRD1,
DRD3, HRH1, HTR2A, HTR2B, HTR2C

dopamine
receptor
antagonist

schizophrenia
(neurology/psychiatry)
bipolar disorder
(neurology/psychiatry)

Boldine 6.3 � 10�5 4.95 � 10�3 CHRNA4, CHRNB2, DRD1, DRD2
Naltrexone 6.3 � 10�5 4.95 � 10�3 N07BB04 OPRK1, OPRM1, OPRD1, SIGMAR1 opioid receptor

antagonist
abstinence from alcohol
(neurology/psychiatry)

Levomepromazine 2.44 � 10�4 6.16 � 10�3 N05AA02 ADRA1A, ADRA1B, ADRA1D, ADRA2A, ADRA2B, ADRA2C,
CHRM1, CHRM2, CHRM3, CHR M4, CHRM5, DRD1, DRD2,
DRD3, DRD4, DRD5, HRH1, HTR2A, HTR2C

dopamine
receptor
antagonist

psychosis (neurology/
psychiatry)
schizophrenia
(neurology/psychiatry)
bipolar disorder
(neurology/psychiatry)
nausea
(gastroenterology)
insomnia (neurology/
psychiatry)

Minaprine 2.59 � 10�4 6.16 � 10�3 N06AX07 HTR2B, SLC6A4, ACHE, CHRM1, DRD1, DRD2, HTR2A,
HTR2C, MAOA

serotonin
reuptake inhibitor

undefined

Pramipexole 3 � 10�4 6.16 � 10�3 N04BC05 DRD3, DRD2, ADRA2A, ADRA2B, ADRA2C, DRD1, DRD4,
DRD5, HTR1A, HTR1B, HTR1D, HTR2A, HTR2B, HTR2C

dopamine
receptor agonist

Parkinson’s Disease
(neurology/psychiatry)

Ropinirole 3 � 10�4 6.16 � 10�3 N04BC04 DRD2, DRD3, ADRA2A, ADRA2B, ADRA2C, DRD1, DRD4,
DRD5, HTR1A, HTR1B, HTR1D, HTR2A, HTR2B, HTR2C

dopamine
receptor agonist

Parkinson’s Disease
(neurology/psychiatry)
restless leg syndrome
(neurology/psychiatry)

SCH- 23390 2.61 � 10�4 6.16 � 10�3 DRD1, DRD5, HTR2C, KCNJ4, KCNJ6 dopamine
receptor
antagonist

undefined

Aripiprazole 3.79 � 10�4 7.14 � 10�3 N05AX12, other
antipsychotics,
antipsychotics

DRD2, HTR1A, HTR2A, HRH1, HTR1B, HTR1D, HTR2C,
ADRA1A, ADRA1B, ADRA2A, ADRA 2B, ADRA2C, CHRM1,
CHRM2, CHRM3, CHRM4, CHRM5, DRD1, DRD3, DRD4,
DRD5, HTR1E, HTR3A, HTR6, HTR7

serotonin receptor
agonist
serotonin receptor
antagonist

depression (neurology/
psychiatry)
schizophrenia
(neurology/psychiatry)
bipolar disorder
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the HD transgenic mouse model.50 The interaction analysis
of the small molecules and behavior-enriched genes of HD
provided information for the further pharmacotherapeutic
intervention possibility for HD.
Discussion

To the best of our knowledge, this analysis is the first sys-
tematic and integrated one on a gene coexpression network
corresponding to HD behaviors in mice models. In this study,
we applied an extensive association analysis of genome-wide
transcriptomic characterization with behaviors using an
allelic series of the Htt CAG-knock-in mouse model to
elucidate the CAG length-dependent molecular networks in
disease-relevant behaviors. In this study, we used a
consensus WGCNA on 445 mRNA samples and 445 microRNA
samples along with behavioral features (396 PhenoCube
behaviors and 111 NeuroCube behaviors) to define the gene
modules that correlate with CAG repeat-dependent behav-
iors in Htt CAG-knock-in mice. We identified 37 behavioral
features that were significantly associated with the CAG
repeat length, and these behavioral features were associ-
ated with several gene coexpression groups involved in
neuronal dysfunctions. We also identified the significant
responses of 15 chemicals in behavior-enriched HD genes.
Our study provides further evidence that the neuronal signal
transduction abnormal in the striatum plays an important
role in causing HD-related phenotypic behaviors.

The neuronal dysfunction module is considered the
molecular system most strongly associated with the path-
ophysiology of HD.51 The gene expression in the post-
synaptic density, calmodulin-binding, neuronal cell body,
synapse, perikaryon, and dendrite functional groups was
modulated and linked to behaviors detected by the Phe-
noCube and NeuroCube platforms. These results dominated
the dysfunction of neurons in the HD condition, consistent
with the results of previous reports that neuronal death is
the hallmark of HD.52,53 These results were also supported
by the single-cell RNA sequencing data in the striatum
which suggested many genes in the network were highly
expressed in the neurons. Moreover, although most of the
functional ontologies were reported in HD, about half of
the genes in our networks were newly identified to be
associated with HD.

The prominent behavioral changes in HD patients are
learning and memory, perception, executive functions,
apathy, organization, impulsivity, frustration, irritability,
anger, strategies, denial and unawareness, perseveration,
depression, anxiety, psychosis, and sleep disturbances,
among others.54,55 In the mouse HD model, we found that
grouping, clustering, and locomotion behaviors were
significantly reduced. Many functional ontology classes
were found to correspond to these behaviors. The postural
and gait patterns in HD patients were abnormal, and the
walking speed was reduced in HD patients in comparison
with normal individuals.56e58 Previous findings showed
compensation production in the lower limbs in HD
patients.40e59 We identified eight HD mouse behaviors
similar to the postural and gait patterns of the lower limb
compensation production of human HD patients. Our results
provided the dominant behaviors to test drug compounds

https://clue.io/repurposing-app
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and narrowed down the behavioral features from thousands
to about 40 by using the CAG-expansion HD mouse model
for drug screening.

In this study, we also analyzed the miRNA data, but no
miRNA markers were found to be significantly associated
with the CAG repeat length and behaviors. We also exam-
ined the association of transcriptome data and 62 Smart-
Cube platform behaviors60 of 2 months (no 6- and 10-month
behavior data were available) and found no associated
behaviors in this dataset mainly because of the early age.

In summary, our study provided a large-scale, compre-
hensive transcriptomic and behavioral characterization of
the molecular pathogenic effects of the Htt CAG-knock-in
mouse model. We provided integrative genomic evidence
to show that converging molecular networks linked to
behavioral features are perturbed in HD mice. Taken
together, our integrative findings capturing the social and
activity behaviors with dysregulated genes and ontologies
provide rich information for the understanding of HD.
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25. Rothe T, Deliano M, Wójtowicz AM, et al. Pathological gamma
oscillations, impaired dopamine release, synapse loss and
reduced dynamic range of unitary glutamatergic synaptic
transmission in the striatum of hypokinetic Q175 Huntington
mice. Neuroscience. 2015;311:519e538.

26. Fan J, Cowan CM, Zhang LY, Hayden MR, Raymond LA. Inter-
action of postsynaptic density protein-95 with NMDA receptors
influences excitotoxicity in the yeast artificial chromosome
mouse model of Huntington’s disease. J Neurosci. 2009;29(35):
10928e10938.

27. Calabresi P, Centonze D, Pisani A, et al. Striatal spiny neurons
and cholinergic interneurons express differential ionotropic
glutamatergic responses and vulnerability: implications for
ischemia and Huntington’s disease. Ann Neurol. 1998;43(5):
586e597.

28. Gil JM, Rego AC. Mechanisms of neurodegeneration in Hun-
tington’s disease. Eur J Neurosci. 2008;27(11):2803e2820.

29. Thomas EA. Striatal specificity of gene expression dysregula-
tion in Huntington’s disease. J Neurosci Res. 2006;84(6):
1151e1164.

30. Pchitskaya E, Popugaeva E, Bezprozvanny I. Calcium signaling
and molecular mechanisms underlying neurodegenerative dis-
eases. Cell Calcium. 2018;70:87e94.

31. Sharma S, Moon CS, Khogali A, et al. Biomarkers in Parkinson’s
disease (recent update). Neurochem Int. 2013;63(3):201e229.

32. Murmu RP, Li W, Holtmaat A, Li JY. Dendritic spine instability
leads to progressive neocortical spine loss in a mouse model of
Huntington’s disease. J Neurosci. 2013;33(32):12997e13009.

33. Bulley SJ, Drew CJ, Morton AJ. Direct visualisation of abnormal
dendritic spine morphology in the hippocampus of the R6/2
transgenic mouse model of Huntington’s disease. J Hunting-
tons Dis. 2012;1(2):267e273.

34. Herms J, Dorostkar MM. Dendritic spine pathology in neuro-
degenerative diseases. Annu Rev Pathol. 2016;11:221e250.

35. Smith R, Brundin P, Li JY. Synaptic dysfunction in Huntington’s
disease: a new perspective. Cell Mol Life Sci. 2005;62(17):
1901e1912.

36. Carroll JB, Bates GP, Steffan J, Saft C, Tabrizi SJ. Treating the
whole body in Huntington’s disease. Lancet Neurol. 2015;
14(11):1135e1142.

37. Khedraki A, Reed EJ, Romer SH, et al. Depressed synaptic
transmission and reduced vesicle release sites in Huntington’s
disease neuromuscular junctions. J Neurosci. 2017;37(34):
8077e8091.

38. Labuschagne I, Poudel G, Kordsachia C, et al. Oxytocin selec-
tively modulates brain processing of disgust in Huntington’s
disease gene carriers. Prog Neuropsychopharmacol Biol Psy-
chiatry. 2018;81:11e16.

39. Koller WC, Trimble J. The gait abnormality of Huntington’s
disease. Neurology. 1985;35(10):1450e1454.

40. Mirek E, Filip M, Chwala W, et al. Three-dimensional trunk and
lower limbs characteristics during gait in patients with Hun-
tington’s disease. Front Neurosci. 2017;11:566.

41. Indersmitten T, Tran CH, Cepeda C, Levine MS. Altered excit-
atory and inhibitory inputs to striatal medium-sized spiny
neurons and cortical pyramidal neurons in the Q175 mouse
model of Huntington’s disease. J Neurophysiol. 2015;113(7):
2953e2966.
42. Fourie C, Kim E, Waldvogel H, et al. Differential changes in
postsynaptic density proteins in postmortem Huntington’s
disease and Parkinson’s disease human brains. J Neurodegener
Dis. 2014;2014:938530.

43. Holley SM, Joshi PR, Parievsky A, et al. Enhanced GABAergic
inputs contribute to functional alterations of cholinergic in-
terneurons in the R6/2 mouse model of Huntington’s disease.
eNeuro. 2015;2(1):ENEURO.0008-14.2015.

44. Fernández-Nogales M, Santos-Galindo M, Hernández IH,
Cabrera JR, Lucas JJ. Faulty splicing and cytoskeleton abnor-
malities in Huntington’s disease. Brain Pathol. 2016;26(6):
772e778.

45. Eira J, Silva CS, Sousa MM, Liz MA. The cytoskeleton as a novel
therapeutic target for old neurodegenerative disorders. Prog
Neurobiol. 2016;141:61e82.

46. Sawa A, Wiegand GW, Cooper J, et al. Increased apoptosis of
Huntington disease lymphoblasts associated with repeat
length-dependent mitochondrial depolarization. Nat Med.
1999;5(10):1194e1198.

47. Bonelli RM, Niederwieser G, Diez J, Gruber A, Költringer P.
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