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What is up in Virus Bioinformatics

The virosphere may contain the greatest diversity known to mankind. It has been estimated that there are 1031 viruses on Earth,
and for billions of years their ongoing proliferation and mutation has contributed to an unparalleled genomic diversity globally.
Viral mutation rates range from 10–8 to 10–6 substitutions per nucleotide per cell infection for DNA viruses and from 10–6 to 10–4

substitutions per nucleotide per cell infection for RNA viruses. The only way to efficiently analyses this biodiversity is by applying
powerful computational tools to (1) identify viral sequences and their encoded functional elements, (2) predict, annotate, and
compare their functions, and (3) structure the data to move from measuring to understanding. Until recently, our full under-
standing of viruses was based on a few hundred viruses that were isolated and could be studied in detail. With recent bioinformatic
developments, thousands of new viruses can be readily discovered in all natural and host-associated biomes (see also Section
“Viral Metagenomics” below). Including these naturally occurring viruses in comparative analyses opens up possibilities for
de novo computational predictions, including about the structure and function of viral genes.
Technology and Bioinformatics Drive Discoveries

The past decades have been characterized by technological innovations that revolutionized the way we do science, ranging from
the development of computers and the internet, to high-throughput measurement technologies including DNA sequencing, mass
spectrometry, and imaging. New fields were built based upon these developments, including bioinformatics, machine learning,
and omics. These advances have expanded the scope in all scientific fields, not least in virology. One of the most profound impacts
is a new view of the virosphere that is one of an unparalleled diversity. To illustrate, the number of recognized deep viral
taxonomic groups has been greatly expanded and the International Committee for Taxonomy of Viruses (ICTV) has recently
approved an expansion of the resolution of the viral taxonomy to 15 ranks: realm, subrealm, kingdom, subkingdom, phylum,
subphylum, class, subclass, order, suborder, family, subfamily, genus, subgenus, and species.

Bioinformatic analyses of omics and other biological datasets depend on specialized computational tools. The development of
these tools begins with basic analyses that are then incrementally used to create more complex applications. Examples of basic
applications include software to validate the data derived from next-generation sequencing machines, build alignments of gene or
protein sequences, and perform statistical tests. Higher-level analyses may include pipelines for metagenomic analysis, genome
annotation, or genotype-phenotype association. Taken together, bioinformatics is arguably one of the subdisciplines in the life sciences
with the broadest applicability. When calculated as the amount of computer time allotted to computational analyses, the largest
consumer in virology is the analysis of omics datasets. Omics analyses are characterized as high-throughput, untargeted, and generally
quantitative, and their application opens the door to systems level analysis of viruses and their effects on their hosts. For example,
comparative genomics allows thousands of viruses to be analyzed, identifying important viral genes, their functions, and their
evolution; metagenomics allows viruses to be discovered and identified with high throughput; and phylogenetics and phylogenomics
allow new viral taxonomic groups to be identified. Some of these applications are presented and discussed in the article below.
Tools for Diagnostics

Viral infections can form a significant burden not only for human health but also for the health livestock and plants. The direct
detection of viruses in clinical and other samples include microscopy, antigen detection such as ELISA, and molecular detection of the
viral genomic material by PCR. Popular molecular diagnostic techniques including qPCR or RT-qPCR also allow quantification of viral
loads. While these techniques are highly sensitive for the detection of specific viruses in a sample, they can only identify viral sequences
that match a pre-defined search image that matches the designed PCR primers. Thus, these established diagnostic tests frequently yield
negative results when a patient presents a clinical phenotype, but no virus is detected. This can be either because an uncommon variant
of a known pathogen is present in the sample, or because a novel virus is the causative agent of the disease. Notably, the difference
between these two possibilities is continuous, reflecting increasing evolutionary distances along the viral phylogeny.

Bioinformatic approaches allow PCR panels to be designed that capture an increasingly diverse array of viruses, but these assays
will always remain limited to detecting viruses within a known range, and cannot extrapolate to identify completely novel ones. This
may be resolved by untargeted (shotgun) sequencing of isolated viruses or complete sample DNA (metagenomics). Variants of
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known viruses may be detected by aligning the reads derived from the sample to the reference sequence of the known virus that was
originally used for designing the primers. If enough high-quality reads span the regions where the primer sequences should anneal
with the target, specialized variant detection tools can call the variant with a high degree of confidence, and new PCR primers can be
designed to capture them. For example, a recent PCR-based investigation of the widespread human gut-associated bacteriophage
crAssphage designed globally applicable primers by screening an alignment of sequencing reads from a range of publicly available
metagenomes and identifying highly variable regions of the appropriate size (1000–1400 nucleotides) that were flanked by con-
served regions which could be targeted by primers, and were present in Z90% of all metagenomic samples (o10% gaps). These
primers allowed a range of collaborating laboratories to independently detect crAssphage in samples from 62 different localities on
six continents. Detection of completely novel viruses from metagenomic datasets is less straightforward and will be discussed below.
Genome Sequencing

Obtaining the genome sequence of viral isolates is a highly standardized approach where second (massively parallel) and third
(single molecule) DNA sequencing technologies have allowed immense progress. An important first step prior to any downstream
analyses based on raw sequencing data is quality control. Several metrics can be used to estimate read quality. First, the sequencing
machine provides quality scores for the individual nucleotides that estimate the probability that a nucleotide was wrongly
measured. These are based on the logarithmic Phred scores and range from 0 (nucleotide measured with 0% accuracy) to 440
(499.99% accuracy). Second, several heuristics have proven useful in the identification of potentially spurious sequencing reads
that may be removed from the data, including the presence of any remaining primer, index, or adapter sequences, the over-
representation of specific nucleotide subsequences (k-mers), divergent GC content, and the presence of duplicates of the sequence
in the sequencing dataset. There is a wide array of bioinformatic tools that have been developed to calculate these metrics and
produce quality reports that summarize the results in useful graphical interfaces, such as FastQC, multiQC, and PRINSEQ
(Table 1). Once potential issues with the data have been identified, short read sequences can be pre-processed to eliminate these
sources of technical variation or errors. Typically, bases that fall under a set threshold are trimmed off along with any leftover
primer or adapter sequences. Depending on the downstream application, remaining reads shorter than a length threshold are also
discarded. Alternatively, dedicated tools can perform error correction on the short reads themselves.

An additional step that is specific for viral datasets is the removal of any remaining host sequences. If a genome sequence of the
host is available, host-derived reads may be detected by mapping the reads against the host genome. Reads that confidently map to
the host may be removed to ensure that the remaining part of the read set reflects the viral fraction of the sample. In the clinical
context and for human patient samples, in particular, removal of reads mapping to the human reference is essential in order to
abide to established international guidelines for safeguarding the individual’s privacy. Correct identification of viral sequences that
might have integrated in the host genome, as is the case with retroviruses and prophages, still remains a challenge. In these cases,
viral reads may still align to the sequences of proviruses or prophages in the host genome if they are sufficiently similar, and may
thus be removed from the sequencing dataset. Potential solutions include masking these proviruses in the host reference genome,
or postprocessing the removed putative host reads by comparing them to another database of known viral sequences that includes
the sequences of the integrated viruses. Detecting integrated viral sequences in the genome sequences of cellular hosts, and
accurately determining their integration boundaries remains an ongoing bioinformatic challenge.

A typical sequencing effort targeting a viral genome with current second generation sequencing technologies will result in
millions of short sequences of the order of B102 nucleotides in length. Typically, these sequencing reads are generated from
random fragments of the genome or genomes in the sample (hence the term “shotgun sequencing”). Because viral genomes range
from B103–105 nucleotides, for most practical purposes these short reads need to be assembled, unless a very closely related
reference genome sequence is available. Sequence assembly is the process whereby short reads are combined into longer stretches
of contiguous sequence (contigs). In case a single non-segmented genome is assembled, the end result optimally consists of a
single string of nucleotides representing the complete genome sequence. Since most viral genomes are smaller and simpler in their
structure than those of cellular organisms, assembling a full viral genome is relatively straightforward. Still, sequencing errors,
repetitive and low complexity regions, and especially quasispecies diversity that results from high mutation rates may pose specific
hurdles into obtaining a complete genome sequence. Several virus specific genome assemblers have been developed to address
these issues including VICUNA and IVA (Table 1).

The latest advances in long read sequencing technologies promise high quality viral genomes. Recently, long read sequencing
was shown to allow whole viral genomes to be captured in a single read, for example by direct sequencing of influenza and
coronavirus genomes. Long read sequencing technologies still come with a higher error rate than their short counterparts. Hybrid
approaches leveraging the advantages of long reads (ability to span low complexity and coverage regions) and short reads (low
error rates) produce high quality, full viral genomes. Successful long read-based genome assemblies have been reported for the
human cytomegalovirus and the pig pseudorabies virus. In principle, similar pre-processing steps apply to long as to short
sequencing reads, but dedicated tools are used that take into consideration their specific limitations. Extensive quality summaries
can be obtained with Poretools or nanoOK. The relatively error-prone long-read sequencing data may be corrected either without
the use of additional short-read sequences (i.e., non-hybrid) or with a hybrid approach. Examples of tools performing non-hybrid
error-correction include Nanocorrect and PoreSeq, while hybrid methods include Nanocorr and NaS. Similarly, non-hybrid
assemblers include Canu and Miniasm, with SPAdes and Unicycler performing hybrid assemblies.



Table 1 List of selected software tools and resources for virus bioinformatics tasks

Read processing tools
Quality check FastQC, PRINSEQ, mulitQC Checks read sequencing quality

Poretools, nanoOK Quality checks for nanopore long reads

Raw reads pre-processing Cutadapt, Trimmomatic, BBduk Quality trimming, artefacts removal on short reads
Nanocorrect, PoreSeq Non-hybrid error correction for nanopore long reads
Nanocorr, NaS Hybrid error correction for nanopore long reads

Genome assembly tools
Single genomes VICUNA Produces population consensus genome assembly

IVA Assembler designed for RNA viruses
SPAdes Generic genome assembler
Canu, Miniasm Non-hybrid assemblers for nanopore long reads
Unicycler Hybrid assembly pipeline for nanopore long reads with the use of short reads

Metagenomes MEGAHIT, metaSPAdes, Ray-meta, IBDA-UD Assemblers optimized for metagenomics data
crAss Cross-assembly analysis of multiple metagenomes

Read mapping
BWA, Bowtie, BBmap Align short read sequences to a reference
STAR Splice-aware aligner for RNA-seq data
GraphMap, LAST Align long read sequences to a reference

Gene Prediction
ORF Finder Searches for open reading frames in the provided sequence
Prodigal A protein-coding gene prediction software tool
VIGOR Annotation program for small viral genomes

Similarity searches
BLAST A suite of tools to find regions of similarity between DNA and protein sequences
HHpred Sensitive protein homology detection, function, and structure prediction
HMMER Homology based search

Multiple Sequence Alignment
MAFFT, ClustalW Multiple sequence alignment for DNA and protein sequences
MUSCLE Multiple sequence alignment for protein sequences

Sequence taxonomic annotation
CAT, Kraken, Centrifuge, Kaiju Assign taxonomic labels to reads or assembled contigs

Phylogenies
RaxML, PhyML Inference of large phylogenetic trees
BEAST A software package for phylogenetic analysis with an emphasis on time-

scaled trees

Taxonomy and classification
GRAViTy Classification of eukaryotic viruses
vConTACT Classification of double stranded DNA viruses of bacteria and archaea
VICTOR Genome based phylogeny and classification of prokaryotic viruses
DEmARC Classification of viruses based on genetic divergence

RNA secondary structures
mfold/UNAFold RNA secondary structure prediction
ViennaRNA package Suite of tools to perform RNA structures prediction and comparison
LocARNA Structure-guided multiple sequence alignment of RNA sequences

Transcriptomics
DESeq2, Sleuth Statistical analysis of RNA-seq data

Databases
ViralZone Link specific knowledge for each virus family with viral protein and genomic

sequences
Virus Variation Resource A community portal for viral sequence data
Virus Pathogen Database and Analysis
Resource (ViPR)

An integrated repository of data and analysis tools for multiple virus families
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After genome assembly, annotation is an important computational analysis that is required for interpreting the functionality of
the virus in its environment. This includes a prediction of functional features such as protein-coding genes and tRNAs, and a
classification step where each feature is characterized by similarity to known proteins or RNAs. Importantly, most genes predicted
from novel viruses are distant from known references, and common similarity detection tools like BLAST often cannot provide
relevant information in this context. Conversely, the use of more sensitive tools relying on the detection of conserved residues and
the representation of protein sequence diversity as Hidden Markov Model (HMM) profiles (e.g., HMMER, HH-PRED, PSI-BLAST),
is much more useful when analyzing novel virus genomes. These tools are able to detect distant homologies between distantly
related viral proteins, which is often the only way to detect homology and, consequently, suggest potential functions in the light of
the rapid viral sequence evolution.
RNA Secondary Structures in Viruses

RNA secondary structures play an important role in the life cycle of viruses, especially RNA viruses. These are formed either via the
interaction of nucleotides located at close proximity to each other or at distances of several thousand bases (i.e., long-range RNA-
RNA interactions, LRI). Local RNA structures were shown to be involved in translation initiation in Hepacivirus and Tombusvirus,
while LRIs between the 50 and 30-UTRs of Flaviviridae family genomes promote replication. Moreover, a network of intra- and
intersegment RNA-RNA interactions facilitates reassortment between Influenza A genomic segments from different co-infecting
strains. This genomic reshuffling may have important effects, including the loss of vaccine efficacy.

Current algorithms for in silico prediction of RNA secondary structures mainly employ thermodynamic methods and can be
applied to single sequences with software tools like mfold or its successor UNAFold. Furthermore, functional RNA secondary
structures are conserved among different viral strains and species and it has been shown that this conservation is higher on the
structure level than on the sequence level. Improved bioinformatic methods for in silico predictions use several different sequences
and their covariances. These covariances, originating from different viruses, are used to generate structure-guided multiple
sequence alignments and increase the accuracy of these predictions. Such approaches have been implemented in tools like
LocaRNA. Both single and multiple sequence-based predictions can be made using various tools included in the ViennaRNA
package.

The in silico prediction of structures is limited by some assumptions of the underlying models. First, unpaired regions of two
(or more) structures that interact with each other (i.e., pseudo-knots) are usually neglected. Second, the length of the input
sequence is limited. The number of all possible structures increases exponentially with the length of the RNA sequence. In other
words, the longer the sequence, the less confident the in silico prediction. Third, interaction sites that do not follow the canonical
base-pairing model are usually not included in the prediction algorithms. New specific tools and analysis pipelines are con-
stantly being developed and existing ones improved, in order to address known challenges. In vitro or in vivo validation of the
presence of predicted structures in viruses and their biological function is of paramount importance. To this end, the close
cooperation of virologists and bioinformaticians is indispensable for achieving new knowledge in the field of secondary
structures in viruses.
Viral Metagenomics

Recently, a new source of viral genomic sequences has become increasingly important. Metagenomics samples genomic material
directly from the environment, allowing for the reconstruction of complete viral sequences without cultivation. Early metagen-
omes did not allow for the assembly of large genome fragments, mostly because of a limited capacity in sequencing depth and
assembly software available at the time. Hence, most analyses focused on individual marker genes or global comparison between
datasets, i.e., “all-versus-all” similarity. While providing important information on the overall genetic diversity of viruses, these
gene-level analyses suffered from major limitations. Specifically, gene-based approaches can only target specific groups of viruses
since no universal viral marker gene exists and are thus limited in their ability to discover novel viral diversity and draw inference
at the scale of whole viral communities.

An early database independent tool for cross-metagenomic comparison at the level of sequencing reads was crAss, for cross-
Assembly, an approach that exploits sequence assembly to identify shared elements in different metagenomic samples. Greater
sequencing depth per sample and improved bioinformatics now enable the assembly of large genome fragments and even
complete genomes from metagenomes. These genomes, termed “uncultivated virus genomes” to distinguish them from genomes
obtained from virus isolates, are now becoming the primary unit of most virome analyses. The community has thus recently
established a set of standards and guidelines to identify, analyze, and report these genomes of uncultivated viruses in a manuscript
entitled “Minimum Information about an Uncultivated Virus Genome (MIUViG)”, so that these sequences can contribute to a
comprehensive mapping of viral diversity on Earth. In addition, the different tools commonly used in virus genome analysis are
progressively being made available on free online data analysis platforms so that all researchers can incorporate uncultivated virus
genomes into their analysis.

One of the areas that strongly depends on a thorough understanding of uncultivated viruses is viral ecology. Briefly, the first step
in the analysis of viral diversity from metagenomics is to identify which of the assembled sequences are derived from viral genomes.
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This step is required even when processing purified viromes, where most of the data is expected to be viral, because these can still
contain a substantial fraction of contaminating cellular sequences. The second requirement is to evaluate whether an assembled
contig corresponds to a fragment of a larger genome, or represents the majority and possibly the entirety of a genome sequence. This
information is critical to correctly interpret these data, especially for analyses such as functional potential and taxonomic classifi-
cation of the identified viruses. The current standards, comparable to the ones used for uncultivated genomes of bacteria and archaea,
comprise three categories defined based on estimated genome completeness and the level of genome annotation provided: “genome
fragments” are sequences representingo90% of the full genome, “high-quality draft genomes” represent Z90% of the genome with
minimal functional annotation, and “finished genomes” are complete genomes with comprehensive annotations of the encoded
functional elements. When these considerations are addressed, the relative abundance of different viral groups can then be assessed
through “read mapping”, i.e., the reads sequenced in a metagenome are compared to the viral genomes, and the number of reads
matching each genome is interpreted as a measure of the number of copies of this genome in the initial sample. Using this approach,
traditional microbial ecology approaches can be applied to assess alpha and/or beta diversity of the viral community. Moreover,
species-species interaction networks can be inferred based on the correlation of viral and/or microbial groups across samples, where
network nodes reflect species and edges reflect their correlated abundance or occurrence patterns across samples. Thus, these networks
summarize the information in individual metagenomes that represent temporary or spatial snapshots of ecosystems. Network-based
approaches have been applied in the study of viruses and the interactions with their potential hosts, but their interpretation remains
challenging. Nevertheless, they can help elucidate temporal and spatial dynamics of viral diversity as well as unravel the role of
viruses in important ecological processes such as the carbon cycle.

The application of metagenomic deep sequencing and de novo assembly for virus diagnostics allows also distantly related
viruses to be identified, provided that sensitive homology detection tools are used. The unbiased, high-resolution view of the viral
diversity present in a sample that is offered by metagenomics, allows the identification of viruses in patient samples directly
through agnostic sequencing. Advances have been made towards the application of metagenomics outside of the research context
and into the clinic, with a growing number of studies evaluating metagenomics as a tool for animal and zoonotic diseases
detection. These include discoveries of new viruses associated with deaths after organ transplantations in humans, polyomaviruses
associated with Merkel cell carcinomas, encephalitis-causing viruses in cattle and other difficult-to-diagnose cases. However, these
studies often reveal an array of viruses in most samples, and predicting for each of them whether they impact on human health
remains an unresolved issue. There is still some ground to be covered for metagenomics to be established as a routine diagnostic
test. Decreasing sequencing costs, improvements in the underlying bioinformatics tools, as well as standardization of protocols
and well-defined guidelines for laboratory personnel will render this option even more viable in the future.
Evolution and Phylogenetics

Phylogenetic inference based on molecular data starts with the alignment of multiple homologous sequences that allows
mutations to be identified. Next, several approaches exist that transform the knowledge of the identified mutations into a
phylogenetic tree, including distance-based approaches like neighbor-joining that can be rapidly calculated, and more advanced
approaches that build reliable phylogenetic trees based on an evolutionary model, including maximum likelihood or Bayesian
optimization. Established statistical and mathematical models of evolution and the estimation of parameters such as substitution
rates, divergence times, and other population genetics patterns are incorporated in various bioinformatic software packages such as
RAxML, BEAST, and PhyML that are widely used in virus bioinformatics (Table 1).

Phylogenetic analyses of viruses encounters several challenges. First, efforts to reconstruct the “deep phylogeny” of viruses are
hampered by the inability to calculate genetic distances between the highly divergent sequences of distant families. Thus,
phylogenetics and phylogenomics are most successful in the context of narrowly defined groups of related genomes, whose
members share a set of core genes that allow all members to be compared in a common framework. For example, the gene
encoding the RNA-dependent RNA polymerase (RdRp) is the only universal gene among RNA viruses and phylogenetic
reconstructions based on this have shed light into the origins and evolution of the global RNA virome. Second, phylogenetic trees
of different viral genes often yield inconsistent phylogenies due to the high frequency of genomic recombination in viruses.
Conventional phylogenetic trees used for graphically representing viral phylogenies are challenged by variable evolutionary rates,
lack of physical “fossil records” of viruses, confounding evolutionary relationships between viruses and their hosts, high rates of
horizontal gene transfer and rampant genomic rearrangements. An alternative approach to visualizing distant relationships are
genome-level networks. In this context, network nodes represent virus genomes and edges are drawn between them if they share at
least one gene. Using formal analytical tools the network topology can be interrogated. Such analyses have given insights in host
range of phages. Furthermore, bipartite networks may also be used to depict the links between homologous gene families and
genomes.

One application of phylogenetics in virology is the study and tracking of transmission networks and epidemics. Understanding
the relationships between viruses can provide us with a wealth of information about when, where and how viruses are transmitted,
and in what ecological or clinical context. Phylogenetic analyses can be employed to infer phylogenetic relationships between
different strains, such as building a clearer picture of a viral outbreak or for the reconstruction of the demographic history of the
pathogen. Transmission networks allow the analysis of evolutionary trajectories of very recently diverged strains of the range of less
than years thanks to high viral mutation rates. This enables near real-time monitoring of virus outbreaks, as was shown in the



Virus Bioinformatics 129
2013–2016 West African Ebola outbreak that was monitored “live” by nanopore sequencing of 142 Ebola virus genomes from
patients in Guinea. Moreover, geographic mapping of 1610 Ebola virus genomes allowed the dispersal, proliferation and decline
outbreak to be analyzed, revealing a heterogeneous and spatially dissociated epidemic consisting of different transmission clusters.
In an epidemiological study of the 2013–2014 Zika virus outbreak in the Americas, molecular clock estimates suggested that its
introduction into Brazil predated the 2014 World Cup soccer tournament and a canoeing event, potentially pointing to its
introduction during the 2013 Confederations Cup soccer tournament. The integration of genomic, epidemiologic, and mobility
data has led to the blossoming of the field of phylodynamics.

Another important application of phylogenetics in virology is taxonomy. Virus taxonomy is a field in flux. No standard
automated viral taxonomy framework currently exists, but several computational tools have been developed that allow clustering
of viral sequences and objective demarcation of the boundaries between taxonomic levels, such as DEmARC, vConTACT, VICTOR,
and GRAViTy. In this context, the ICTV is now exploring genome-based taxonomy methods for different types of viruses, which
would enable an integration of high-quality and finished metagenome-assembled virus genomes in the official taxonomy, and
thus a better representation of viral diversity in the official ICTV classification. Taxonomic classification is grounded in phylo-
genetics, and different phylogenetic characters are suitable for distinguishing recent and ancient taxonomic groups, in accordance
to their rates of evolution. The emerging consensus is that gene content methods similar to those developed in the beginning of the
genomic era for cellular organisms are the method of choice for resolving ancient taxa. For defining recent taxa, alignment-based
methods are appropriate for taxa with widely shared marker genes.
Virus-Host Interactions

In 1973, an early breakthrough in the understanding of co-evolution came with the definition of a law known as Red Queen,
named after the Alice in Wonderland character. Applied to viruses, the law describes a co-evolutionary steady state in which hosts
evade the viruses that infect them by mutating certain interaction molecules, while viruses also mutate to retain virulence. Thus, for
both parties “it takes all the running [in genome sequence space] they can do, to keep in the same place”. Both viruses and their
hosts have evolved evolvability mechanisms that boost mutations in genomic regions containing important genes involved in
virus-host interaction. For example, some bacteria and bacteriophages encode mechanisms of targeted genomic hyper-variation
that diversify receptor-binding proteins (RBPs). Others encode genomic islands that contain proteins involved in cell decoration,
or anti-phage defense systems that may be readily gained and lost from the genome. These and other mechanisms of accelerated
evolution, combined with rapidly fluctuating selection pressures, make virus-host interaction genes among the most variable
elements of bacterial and phage genomes.

Traditionally, viruses were always discovered and analyzed in the context of a host, either because the host showed
symptoms of the viral infection, or because the viruses were isolated by growing them in a cell culture of their host. This has
changed with the advent of metagenomics, as viral genomic sequences can be identified directly from their environment (see
also Section “Viral Metagenomics” above). The direct sampling of viruses without host information complicates the
interpretation of the ecological roles of viruses, including fulfillment of Koch’s postulates in the case of samples from
diseased organisms. Thus, host prediction is an important current challenge in understanding the role of viruses identified
from metagenomics. Metagenomics may reveal sequences that are distinct from those of known viruses; thus, their hosts
cannot be predicted based on similarity to viruses that have been experimentally characterized. Recent advances in machine
learning hold promise for predicting virus-host interactions, including several approaches that are based on the genome
sequences alone. These approaches exploit genomic signals including, for example (1) the nucleotide usage profile of the
genome sequence that is adapted in viruses as a result of co-evolution with their hosts; (2) regions of sequence similarity
between virus and host genomes, which could reflect integrated proviruses, horizontally transferred genes, or other
mechanisms; (3) CRISPR spacers in the bacterial genome matching the genomes of bacteriophages that infected that host
lineage in the past; and several other signals. Nevertheless, most virus genomes assembled from metagenomes remain
without any predicted host at this point, and designing new approaches to establish these linkages remains a major
computational challenge in the field.
Machine Learning as an Opportunity

As new technologies allow diverse aspects of biological systems to be measured at unprecedented scale and resolution, the rapidly
increasing complexity and dimensionality of the data are increasingly challenging to interpret. Emerging analysis and processing
methods based on machine learning have the ability to deal with such large, complex data sets. The main power of such
approaches is their ability to identify signals and patterns in the data, enabling predictions to be made by using statistical models.
Machine learning describes the process of gaining general knowledge to effectively perform a specific task by analyzing samples.

Machine learning algorithms can be divided into different types based on their strategy and the kind of problem they address,
primarily including supervised and unsupervised machine algorithms. Unsupervised learning algorithms analyze high-
dimensional input data for patterns without a search image. This information can be extracted by clustering the input data and
can be used to determine the importance of each dimension of the input data. Common approaches including PCA and t-SNE do
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this by reducing the dimensionality of the input data while preserving the information. This can lead to insightful visualizations of
clusters or patterns in complex data. For example, the k-means clustering algorithm is an unsupervised method that clusters the
data into k different groups. This is achieved by combining the samples with the highest similarities into one group. If clear clusters
are observed, this indicates variations in the data that may need further analysis before drawing general conclusions about the
complete dataset. This can help to identify potential pitfalls of an experiment represented in the data. In contrast to unsupervised
learning, supervised learning approaches like random forest, gradient boosting trees and support vector machines analyze features
of the input data for solutions that correspond to a pre-defined pattern represented by training data. In a genomic context, such
features could include the length of the genome sequence, the amino acid distribution of the encoded proteins, the age of a
sampled patient, etc. From the methodological perspective, a feature can be any property of the data that can be numerically or
categorically represented. The machine learning algorithm analyses the predefined features of each sample and searches for
similarities which help to solve the predefined task. The predefined task is the transformation of the input data to the desired
output data. For example, given a metagenomic sequence as input, a supervised machine learning algorithm could determine
whether it is derived from a virus.

A major challenge in supervised learning is to identify generalizable patterns that are predictive of new “unseen” cases. To
assess the performance of such algorithms, it is good practice to split the full dataset into three parts, including (1) training data
that is used to identify significant patterns; (2) validation data that is used to optimize the parameters of the machine learning
algorithm; and (3) testing data that is used to assess the performance of the approach on unseen data. For fair comparison, it is
important that the testing data is in no way used to tweak or optimize the procedure. The amount of data used for training,
validation, and testing may differ, but could represent e.g., 80:10:10 ratio, where it is important that the data points represent
independent measurements. This may be especially challenging when predicting virus-host interactions (see Section “Virus-Host
Interactions” above), because the viruses with known hosts that are present in the database are highly skewed for a few well-
described groups. If left unaccounted for, this database bias leads to inflated performance statistics for virological machine
learning predictors.

Recently, representation learning methods have gained a lot of attention due to their extraordinary ability to represent complex
information in statistical models. Approaches including deep learning and transfer learning have the advantage that very complex
data can be analyzed and processed, with only a minimal requirement for the user to define features. Such approaches are ideal for
analyzing big omics scale datasets, but require large amounts of training data and concomitantly heavy computing power, orders
of magnitude more than the classical approaches. To summarize, machine learning enables us to analyze, understand, and
evaluate the huge amounts of data that are becoming available through technological innovations.
Host Transcriptomics

Viruses only come to life after infecting their cellular host. Understanding the host response is of utmost importance for the
investigation of viral infections. Once the virus enters the host system (either a living organism or a virus-responsive cell line),
highly specific regulators identify the threat and then stimulate the expression of a cascade of genes. For example, in the case of
an RNA virus infection, antiviral type I interferons (IFN-alpha/beta) bind to their receptors, thus activating specific tran-
scription factors and promoting the expression of several IFN-stimulated genes (ISGs) with antiviral and immunomodulatory
activity.

Today, transcriptomics (RNA-Seq) is widely used to study the host response to viral infections. To this end, total RNA extracted
from, e.g., uninfected (mock) and virus-infected host cells can be reverse transcribed into cDNA (complementary DNA), frag-
mented, and sequenced. Short-read sequencing technologies generate a high-resolution expression profile consisting of millions of
short sequencing reads that represents the composition and relative amount of RNA molecules, together making up the tran-
scriptome. Different computational approaches are combined to build bioinformatics pipelines to process and analyze these short-
read data comprehensively. In the case of an available host (or closely related) reference genome, the reads can be mapped back to
identify their origin and thus the origin of their corresponding RNA expression.

If no reference genome is available, RNA-Seq data can also be assembled de novo and subsequently characterized, to identify
differentially expressed genes. A promising avenue in transcriptomics are long-read sequencing technologies such as offered by
PacBio Iso-Seq and Oxford Nanopore technologies. The latter has already been used for sequencing and investigation of full-length
host and virus transcripts in their native RNA form.

A gene that is more strongly transcribed during viral infection statistically yields a higher number of short reads after
sequencing. Therefore, RNA-Seq not only allows the identification of transcribed host genes but also provides a quantitative value.
The number of reads of the same gene derived from different conditions (e.g., mock versus infected) can be compared to identify
differentially expressed genes. After normalization (taking into account different sequencing library depths and/or gene lengths),
fold changes and their significance are calculated for each gene and between replicated conditions. To this end, tools such as
DESeq2 and Sleuth, provided as R packages, are used to statistically evaluate the quality checked, mapped, and quantified RNA-
Seq data. Fig. 1 shows an exemplary RNA-Seq bioinformatics pipeline for the calculation of differentially expressed genes between
mock, IFN-treated, and virus-infected cell lines of a microbat species (Myotis daubentonii) at two different times after treatment.
Since no genome of this bat species was publicly available, the genome of a close relative (M. lucifugus) served as a reference for
mapping and quantification.



Fig. 1 Overview of an RNA-Seq bioinformatics pipeline for the identification of differentially expressed genes based on a study of an IFN-treated and virus-infected (RVFV Clone 13) bat cell line (Myotis
daubentonii). Samples were taken in triplicates at two time points and sequenced with Illumina. Reference genomes for the virus and a close relative bat species were obtained from NCBI and Ensembl,
respectively.
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Conclusions

Computers are not only indispensable to analyze data in virology, but also to store and distribute the large volumes of data
generated in a reproducible way. Efforts into making the unprecedented amounts of data Findable, Accessible, Interoperable and
Reusable (FAIR) should also be applicable in the field of virology. Several resources are currently available that are dedicated to
viral specific sequence information and their associated metadata (Table 1). Currently, most analyses require a reference database,
be it sequence based similarity searches for the identification of viruses, functional annotation of protein sequences or genome
based phylogeny and classification. Making data publicly available in databases is important, not only as part of their general
interest. As new methodologies are being developed, the available data can be further mined or reanalyzed to extract new
information. A prominent example is the discovery of a highly abundant phage in the gut of humans, crAssphage; another is the
recent suggestion that small circular single-stranded DNA smacoviruses infect Archaea instead of humans. The timely deposition of
genomic data and their availability to the public domain is also crucial in the epidemiological context where this information can
be used for continuous surveillance, designing effective diagnostics, vaccines and antibody-based therapies.

Bioinformatics opens up a vast range of possibilities for new analyses and interpretations of viruses. While computational
predictions always need to be validated by relevant in vitro experimental follow-up, the unprecedented availability of big omics
datasets in the public domain already allow bioinformaticians to perform many initial validations in silico. These best practices can
be used to estimate the accuracy of diverse bioinformatics tools, providing an important focus for wet laboratory experiments and
saving valuable time and resources. Thus, bioinformatics has already become an integral and transformative component of virus
research, much like techniques such as culturing, microscopy, and molecular biology have done in the past.
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