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ABSTRACT

Pairwise global alignment is a fundamental step in
sequence analysis. Optimal alignment algorithms
are quadratic––slow especially on long sequences.
In many applications that involve large sequence
datasets, all what is needed is calculating the iden-
tity scores (percentage of identical nucleotides in
an optimal alignment––including gaps––of two se-
quences); there is no need for visualizing how every
two sequences are aligned. For these applications,
we propose Identity, which produces global identity
scores for a large number of pairs of DNA sequences
using alignment-free methods and self-supervised
general linear models. For the first time, the new
tool can predict pairwise identity scores in linear time
and space. On two large-scale sequence databases,
Identity provided the best compromise between sen-
sitivity and precision while being faster than BLAST,
Mash, MUMmer4 and USEARCH by 2–80 times. Iden-
tity was the best performing tool when searching
for low-identity matches. While constructing phylo-
genetic trees from about 6000 transcripts, the tree
due to the scores reported by Identity was the clos-
est to the reference tree (in contrast to andi, FSWM
and Mash). Identity is capable of producing pairwise
identity scores of millions-of-nucleotides-long bac-
terial genomes; this task cannot be accomplished by
any global-alignment-based tool. Availability: https:
//github.com/BioinformaticsToolsmith/Identity.

INTRODUCTION

We live in an era when sequences are generated at an
unprecedented rate. Analyzing these countless sequences
requires efficient computational methods. Algorithms for

comparing sequence similarity are among the most widely
applied ones to analyzing DNA, RNA and protein se-
quences. Pairwise alignment algorithms (1,2) have been the
standard methods for assessing sequence similarity over the
past 40–50 years. Multiple software tools for alignment are
available (3,4). Applications of alignment algorithms in-
clude gene discovery (5), genome assembly (6–8), function
prediction (9,10) and metagenomics (11), just to name a few.
Many advancements have been made since the Needleman–
Wunsch alignment algorithm was devised (2,12–14), but
these new algorithms still depend on slow, quadratic, dy-
namic programming. This limitation is well manifested
when comparing two very long sequences or scanning a very
large sequence database. Almost all of the speed-ups are
based on heuristic methods and may reduce the theoretical
runtime down to O(n log n) instead of O(n2).

This shortcoming of alignment algorithms has led the
field to develop plenty of faster, alignment-free methods.
Multiple reviews of alignment-free methods have been pub-
lished (15–23), indicating the importance and the abun-
dance of such methods. One particular class of these meth-
ods depends on comparing two histograms of short words
called k-mers, i.e. words of fixed length k. Building the his-
tograms and comparing them can be done very efficiently.
Although these alignment-free methods are very efficient,
they have not become the standard in the field because
their scores are not as intuitive or biologically relevant as
the identity scores generated by alignment algorithms (an
identity score is defined as the percentage of identical nu-
cleotides between two optimally aligned sequences). How-
ever, k-mer statistics are often used by alignment tools as
heuristics, such as in BLAST and USEARCH.

Motivated by the lack of biological relevance of the
early alignment-free scores, a number of tools that pro-
duce phylogenetic distances, e.g. number of substitutions
per position and pairwise mutation distance, have been
proposed (24–31). However, alignment-free tools that can
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efficiently calculate global identity scores––the standard
metric––still need to be developed.

Often times, the identity score alone is enough; generat-
ing the alignment itself is not needed. For example, con-
sider scanning GenBank for similar sequences to a partic-
ular gene. For another example, consider the task of clus-
tering a large number of sequences. Or consider building a
phylogenetic tree of the genomes of related species. In these
three applications there is no need to generate alignments;
only identity scores are required.

We propose a new tool, which we call Identity, for
predicting pairwise global identity scores of DNA se-
quences. Identity can predict global identity scores in linear
time––O(n)––and space. The tool utilizes self-supervised
machine learning algorithms in predicting global identity
scores using a small number of alignment-free, k-mer statis-
tics. Identity overcomes the weaknesses of alignment algo-
rithms (slow, especially on long sequences) and those of
alignment-free methods (their scores are not biologically
relevant). It produces identity scores, which are intuitive,
biologically relevant and the standard metric in the field
while taking advantage of the efficiency of calculating k-
mer statistics. Identity is designed for large-scale datasets;
currently, it is unsuited to be applied to two sequences
only. Identity can be applied to scanning a large sequence
database for sequences similar to a query. The new tool
can also generate all-versus-all identity scores, which can
be used in clustering sequences, aligning multiple sequences
and building phylogenetic trees. However, Identity does not
generate a pairwise alignment, in which each nucleotide in
one sequence is matched to a nucleotide or a gap in the other
sequence. Because the new tool produces identity scores ef-
ficiently, it has the potential to save thousands of computa-
tional hours.

The core of Identity is an adaptive, linear model for pre-
dicting the identity scores above a user provided thresh-
old. This design was inspired by our earlier research. We
have successfully implemented adaptive software tools us-
ing self-supervised learning algorithms for locating cis-
regulatory modules (32), identifying DNA repeats (33,34),
and for clustering DNA sequences (35,36). Multiple soft-
ware tools we developed earlier utilize general linear models
(GLM) (34–40). Alignment-assisted methods that can clas-
sify similar and dissimilar sequences and predict identity
scores were developed (34,35); such methods use alignment-
free statistics to predict the alignment identity scores, on
which they are trained, i.e. they are not alignment-free com-
pletely. These earlier tools justify our design choice of the
adaptive, linear model as the core of Identity.

MATERIALS AND METHODS

Main idea

In Figure 1, we diagram the main idea of Identity and con-
trast it to the Needleman–Wunsch alignment algorithm.

Definition of identity scores

First, we define identity scores. An identity score is the ra-
tio or the percentage of all aligned columns with identical
nucleotides in the two sequences. In other words, it is the

A

B

Figure 1. A high-level comparison between (A) the Needleman–Wunsch
alignment algorithm and (B) the underlying method of Identity. The align-
ment algorithm calculates a table of size n × m, where n and m are the
lengths of the two sequences. In contrast, Identity converts each sequence
to a k-mer histogram whose length is proportional to the average length
of the two sequences. Then Identity calculates some statistics on the two
histograms and the final score as the weighted average of the statistics.

ratio of columns with identical nucleotides to columns with
different nucleotides, same nucleotides or including gaps.
For example, the alignment shown in the lower part of Fig-
ure 1A has 12 columns, nine of which have identical nu-
cleotides in the two sequences; therefore, the identity score
is 0.75 (9 ÷ 12) or 75%.

Input and output

Identity is a tool for calculating pairwise global alignment
identity scores in linear time. The input to the tool is a
database of sequences and a query list if the user desires to
search this database for sequences similar to the query se-
quence(s). Alternatively, the input can be a database only
if the user desires to obtain all-versus-all identity scores.
Alignment algorithms can be applied to two sequences only.
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Identity requires training sequences, which are selected from
the input database. Therefore, Identity should be applied
to medium or large datasets. Identity requires a threshold
score; sequence pairs with identity scores below the thresh-
old are not reported (the user may chose to report all pairs).
The tool outputs the headers of sequence pairs along with
their identity scores if they are above the threshold.

Method overview

Identity is an instance of self-supervised learning; such
learning algorithms generate their own labeled training
data. They then train themselves on the generated data.
Identity performs the following steps:

1. Select a sequence subset––the templates––of input data.
2. Mutate copies of the templates to generate training and

testing semi-synthetic sequence pairs along with their
alignment-free identity scores.

3. Convert each sequence to a k-mer histogram.
4. Calculate statistics on histogram pairs.
5. Select features for the regression model, which is a GLM,

using the best-first feature selection algorithm.
6. Train and test the GLM on sequence pairs in the training

and the testing sets.
7. Read all input sequences, convert them to histograms,

compute the selected statistics and use the trained GLM
to calculate the identity scores.

We start with explaining how the templates are selected.

Template selection

When a database of DNA sequences is given, the first step
is to use the first 1000 sequences or to use all sequences in
the database if they are fewer than 1000 to generate semi-
synthetic data. We call the selected sequences templates. The
next step depends on the application mode (database search
or all versus all). If Identity is applied in the search mode, the
1000 templates are filtered based on length to eliminate too-
short or too-long sequences that are impossible to produce
the desired minimum identity score. For example, suppose
that the query sequence is 1000 base pair (bp) long and the
identity threshold is 0.5, sequences shorter than 500 (1000 ×
0.5) bp and longer than 2000 (1000 ÷ 0.5) bp are removed.
After that, the query sequence(s) is added to the remaining
templates. If Identity is applied in the all-versus-all mode,
no filtering is performed. Next, we explain how the semi-
synthetic data are generated from the templates.

Semi-synthetic data generation

Semi-synthetic data are generated by mutating real se-
quences taken from the input database––the templates.
Each template is copied multiple times. The number of
copies per template is calculated by dividing 10 000 (the
desired size of data utilized in training and testing) by the
number of the templates. These copies are then mutated us-
ing the following mutation types: (i) single point mutation
or (ii) block mutation. In single point mutation, a single nu-
cleotide is mismatched, deleted, or inserted. In block muta-
tion, a block of random nucleotides is inserted; or a block of

Table 1. The effects of each mutation type on identity scores

Mutation
type Alignment length Number of matches

Mismatch No effect Subtract 1
Deletion No effect Subtract the number of

the deleted nucleotide(s)
Insertion Add the number of the

inserted nucleotide(s)
No effect

Duplication Add the number of the
duplicated nucleotides

No effect

The identity score is the ratio of identical nucleotides between two se-
quences to the total length of the alignment, which may include gaps. Be-
cause Identity generates a mutated sequence from an original sequence, it
can calculate their identity score without aligning them. Initially, the align-
ment length and the number of matches are equal to the length of the orig-
inal sequence that is the template to be mutated. As the mutation process
proceeds, a mutation type is selected randomly. Each mutation type affects
the alignment length and the number of matches in a unique way. For ex-
ample, a mismatch has no effect on the length of the alignment; it decreases
the number of matches by 1.

consecutive nucleotides is deleted; or a block of nucleotides
is duplicated and placed in tandem to the original block.
The size of the block is chosen at random (the default range
is 2–5 bp). Each mutation type, e.g. single insertion, sin-
gle deletion or block duplication, has the same chance to
be applied. To ensure that the original nucleotide composi-
tion is conserved, random nucleotides to be inserted or to
be changed are generated from the same distribution of the
templates’ nucleotides. For example, suppose that the tem-
plates have the following nucleotide distribution: A: 0.4, C:
0.1, G: 0.1, T: 0.4. When a random nucleotide to be inserted,
A or T has the highest probability of 0.4 each and C or G
has the lowest probability of 0.1 each.

We invented this generative process to avoid using align-
ment algorithms for three reasons. First, alignment algo-
rithms are slow. Second, the input database may not have
enough sequence pairs with specific identity scores to train
the regression model. A successful regression model should
be trained on sequence pairs with identity scores represent-
ing the whole range from 0 to 1. We have no guarantee that
the input sequences include pairs with identity scores cover-
ing the whole range. Third, alignment algorithms are almost
infeasible on very long sequences.

Because mutated sequences are generated with specific
mutation types and rates, the identity scores can be cal-
culated without using any alignment algorithms. To cal-
culate an identity score, we need to know the length
of the alignment and the number of matches––identical
nucleotides––between two sequences. Each mutation type
affects these two numbers in a unique way. If we keep track
of the mutations applied and update the alignment length
and the number of matches accordingly, the corresponding
identity score can be obtained without actually aligning the
two sequences. Table 1 lists the mutation types used in our
study and their effects on the alignment length and the num-
ber of matches.

For a very simple example, consider a 10-nt long se-
quence. We wish to mutate 30% of this sequence. For sim-
plicity, assume that the three mutations are mismatch, inser-
tion and deletion. Initially, the length of the alignment and
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the number of matches are equal to 10––the length of the
original sequence. A mismatch does not affect the length of
the alignment; however, it decreases the number of matches.
After the mismatch is introduced, the length of the align-
ment is 10, and the number of matches is 9. An insertion
would result in a gap in the original sequence if the two se-
quences were to be aligned versus each other, i.e. it increases
the length of the alignment by 1 and does not affect the
number of matches. After the insertion is introduced, the
length of the alignment is 11 and the number of matches is
9. Deleting a nucleotide would result in a gap in the mutated
sequence if it was to be aligned versus the original sequence.
This gap does not affect the alignment length; but the num-
ber of matches is decreased by 1. After the deletion is in-
troduced, the length of the alignment is 11, and the number
of matches is 8. These three mutations lead to an identity
score of 0.73 (8 ÷ 11). Next, this procedure is applied to
generating two datasets.

Training and testing sets

We apply the generative procedure discussed earlier to gen-
erating two datasets for training and testing. Each dataset
has a maximum of 5000 sequence pairs. Recall that mul-
tiple mutated sequences are generated from each template.
Each of these mutated sequences is generated according to
a desired identity score, which is selected uniformly from
two segments: (i) between 0 and the user-provided thresh-
old and (ii) the threshold and 1. The number of sequence
pairs with identity scores above the threshold is equal to
the number of pairs with scores below the threshold. This
way identity scores in the important segment (above the
threshold) will have equal say to those with scores below
the threshold regardless of the threshold. To appreciate this
point, consider a threshold of 0.95. If identity scores were
selected uniformly between 0 and 1, the ratio of pairs with
identity scores above the threshold to the pairs with iden-
tity scores below the threshold would be 1:19. This skewed
ratio makes the optimization algorithm pay more attention
to the segment below the threshold; the user is not inter-
ested in sequence pairs with scores in this range. However,
under the proposed method, the ratio of pairs with iden-
tity scores above the threshold to those with scores below
the threshold is 1:1. This equal ratio makes the optimiza-
tion algorithm pay equal attention to the segment above the
threshold (sensitivity) and the segment below the threshold
(specificity).

Next, we illustrate how these datasets are represented to
the regression model as few statistics calculated on pairs of
k-mer histograms.

Calculating the k-mer statistics

Each sequence is represented as a k-mer histogram. Then
statistics are calculated on each pair of histograms. The
choice of k––the size of k-mers––guarantees that the his-
togram size is linear with respect to an average input se-
quence. We calculate k according to Equation 1 (21,35).

k = ⌈
log4 average length in a database

⌉ − 2 (1)

Using our survey of alignment-free methods (21), we
chose the following 26 statistics: Manhattan, Euclidean,

� 2, Chebyshev, Hamming, Minkowski, Cosine, Correla-
tion, Bray Curtis, Squared chord, Hellinger, Conditional
KL divergence, K divergence, Jeffrey divergence, Jensen-
Shannon divergence, Revised relative entropy, Intersection,
Kulczynski 1, Kulczynski 2, Covariance, Harmonic mean,
Similarity ratio, Markov, SimMM, DS

2 and D∗
2 .

We compute the 26 statistics then normalize each of them
between 0 and 1. Some statistics represent distances and
others represent similarities. We convert each distance value
to a similarity score by subtracting the normalized distance
from 1. We call these 26 statistics single statistics. One of
the primary results of our evaluation study was that squared
versions or multiplicative combinations can often times out-
perform single statistics. For this reason, we square each
of the single statistics to create 26 additional statistics. Fi-
nally, the paired statistics are generated by multiplying each
unique combination of the 52 single and squared statis-
tics (we do not pair a statistic with itself), resulting in 1326
pairs. The total number of the statistics is 1378 (26 singles
+ 26 squares + 1326 pairs). These statistics are the features,
on which the GLMs are trained. Next, we illustrate GLMs
briefly.

GLMs

The general form of the linear model is y = Fw where y
is the target we wish to predict. In this work, y represents
identity scores. F is a feature matrix; each of its columns
represents a particular statistic except the first column is all
ones. The coefficients in the w vector are found using the
pseudoinverse solution (Equation 2).

w = (F T F )−1 F T y (2)

Now that we have the coefficients of the GLM, Equation
3 is used for making predictions.

ŷ = Fw (3)

Here, ŷ represents the predicted identity score for a given
sequence pair.

Using a small number of features is necessary to the suc-
cess of training the GLM because it prevents it from over-
fitting the training data. In the next step, we utilize the best-
first feature selection algorithm (41) in selecting few fea-
tures, i.e. statistics.

Feature selection

Features are selected automatically on each input dataset.
The best-first algorithm is used for selecting a strong group
of features without trying every possible combination. Iden-
tity utilizes a GLM in selecting features that minimize the
mean squared error. This step is performed on the train-
ing set only. The main idea of the algorithm is to expand a
feature set by adding one new feature to the set or removing
one of those already in it. For example, suppose that the best
performing set consists of three features: A, B and C, and
two more features are not in the set: D and E. The expan-
sion step produces the following children sets: {B, C}, {A,
C}, {A, B}, {A, B, C, D} and {A, B, C, E}. Each of these
children is used in training a GLM. If any of the children
results in a better performance than its parent, the child set
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becomes the best performing set and the expansion process
is repeated on it and the parent set is not considered any-
more. The other children are marked open and are added
to other open sets that resulted from previous iterations. If
none of the children outperforms the parent set, the parent
set remains the best performing set and another set of the
open ones––with the best performance among them––is ex-
panded. If the best set does not change for few iterations,
the algorithm stops. We modified the algorithm slightly to
make sure it selects a minimum number of features. This
minimum is equal to k, which is the length of the k-mer.

Up to this point, we discussed how the training and the
testing datasets are generated and how the features are ex-
tracted and selected. Next, we discuss how the final GLM
is trained and tested.

Training and testing the GLM

The final GLM is trained on the best performing feature
set selected at the previous step. Once trained, the mean
squared error and the mean absolute error (MAE) of the
GLM are evaluated on the training and the testing sets.
Now, the GLM is ready to calculate the pairwise identity
scores; we next discuss how it can accomplish this task.

Applying the trained GLM

At this stage, sequences are read and converted to his-
tograms. If two sequences are not too short or not too long
with respect to each other (unless the user chooses to re-
port all pairs), then the selected statistics are calculated on
their histograms and passed to the trained GLM. The GLM
calculates the identity score as the weighted average of the
statistics; these weights are determined during training. Se-
quence pairs that have identity scores above the relaxed
threshold are reported. Identity relaxes the user-provided
threshold by subtracting the testing MAE from it. Relax-
ing the threshold is disabled by default if the user-provided
threshold is 0.90 or higher; the user has the option to use
the provided threshold strictly without relaxation using a
parameter.

We have completed the description of the steps that Iden-
tity performs in order to calculate pairwise identity scores.
After that, we give the details on how we executed other
related tools in order to evaluate and compare their perfor-
mances to Identity’s performance.

Executing Identity and the related tools

We chose three widely used, alignment-based
tools––BLAST (13), MUMmer4 (42) and USE-
ARCH (12)––to compare to Identity in searching se-
quence databases. Ground truth sets, on which the tools
can be evaluated, were assembled. For this purpose, we
chose needleall from EMBOSS (3) for performing global
alignments and calculating the ground truth identity
scores. The Needleman–Wunsch algorithm––without any
heuristics––is implemented in this program; thus, it is slow.

While BLAST is designed for local alignment, it may also
generate global alignments, as they are a special case of local
alignments. It is possible to get global alignment scores by

Table 2. Conversion from BLAST’s local identity scores to global identity
scores

Subject sequence

BLAST’s
local ID

(%)
Query

coverage
Subject

coverage

BLAST’s
global ID

(%)
Global
ID (%)

NM 001098570.1 99.1 0.98 0.98 95.9 95.2
XM 003939184.2 92.2 0.99 0.96 88.8 85.5
XM 010628605.1 82.4 0.95 0.94 74.1 73.6

The query sequence is NM 002283.3. Equation 4 is applied to BLAST’s
local identity score, the query coverage and the subject coverage to produce
the corresponding global identity score. BLAST’s global identity scores
(BLAST’s Global ID) are very similar to the ones produced by the global
alignment algorithm (Global ID).

manipulating parameters and filtering out BLAST results.
To obtain the global identity score, we multiply the identity
score due to local alignment by the query coverage and by
the subject coverage (Equation 4).

I Dglobal = I Dlocal

×|qend − qstart|
query length

× |send − sstart|
subject length

(4)

Here, IDglobal and IDlocal are BLAST’s global and local iden-
tity scores; qstart and qend are the start and the end of
the aligned region in the query sequence; sstart and send
are the start and the end of the aligned region in the sub-
ject sequence. Table 2 shows few examples of local identity
scores and their corresponding global scores due to Equa-
tion 4 and the global alignment algorithm. The adjusted
scores produced by Equation 4 are very close to the scores
calculated by the global alignment algorithm.

To get BLAST to print many alignments, the parame-
ter ‘num alignments’ can coax BLAST into printing out
more alignments (1 000 000) than just the few best local
alignments. The maximum adjusted alignment score of sev-
eral alignments between the same sequence pair is con-
sidered as the global identity score. BLAST was executed
with 16 threads. The parameters used for BLAST were ‘-
task blastn -strand plus -perc identity t -num threads 16 -
num alignments 1000000 -reward 1 -penalty -1 -gapopen 2
-gapextend 1’, where t is the threshold score provided by the
user.

The MUMmer4’s package contains a program for sim-
ilar sequences (nucmer) and a program for degenerate se-
quences (promer). We applied nucmer when the thresh-
old identity score was 0.7 or higher and promer oth-
erwise. Additionally, these two programs were run us-
ing the ‘−−maxmatch’ parameter. The program nucmer
has a parameter to adjust the number of threads, there-
fore it was run using 16 threads. The program promer
does not provide a parameter for the number of threads.
We processed the outputs of nucmer and promer using a
third program––show-coords––which is also included in the
package. MUMmer4’s output was processed in a similar
fashion to BLAST’s output to obtain global identity scores.

USEARCH (the free version) has limitation on the size
of data it can process. To circumvent this issue, we created a
multi-process module (using the GNU Parallel utility (43))
around USEARCH to allow it to use 16 threads to process
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Table 3. Statistics of the datasets used in evaluating Identity and the related tools

Dataset Sequence count Nucleotide count
Maximum

length
Minimum

length Mean length Median length
Keratin 5 220 536 12 517 803 991 3250 1353 2398 2350
Keratin-small 6670 14 495 374 3249 1700 2173 2078
P27 7 990 947 19 919 189 291 4000 1500 2493 2373
Viral 5089 37 326 825 18 406 2964 7335 7003
Bacterial 8725 33 698 914 838 7 304 136 1 826 467 3 862 340 4 016 947
16S rRNA 1 071 335 269 374 512 372 171 251 256

small portions. Large datasets were divided into 16 equally
sized, small datasets, each of which was scanned using USE-
ARCH. The following command was executed in parallel: ‘-
search global -strand plus -id t -threads 1 -blast6out,’ where
t is the threshold identity score. Small datasets were scanned
without partitioning by executing the following command:
‘-search global -strand plus -id t -threads 16 -blast6out,’
where t is the threshold identity score.

We chose three widely used tools––andi (26),
FSWM (28) and Mash (27)––to compare to Identity
with regard to constructing phylogenetic trees. On some
sequence pairs, andi or FSWM may fail and report non-
numeric values. For those pairs, we assign the maximum
distance plus 0.1. The three tools were executed with
their default parameters and 16 threads (except Mash
reported sequence pairs with distances below a threshold
distance when it was applied to searching databases). We
applied Clustal Omega (44) to produce a multiple-sequence
alignment that can be utilized in calculating an all-versus-
all distance matrix to be used in building a reference
phylogenetic tree with the fneighbor program.

Identity was run with 8 threads in the search mode and
with 16 threads in the all-versus-all mode. Relaxing the user-
provided threshold is disabled by default when the threshold
identity score was 0.9 or higher.

All tools were run on the same computer (Dell Preci-
sion 3630 Tower), which has 8 cores (allowing for 16 hyper-
threads), Nvidia Quadro RTX 4000 graphics card, 64 GB of
RAM, 1-TB solid-state disk and two 2-TB spinning disks.
This machine runs Ubuntu 18.04.

We have just finished discussing how Identity and the re-
lated tools were executed. Afterward, we explain how we
constructed six datasets, on which the tools were evaluated.

Datasets

Six datasets were used in evaluating the tools. Searching
a sequence database for similar sequences to a query se-
quence is an important and common application of align-
ment tools and the proposed tool. We utilized three datasets
as databases to be searched. Table 3 shows statistics about
these sets.

The Keratin set consists of 5 220 536 sequences (the av-
erage length is 2398 bp). The P27 set consists of 7 990
947 sequences (the average length is 2493 bp). Query se-
quences were selected for the Keratin and the P27 sets. The
Keratin query sequence is the NM 002283.3––Homo sapi-
ens keratin 85 (KRT85), transcript variant 1, mRNA se-
quence. The P27 query sequence is the NM 004064.4––H.
sapiens cyclin-dependent kinase inhibitor 1B. Both the P27
and the Keratin ground truth sets, i.e. similar sequences
to the query sequence, were found by searching the NCBI

database (45). The search parameters for Keratin were:
‘srcdb refseq[PROP] AND Keratin NOT Homo Sapiens.’
This search was restricted to animal sequences between
1700 and 3250 bp in length. When gathered on 26 June
2018, this query resulted in 6669 sequences (the Keratin
small dataset). To find similar sequences to the P27 query,
we searched: ‘srcdb refseq[PROP] AND cyclin dependent
kinase inhibitor 1B NOT H. sapiens.’ This search was re-
stricted to animal sequences 2000–3000 bp long, resulting
in 131 sequences when gathered on 26 June 2018. After that,
sequences that have <70% identity with the query sequences
were removed from the ground truth sets. Finally, the query
sequences were added, resulting in 59 and 68 sequences sim-
ilar to the Keratin and the P27 query sequences.

The third search was performed on the viral dataset.
The genome of Banana Streak CA Badnavirus (7408 bp
long) was used as the query sequence. Initially, 11 988 vi-
ral genomes were obtained from virusSITE (46). Sequences
that are too long or too short were removed because they
can never produce the desired minimum identity score,
which is 0.5, if they were to be aligned versus the query se-
quence. The final dataset consists of 5089 sequences (the av-
erage length is 7335 bp).

The bacterial and the 16S-rRNA datasets were used in
calculating all-versus-all identity scores. We downloaded
all bacterial genomes from the NCBI. Then, we selected
genomes that consist of one chromosome only. After that,
we calculated the average length. To produce a homoge-
neous dataset, sequences that are shorter than half the av-
erage length or longer than double the average length were
removed, resulting in 8725 genomes with average length of
3 862 340 bp. The last dataset was obtained from a mi-
crobial study (11), focusing on the 16S rRNA gene. This
dataset consists of 1 071 335 sequences. The average length
is 251 bp.

Up to here, we described the computational principles be-
hind Identity. Then the details of the related tools and the
evaluation datasets have been given. After that, we discuss
the evaluation measures.

Evaluation measures

We evaluated the tools using the following seven measures:

• Sensitivity: Sensitivity is the rate of true positives (TP) to
the combined TP and false negatives. It measures the abil-
ity of a tool to identify TP in a large dataset––the more
TP found, the better.

• Precision: Precision is the ratio of TP to TP and false pos-
itives (FP). Precision measures the relevancy of returned
results, since it rates TP to the total predicted positive la-
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bels. This measure is very important when experimental
validations of results are considered.

• F-measure: F-measure combines sensitivity and precision
by taking the harmonic mean of them (Equation 5).

F-measure = 2 × Precision × Sensitivity
Precision + Sensitivity

(5)

• MAE: This measure is used in regression analysis to mea-
sure how close, on average, the predicted value is to the
actual value. The MAE is the average absolute difference
between the predicted value and the actual value. Using
this metric allows a comparable benchmark for the error
in estimating the identity score in relation to the one due
to global alignment algorithms. Additionally, it can be
used as an expected margin of error.

• Normalized Robinson-Foulds (nRF) distance: One of the
important applications where Identity can be applied is
building phylogenetic trees. Calculating the distance be-
tween two phylogenetic trees is usually done via the RF
and the nRF metrics. The RF (Equation 6) is defined as
the number of edges present in the first tree only plus
the number of edges present in the second tree only (47).
It represents the edit distance to change one tree into
the other. The nRF (Equation 7) is obtained by dividing
the RF distance by the maximum possible edit distance
(the total number of edges in the two trees) for the two
trees (48).

RF = |E1 − E2| + |E2 − E1| (6)

nRF = RF
|E1| + |E2| (7)

Here, E1 and E2 are the edge sets of the first tree and the
second tree. The nRF distance is in the range 0–1.

• Time: Time reported is the wall clock time, as multi-
threaded applications are best estimated using real time.

• Memory: Maximum memory used by a tool is mea-
sured, as the memory requirement is set by the maximum
amount.

We report sensitivity, precision, F-measure and MAE as
percentages. The nRF is unitless. Time is measured in sec-
onds and memory in Gigabytes (GB). Next, we evaluate the
performances of the tools using these criteria.

RESULTS

Main contributions

The main contributions of this research are: (i) calculating
identity scores in linear time and space for the first time, (ii)
calculating identity scores for pairs of very long sequences
for the first time and (iii) the Identity software tool. We
are about to discuss multiple evaluation experiments, which
demonstrate our contributions.

Evaluation on large-scale datasets

Using two of the datasets described earlier, BLAST, Iden-
tity, Mash, MUMmer4, and USEARCH were evaluated by
searching for one query sequence in a database (Table 4).

We start by looking at the sensitivities of the five tools. On
the Keratin set, Mash and USEARCH were the most sensi-
tive tools (100.0%), followed by BLAST (83.1%), followed
by Identity (74.6%) and MUMmer4 (28.8%). On the P27
set, Mash and USEARCH achieved perfect sensitivities of
100%, whereas BLAST and Identity achieved comparable
sensitivities of 94.1 and 92.7% and MUMmer4 achieved
58.8%.

The number of FP is quite important because of the large
number of sequences to be searched. Identity and MUM-
mer4 had the lowest numbers of FP on the Keratin and
the P27 sets (Identity: 0 and 0, and MUMmer4: 0 and 2),
followed by BLAST (2 and 7). Mash and USEARCH re-
sulted in a large number of FP on these two datasets (Mash:
2112 and 183, and USEARCH: 1274 and 6641). These num-
bers represent very small percentages of the databases, but
they are much larger than the sizes of the ground truth
sets (59 and 68). For this reason, we discuss the precision
metric.

Identity and MUMmer4 had perfect precision scores
(100.0%) on the Keratin set. BLAST came second (96.1%).
On the P27 set, Identity was the most precise tool
(100.0%) followed by MUMmer4 (95.2%) and BLAST
(90.1%). Because of the large numbers of FP detected by
Mash and USEARCH, they were the least precise tools
(Mash: 2.7 and 27.1%, and USEARCH: 4.4 and 1.0%).

On the Keratin dataset, BLAST and Identity came first
and second in terms of the F-measure scores (89.1 and
85.4%); MUMmer4 came third (44.7%), USEARCH came
fourth (8.5%) and Mash came fifth (5.3%). On the P27
dataset, Identity achieved the highest F-measure score
(96.2%); BLAST came second (92.1%), followed by MUM-
mer4 (72.7%), Mash (42.6%) and USEARCH (2.0%).

In addition, we evaluated how close the identity scores
produced by each of the tools were to those produced by
the global alignment algorithm. Identity had 2–4% MAE.
The error due to MUMmer4 ranged 3–5% and that due
to BLAST ranged 4–5%. USEARCH error was about 7%.
Mash had the highest error (about 13%) because it reports
mutation distances that were converted to identity scores
simply by subtracting them from 1. Keep in mind that these
errors were calculated on the TP only, excluding FP.

One of the main advantages of the proposed method is
its speed. Identity was the fastest tool on the first two sets; it
was at least twice as fast as BLAST (68 versus 146 s and
89 versus 221 s). Identity was faster than USEARCH by
15–23 times, Mash by 20–65 times and MUMmer4 by 31–
80 times. This speed was achieved with reasonable memory
requirements (3.1–3.9 GB), which are readily available on
average personal computers.

When it comes to searching large databases, one should
pay attention to precision in addition to sensitivity, both of
which are combined in F-measure. Mash and USEARCH
are the most sensitive tools, whereas Identity and MUM-
mer4 are the most precise tools. Identity had the best F-
measure score on one set and the second best on the other
set. Therefore, Identity provides the best compromise be-
tween sensitivity and precision while being the fastest tool
with reasonable memory requirements.

Here, we reported the results of searching for similar se-
quences in two large datasets. In the next experiment, we
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Table 4. Evaluations of BLAST, Identity, Mash, MUMmer4 and USEARCH

Dataset Tool TP FP Sensitivity Precision F-measure MAE Time (s) Memory (GB)
Keratin BLAST 49 2 83.1 96.1 89.1 4.7 146 3.1

Identity 44 0 74.6 100.0 85.4 4.1 68 3.9
Mash 59 2112 100.0 2.7 5.3 12.8 1384 61.9
MUMmer4 with nucmer 17 0 28.8 100.0 44.7 2.9 1451 7.9
USEARCH with Parallel 59 1274 100.0 4.4 8.5 6.7 696 12.4

P27 BLAST 64 7 94.1 90.1 92.1 3.8 221 4.8
Identity 63 0 92.7 100.0 96.2 1.6 89 3.1
Mash 68 183 100.0 27.1 42.6 12.7 5820 61.7
MUMmer4 with nucmer 40 2 58.8 95.2 72.7 5.2 5265 12.6
USEARCH with Parallel 68 6641 100.0 1.0 2.0 7.2 1546 19.4

Viral BLAST 4 0 6.1 100.0 11.4 5.1 1 0.1
Identity 33 1 50.0 97.1 66.0 3.1 18 0.1
Mash 12 0 18.2 100.0 30.8 14.5 1 0.1
MUMmer4 with promer 12 0 18.2 100.0 30.8 3.1 83 0.8
USEARCH 17 1 25.8 94.4 40.5 2.4 172 0.1

We tested the tools’ abilities to search databases for similar sequences to a query sequence. Alignment scores were generated with needleall, which is a tool
for global alignment. These evaluations were conducted on three datasets: Keratin, P27 and the viral datasets. There is only one query sequence for the
Keratin dataset. We searched for sequences that are at least 70% identical to the query sequence, resulting in a ground truth set consisting of 59 sequences.
The P27 set has one query sequence. Sequences with at least 70% identity scores to the P27 query sequence––68 sequences––are considered TP. The viral
query set includes one sequence and its ground truth set includes 66 viral sequences that have at least 50% identity scores with the query sequence. Sequences
detected by a tool that do not belong to the ground truth set are considered FP. Sensitivity, precision and F-measure scores are reported as percentages.
MAE is displayed as a percentage; it is measured on the TP only. Time is reported in seconds (s), and memory requirements are reported in GB.

report the results of searching for similar degenerate se-
quences.

Evaluation on low-identity sequence pairs

Although alignment-free k-mer statistics are efficient re-
gardless of the identity between two sequences, they often
do not perform very well in comparing sequences with low
alignment identity values (21). We evaluated Identity and
the related tools on the viral dataset, which has low iden-
tity scores even among similar sequences. As expected, the
sensitivities of the five tools were low. The most sensitive
tool––Identity––achieved 50.0% followed by USEARCH,
which achieved 25.8%. All tools were very precise because
of the very few false positives. Identity achieved the highest
F-measure score of 66.0%, whereas USEARCH achieved
40.5%, Mash achieved 30.8% and MUMmer4 achieved
30.8%. BLAST came last on this dataset (11.4%). With re-
spect to the MAE, Identity, MUMmer4 and USEARCH
had 2–3% errors and BLAST had about 5% error. As ex-
pected, Mash had the highest error of approximately 15%.
With respect to speed, Identity came second after BLAST
and Mash (18 versus 1 s); however, Identity was faster than
MUMmer4 (18 versus 83 s) and USEARCH (18 versus 172
s). All tools required modest amounts of memory (0.1–0.8
GB). To put these results in context, the global alignment
algorithm––needleall––running in parallel using GNU Par-
allel with 16 threads took 2 h and 8 min and required
33 GB of memory. Although there is a big room for im-
provement in sensitivity, the speed advantage of Identity is
clear.

In this experiment, we focused on searching for similar
degenerate sequences. In the next experiment, we evaluated
Identity in a different application––constructing phyloge-
netic trees.

Evaluation on phylogenetic trees

The purpose of this experiment is to compare the qualities
of phylogenetic trees due to distance matrices produced by

Identity and three alignment-free tools (andi, FSWM and
Mash). The Keratin-small dataset was utilized in this ex-
periment. This dataset has 6670 sequences (see Table 3 for
more details). We started by removing sequences that have
less than 1000 unambiguous nucleotides because andi and
FSWM cannot process these sequences, reducing the num-
ber of sequences to 6384. Next, we applied Clustal Omega
to obtaining a multiple-sequence alignment of these se-
quences. All-versus-all identity scores were calculated from
the multiple alignment and converted to an all-versus-all
distance matrix, which was utilized in building a reference
phylogenetic tree by the neighbor-joining algorithm. After
that, we applied each of the four tools to calculating all-
versus-all matrices, and used these matrices in building phy-
logenetic trees using the same algorithm. The fives trees are
provided as Supplementary Data 1. Finally, we calculated
the nRF distances between each of these trees and the ref-
erence tree.

The tree due to Identity had the lowest nRF of 0.63 fol-
lowed by those of Mash (0.75), FSWM (0.76) and andi
(0.90). With respect to speed, Mash was the fastest (41 s)
followed by Identity (119 s), FSWM (407 s) and andi (482
s). With respect to memory requirements, Mash had the
least (0.15 GB), followed by Identity (0.16 GB), FSWM
(0.87 GB) and andi (3.9 GB). To put the time and memory
requirements in context, Clustal Omega took 11 127 s and
utilized 5.28 GB of memory. These results demonstrate the
successful application of Identity to constructing phyloge-
netic trees. Identity was able to produce the highest quality
tree in this experiment with modest time and memory re-
quirements.

After this experiment, we applied Identity to generating
an all-versus-all distance matrix of more than 8000 bacterial
genomes.

Evaluation on long sequences

Comparing long sequences––millions of nucleotides
long––using alignment algorithms requires a prohibitively
long time. In this experiment, we show that it is possible
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to calculate pairwise identity scores on bacterial genomes.
We applied Identity to calculating the all-versus-all identity
scores on the bacterial dataset, which consists of 8725
genomes (38 058 450 pairwise sequence comparisons).
Identity finished this task in 48 h, 18 min and 17 s while
requiring 37.8 GB of RAM.

We demonstrated Identity’s ability to compare long se-
quences in this experiment. In the next one, we demonstrate
Identity’s ability to calculate billions of pairwise identity
scores.

Evaluation on billions of pairwise sequence comparisons

In order to show the scalability of this tool, we computed
all-versus-all pairwise similarities on the entire 16S rRNA
dataset, which consists of 1 071 335 sequences with 251 bp
average length. This experiment showed that Identity is able
to compute over 573 billion global pairwise comparisons in
13 h and 33 min (only pairs with identity scores above the
threshold were reported). In sum, this experiment demon-
strates the scalability of this tool to large datasets.

Now, we have demonstrated Identity’s accuracy, efficiency
and scalability. Next, we discuss how correlated Identity’s
scores to those calculated by the global alignment algorithm
and the related widely used tools.

Identity’s scores are highly correlated with the related tools’
scores

We studied how similar (different) the identity scores calcu-
lated by our tool to (from) the scores calculated by the origi-
nal global alignment algorithm. Using the P27 ground truth
dataset (68 sequences), we calculated the Pearson’s correla-
tion coefficient between Identity’s scores and the scores cal-
culated by needleall (an implementation of the Needleman–
Wunsch algorithm for global alignment). We also plotted
the scores calculated by the two tools versus each other (Fig-
ure 2). Identity’s scores were highly correlated (0.97 Pear-
son’s correlation coefficient) to the scores calculated by the
original global alignment algorithm. Additionally, we cal-
culated the correlation coefficients between Identity’s scores
and those calculated by BLAST, Mash, MUMmer4 and
USEARCH. Again, Identity’s scores were highly correlated
(0.94–0.95 Pearson’s correlation coefficient) with those cal-
culated by these tools. These results demonstrate that iden-
tity scores calculated by Identity are accurate and very sim-
ilar to those obtained by widely used tools. Therefore, Iden-
tity represents an efficient alternative to these tools.

DISCUSSION

In this section we discuss the following points: (i) the ra-
tionale of using GLMs as the core of Identity; (ii) analysis
of time and memory requirements; (iii) potential applica-
tions of the new software tool; (iv) the effect of the semi-
synthetic data size on Identity’s performance; (v) comments
on related tools and (vi) directions for future research.

Rationale of choosing GLMs

Several machine learning algorithms for regression are
available. These algorithms include Support Vector Ma-
chines (SVMs) and Artificial Neural Networks (ANNs).

A B

C

E

D

Figure 2. Correlations between Identity’s scores and those calculated by
(A) BLAST, (B) Mash, (C) MUMmer4, (D) the Needleman–Wunsch
global alignment algorithm and (E) USEARCH. These scores were ob-
tained on the P27 ground truth dataset. Identity’s scores are highly corre-
lated with the identity scores due to the global alignment algorithm and
with those calculated by the other tools.

We are attracted to GLMs because they are parameter-free
models, which are well suited to the idea of adaptive train-
ing. We chose GLMs primarily because of the absence of
parameters to optimize. Both of SVMs and ANNs can be
highly accurate if given enough time to train. However, they
require several parameters that need to be optimized, mak-
ing these algorithms incompatible with our adaptive train-
ing idea. On the other hand, GLMs only require calculating
the pseudo-inverse solution to find the linear coefficients.
This operation is much cheaper than searching for optimal
parameters required by the other algorithms. Our experi-
ments show that GLMs can obtain comparable results to
SVMs and ANNs––without parameter optimization how-
ever.

Runtime and space analysis

The algorithm behind Identity is a linear algorithm. We
start by analyzing the time required by the training stage.
Then we analyze the time required by the scanning stage.

First, the size of k-mers is determined in constant time by
scanning a fixed number of sequences––1000. The training
stage involves: (i) generating semi-synthetic sequences, (ii)
selecting features and (iii) training the final GLM. Gener-
ating a fixed number––10 000––of semi-synthetic sequences
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takes constant time. Although there is a huge number of
feature subsets to be selected and examined from the 1378
features, the best-first algorithm examines 15 000–30 000
subsets in practice. Currently, we do not use the number of
examined sets as a convergence criterion (we use no change
in mean squared error instead); however, it is straight for-
ward to add it. For simplicity, we assume that 30 000 sub-
sets are the maximum number to be examined; therefore,
the feature-selection operation takes constant time. Train-
ing the final model takes time equivalent to examining one
of the 30 000 subsets; this operation takes constant time too.
Thus, the entire training process takes constant time. Next,
we discuss the time requirement for the scanning stage.

To predict the identity score of a pair of sequences,
the two sequences are read (linear time). Then the his-
tograms are generated (linear time). Note that a histogram
is 16 times smaller than the average sequence (see Equa-
tion 1). Calculating one of the single statistics takes linear
time with respect to the size of the histogram, whereas cal-
culating a squared statistic or a paired statistic takes con-
stant time. Assuming that all of the 26 single statistics were
selected (worst-case scenario), calculating these 26 features
takes linear time with respect to the average sequence (av-
erage length × 26 ÷ 16). Because the training stage takes
constant time and the scanning stage takes linear time, the
entire algorithm is a linear algorithm (O(n)).

As a practical example, executing Identity in the all-
versus-all mode on the bacterial dataset with threshold
score of 0.8 took 48 h, 18 min and 17 s. The breakdown
of the execution time is as follows: (i) generating semi-
synthetic sequence pairs took 3 min and 15 s, (ii) feature
selection and training the final GLM took 4 s and (iii)
calculating the all-versus-all identity scores took the re-
maining time (48 h and 15 mins approximately). These re-
sults confirm our theoretical analysis that Identity’s train-
ing stage takes constant time. Identity’s training time should
not affect the total execution time markedly when a scanned
database is very large or includes very long sequences.

With regard to the space requirement, the training stage
requires loading 1000 sequences in memory. Semi-synthetic
sequence pairs are generated one by one; each pair is con-
verted to two histograms, on which the 1378 features are
calculated. After that the mutated sequence and the two his-
tograms are discarded, only the features are kept. There-
fore, the entire training process requires constant space to
store a fixed number of sequences and a feature matrix. The
space requirement for predicting an identity score of two
sequences is linear because we need space only for the two
sequences and their histograms.

Potential applications

Because pairwise global alignment is such a pervasive al-
gorithm in bioinformatics, there are several applications,
in which this approximative method would be well suited.
The advantage of Identity over both alignment-based tools
and traditional alignment-free methods is that it bridges to-
gether many of the aspects that make them great: an align-
ment identity score is calculated, providing a meaningful
similarity, and the speed at which these identities are cal-
culated.

A common application of this method is the database
search that was demonstrated earlier. When a query se-
quence is used for finding similar matches in a database,
the search returns matches above the cutoff and their cor-
responding identity scores. For example, consider finding
similar gene transcripts in a database of transcripts of re-
lated organisms. Secondly, an all-versus-all similarity ma-
trix can be produced. Using this matrix, many different
applications are possible. Phylogenetic tree construction is
one example, which we explored earlier. Using such trees
is useful in studying how different species are related to
each other. Another application of the all-versus-all matrix
is adjacency graph construction, where similar sequences
are represented as connected nodes in the graph. An edge
connecting two nodes is weighted by the identity score
of the sequence pair represented by the two nodes. Adja-
cency graphs are useful in analyzing networks––an impor-
tant research area in computational biology. Generating
multiple-sequence alignments utilizes all-versus-all matri-
ces. Further, clustering algorithms, e.g. k-means and mean
shift (35,36), can utilize Identity in grouping similar se-
quences. Finally, this methodology was also utilized in
Look4TRs (34) where it was applied to finding repeated mo-
tifs in tandem repeats. In Look4TRs, alignment-free iden-
tity scores replaced those produced by global alignment al-
gorithms.

In sum, wherever pairwise global identity scores are re-
quired and whenever speed is a concern, Identity can be
readily utilized.

The effect of the semi-synthetic data size on Identity’s perfor-
mance

Identity is an instance of self-supervised learning, in which
an algorithm generates its own labeled training data. The
tool can generate any number of semi-synthetic sequence
pairs for training and testing purposes. We conducted a sim-
ple experiment to find out a reasonable size for the train-
ing and the testing datasets. In this experiment, we executed
Identity on the Keratin-small dataset (6670 sequences) while
generating semi-synthetic datasets of increasing sizes. Then
we plotted the F-measure score of Identity versus the size of
each of these datasets; we calculated the F measure scores
on the real sequences not on the semi-synthetic ones. Fig-
ure 3 shows the results of this experiment. From the figure,
we concluded that 10 000 (5000 for training and 5000 for
testing) sequence pairs led to a reasonably high F-measure
score (92.7%). Not only that, but also increasing or de-
creasing this number by 2000 led to comparable F-measure
scores (90.7–94.6%), suggesting performance stability on
different datasets.

Related tools

Local alignment tools (other than BLAST) were not com-
pared. Tools that are purely computational improvements
such as SWIPE (a SIMD parallel optimized version of
BLAST) (49) were not considered since the results other
than time should be very similar to BLAST. Our rationale is
that these improvements––using specialized instructions or
hardware––could be applied to other tools (such as Identity
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Figure 3. The effect of the semi-synthetic data size on Identity’s perfor-
mance: to determine the appropriate number of the semi-synthetic se-
quence pairs, the combined sizes of the training and the testing datasets
were plotted versus the F-measure. This curve suggests that 10 000 semi-
synthetic pairs should result in high F-measure scores and performance
consistency.

and USEARCH) to similarly speed up these tools with no
change in output. In this way, our comparisons are focused
on highlighting improvements due to algorithmic advance-
ments. We could not compare to CaBLAST (14); although
novel, the currently available proof-of-concept is too slow.
CaBLAST applies BLAST to compressed representations
of the sequences rather than to the sequences themselves.

Future research directions

Currently, Identity only supports nucleotide sequences;
however, the same k-mer statistics can be further applied to
protein sequences. Therefore, in the next release, we plan on
supporting protein sequences using the same methodology.
Additionally, we plan to extend Identity to be able to com-
pare large genomes consisting of multiple chromosomes as
well as unassembled genomes. Finally, we will conduct ad-
ditional research on how to apply Identity to small datasets
or even a single sequence pair.

CONCLUSION

A very important algorithm in bioinformatics, pairwise
global alignment, is slow. Fast alternatives such as k-
mer distances produce scores that do not have relevant
biological meanings as the identity scores produced by
alignment algorithms. We developed a novel software
tool––Identity––for estimating identity scores of DNA se-
quence pairs. On an input database, Identity trains a self-
supervised regression model to predict identity scores us-
ing few, efficient, k-mer statistics. Training this model is
done with a novel method for generating sequences with
known identity scores, allowing for alignment-free predic-
tion of alignment identity scores. This is the first time
identity scores are obtained in linear time using linear
space.

SUPPLEMENTARY DATA

Supplementary Data are available at NARGAB Online.
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