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Social media has gained increasing importance in many aspects of everyday life,
from building relationships to establishing collaborative networks between individuals
worldwide. Sharing behavior is an essential part of maintaining these dynamic networks.
However, the precise neural factors that could be related to sharing behavior in online
communities remain unclear. In this study, we recorded electroencephalographic (EEG)
oscillations of human subjects while they were watching short videos. The subjects were
later asked to evaluate the videos based on how much they liked them and whether they
would share them. We found that, at the population level, subjects watching videos that
would not be shared had higher power spectral density (PSD) amplitudes in the theta
band (4–8 Hz), primarily over the frontal and parietal sites of the right hemisphere, than
subjects watching videos that would be shared. Previous studies have associated task
disengagement with an increase in scalp-wide theta activation, which can be interpreted
as a mind-wandering effect. This might suggest that the decision to not share the video
may lead to a more automatic/effortless neural pattern. We also found that watching
videos that would be shared was associated with lower PSD amplitudes in the alpha
band (8–12 Hz) over the central and right frontal sites, and with more negative scores
of frontal alpha asymmetry (FAA) index scores. These results may be related to previous
work linking right-sided frontal EEG asymmetry to the pursuit of social conformity and
avoidance of negative outcomes, such as social isolation. Finally, using support vector
machine (SVM) algorithms, we show that these EEG parameters and preference rating
scores can be used to improve the predictability of sharing information behavior. The
information sharing-related EEG pattern described here could therefore improve our
understanding of the neural markers associated with sharing behavior and contribute to
studies about stimuli propagation.

Keywords: social media, social networking, stimuli propagation, attention, social conformity,
decision-making, EEG

INTRODUCTION

Being a member of a social group has been recognized as a crucial factor for human survival
throughout the ages (Baumeister and Leary, 1995; Lieberman and Eisenberger, 2009) since it
confers an evolutionary advantage by facilitating access to food and ensuring safety (Adolphs,
2009). People who have good social interaction skills are likely to have better opportunities and
to adapt faster to an ever-changing environment. Social interaction involves sharing information
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with others, and is generally acknowledged as a core
contemporary mechanism for innovation and human
development (Scholz and Falk, in press). The emergence of
online social networks over the past decade has boosted such
social interactions. Social media networks can be defined
as ‘‘a group of internet-based applications that build on the
ideological and technological foundations of Web 2.0, and that
allow the creation and exchange of user-generated content’’
(Kaplan and Haenlein, 2010:61). In a recent survey conducted
by the Pew Research Center (2017), 76% of adult internet users
from 40 countries stated that they used at least one type of
social network. Content shared on social media platforms may
influence human interaction on an individual and a broader
societal level (Van Dijck, 2013). However, little is known
about which personal variables, particularly neurophysiological
factors, are involved in information sharing behavior. Most
studies in this area rely on self-reported results and/or on
content characteristics (Berger and Milkman, 2012; Stieglitz
and Dang-Xuan, 2013; Ferrara and Yang, 2015). However, this
type of approach does not account for implicit (unconscious)
cognitive processes that could be involved in the sharing
decision. Thus, there is a need for neuroscientific studies to
uncover the fundamental mechanisms underlying information
sharing.

Studies of the brain mechanisms that influence how
ideas and information are propagated in online and offline
environments are in their infancy (as reviewed by Falk
and Bassett, 2017). Nevertheless, some empirical evidence
from functional magnetic resonance imaging (fMRI) studies
suggests that information sharing behavior is related to three
primary domains: inferring the thoughts and desires of others
(i.e., mentalizing), self-referential cognition and social reward
processing (Meshi et al., 2015) and likely involves brain areas
such as the temporoparietal junction (TPJ) and dorsomedial
prefrontal cortex (dmPFC) in those processes (Falk et al.,
2013; O’Donnell et al., 2015; Baek et al., 2017; Scholz et al.,
2017). However, although fMRI has excellent millimeter-range
spatial resolution and provides a good estimate of the location
of neural processes, it has some disadvantages. For example,
some authors already arose the issues about the role of fMRI
hemodynamic signal as an indirect indicator of neural activity
(Logothetis, 2008; Hari and Kujala, 2009) and the need of a
sophisticated infrastructure to run fMRI experiments (Glover,
2011). The drawbacks of fMRI in combination with the relative
paucity of neuroscientific studies about information sharing
behavior using non-invasive neuroimaging techniques prompted
us to investigate the use of electroencephalography (EEG) as
an alternative method of correlating brain activity with sharing
behavior.

EEG directly records brain activity at the millisecond (ms)
level and is thus generally acknowledged to provide a direct
measure of the dynamic interaction between different brain
systems as they are occurring (Ward, 2003; Buzsáki andDraguhn,
2004; Lopes da Silva, 2013; Cohen, 2014). Additional advantages
of EEG include its flexibility in accommodating a range of
experimental designs and subjects (e.g., healthy subjects, patients
and children); its portability, which permits analysis outside a

laboratory setting; and its relatively low cost (Loo et al., 2015).
EEG currents can be quantified and classified into five bands
of differing frequency (also known as EEG rhythms): delta
(1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (14–30 Hz) and
gamma (>30 and typically <100 Hz; Pizzagalli, 2007; Urigüen
and Garcia-Zapirain, 2015). However, the precise range assigned
to these bands can vary across studies (Klimesch, 1999; Wang
et al., 2015). The standard method of quantifying frequency band
oscillations is the power spectrum analysis or power spectral
density (PSD), which describes the distribution of signal power
at differing frequencies, or the ‘‘frequency content’’ of the signal
(Dressler et al., 2004).

Substantial evidence supports the use of EEG to investigate
how frequency band types are associated with particular
cognitive processes. For example, studies have shown that theta
and gamma rhythms are associated with memory processes
such as retrieval and encoding (Klimesch, 1999; Nyhus and
Curran, 2010), alpha and gamma rhythms are related to visual
processing prioritization (Jensen et al., 2014), and whole-
scalp gamma frequency synchronization is associated with
consciousness (Doesburg et al., 2008). EEG parameters can
also be useful for analyzing preference selection and predicting
behavior. Vecchiato et al. (2011) found that theta-band activity
in the right hemisphere was higher when participants watched
videos they did not like compared with those they did like.
Wang et al. (2016) showed that video commercials containing
a structured narrative significantly affected the viewer’s product
branding preference compared with other commercials and
induced higher theta power in the left frontal and bilateral
occipital regions and higher gamma power in the limbic system.
Christoforou et al. (2017) demonstrated that analysis of beta
and gamma EEG bands could successfully predict box-office
performance of newly released movies. Finally, Park et al.
(2018) analyzed EEGs to assess participants’ abilities to predict
movie poster preferences of another participant about whom
they had minimal information, and they discovered a time-
frequency-related relationship between beta-band frequency at
right temporal sites and prediction accuracy. Taken together,
these studies support the utility of EEG recordings to study neural
correlates of a range of behavioral outcomes.

Another widely used method in cognitive neuroscience
studies of behavior is the use of indexes that combine two
or more EEG variables (Vecchiato et al., 2011; Yener and
Başar, 2013; Cheron et al., 2016). One example is frontal alpha
asymmetry (FAA), which is defined as the difference between
right and left alpha activity over frontal regions of the brain
(Davidson et al., 1990) and is thought to be a measure of the
propensity to adopt approaching vs. withdrawing behavior (Coan
and Allen, 2004). More specifically, greater left frontal activity
(lower alpha power) is associated with an increased tendency
to approach or more intensely respond to affectively positive
stimuli, whereas greater right frontal activity (or, possibly,
lower left frontal brain activity) is associated with an increased
tendency to withdraw or more intensely respond to affective
negative stimuli. Thus, alterations in FAA detected by EEG
can be correlated with emotional/motivational personality traits
(Reznik and Allen, 2018). FAA has also been correlated with
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various aspects of social decision-making and empathy, pointing
to a possible link between right hemisphere lateralization and
social-oriented behaviors (Hecht, 2014). For example, Sabbagh
and Flynn (2006) showed that mental state decoding skills
(i.e., judgments about others’ psychological states) were stronger
in those with right-sided compared with left-sided frontal alpha
activation. Furthermore, the degree of relative right mid-frontal
activation predicted performance on a mental decoding task. In
another study, children who exhibited right-sided frontopolar
EEG activity during an emotion-eliciting task showed empathic
concern when they observed pain being expressed by the
experimenter (Light et al., 2009). Similarly, Tullett et al. (2012)
found that baseline measures of right frontal asymmetry were
a significant predictor of empathic concern, as indicated by
feelings of sadness. These authors suggested that higher right
FAA might increase sensitivity towards others’ suffering. Since
sharing behavior may involve inferring the thoughts and desires
of others (Scholz and Falk, in press) and can also be related to
motivation (approach vs. avoidance behavior), it is possible that
FAA could also be associated with information sharing behavior.

Correlating EEG oscillations and indexes with specific
cognitive, affective and decision-making tasks may allow us
to better identify the types of information being processed
with temporal precision. This information could be applied to
brain–computer interface methods, which allow typically covert
aspects of the mental state to be assessed with little-to-no
interference on the task at hand (van Erp et al., 2015). EEG
analysis could also be used to improve prediction of behavioral
outcomes, since pre-existing judgments and socially presumed
expectations have less influence on EEG oscillations than on
traditional self-reported measures such as questionnaires (Telpaz
et al., 2015).

Although information sharing is increasingly prevalent in
the context of social media networks, little is known about its
neural correlates. To address this, we explored brain parameters
related to information sharing behavior by recording EEGs
when subjects were watching short videos that they subsequently
decided they would or would not share with others. This video-
based approach has been used increasingly in neuroscience
research in recent years (Ki et al., 2016).We then identified which
EEG features differed when watching videos that would vs. would
not be shared and applied a support vector machine (SVM)
algorithm to identify the precise features could accurately predict
information sharing behavior. Our goal was to improve our
understanding of neural correlates of social-oriented behavioral
patterns such as information sharing.

MATERIALS AND METHODS

Subjects
The study consisted of two experiments. First we performed
a pre-selection experiment in which a small cohort (n = 10,
‘‘Stimuli Selection’’ section) of subjects watched a large
number of videos and then answered questions. Second
based on their responses, the video pool was narrowed to
100 for viewing in the main experiment with a larger cohort

(n = 23, ‘‘Stimuli Presentation and Experimental Design’’
section). The pre-selection cohort consisted of 5 men and
5 women aged 21–32 years (men 24.8 ± 3.7 years, women
24.1 ± 2.6 years, mean ± standard deviation [SD]). The cohort
for the main experiment consisted of 23 additional subjects
(12 men/11 women) aged 18–31 years (men 23.2 ± 3.50 years,
women 23.1± 3.45 years).

All participants had a normal or corrected-to-normal vision;
were not left-handed (assessed by the Edinburgh Handedness
Inventory; Oldfield, 1971); and were free of diagnosed psychiatric
disorders (assessed by the personal data formulary). We also
only included participants with a Beck Depression Inventory
score >18 to exclude subjects at risk for depression. Participants
were unpaid volunteer undergraduate and graduate students
at the Federal University of Rio de Janeiro. This study was
carried out in accordance with the recommendations of the
Comissão Nacional de Ética em Pesquisa (National Research
Ethics Commission—CONEP). The protocol was approved by
the Comitê de Ética em Pesquisa do Hospital Universitário
Clementino Fraga Filho e da Faculdade de Medicina da
Universidade Federal do Rio de Janeiro (Ethics Institutional
Review Board of the University Hospital Clementino Fraga
Filho and of the Medicine School of Federal University of Rio
de Janeiro; protocol code: CAAE 02761212.0.0000.5257). All
subjects gave written informed consent in accordance with the
Declaration of Helsinki.

Stimuli Selection
The 10 participants each watched 252 short video clips one
time. The videos were downloaded from YouTube.com and
Vimeo.com and edited to a maximum length of 10 s. After
watching each video, the participants were asked: (1) if they liked
the video (‘‘yes’’ or ‘‘no’’); (2) how much they liked the video
(1–5 Likert scale of liked/disliked); and (3) if they had seen the
video before (‘‘yes’’ or ‘‘no’’). The videos were presented using
Psychtoolbox Brainard (1997) for MATLAB (The MathWorks,
Inc., Natick, MA, USA) in a soundproof room.

To select the final 100 videos to be used in the main
experiment, we eliminated 25 videos that had previously been
viewed by at least one subject. The remaining 227 videos were
then ranked according to the frequency of ‘‘yes’’ answers to
question (1) above. For the final selection, 25 videos were liked by
7–10 subjects, 50 were liked by 4–6 subjects and 25 were liked by
0–3 subjects. The final selection therefore included videos with
a range of viewer preferences. Question (2) responses were not
incorporated into the selection process because they reduced the
final number of candidate videos to fewer than 100.

Stimuli Presentation and Experimental
Design
The main experiment was performed as described for the
pre-selection experiment with some modifications. Participants
were monitored throughout using a video camera to ensure
compliance with the experimental design. To minimize the
possibility that the subjects had previously viewed the videos,
we confirmed that the 100 videos had a low view count at
the host websites. The number of visualizations varied between
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FIGURE 1 | Main experimental design. A cohort of 23 participants watched 100 10-s videos and answered four (A, n = 11) or three (B, n = 12) questions
immediately after viewing each one.

1–553,260 views. In comparison, the most watched video in the
year this study was performed had 301 million views1.

The main experiment consisted of two experimental designs,
although the data were combined for analysis. The first cohort
(n = 11; Figure 1A) viewed the videos and were then asked:
(1) if they liked the video (‘‘yes’’ or ‘‘no’’); (2) how much
they liked the video (Likert scale of liked/disliked, in which
the number of yellow stars indicated how much participants
liked the video and the number of red stars stated how much
subjects disliked the video); (3) if they would share the video
with another (‘‘yes’’ or ‘‘no’’); and (4) if they had seen the
video before (‘‘yes’’ or ‘‘no’’). The second cohort (n = 12;
Figure 1B) were shown the same videos but were asked only
questions (2) through (4) in an effort to reduce the overall

1http://mashable.com/2013/12/27/viral-videos-2013/#DFE9zvjpOkqw

time taken for the task. In addition, the answer to question
(2) (how much they liked the video) was changed from the
Likert rating system to a color scale where red (score 0) indicated
‘‘not at all’’ and green (score 1) indicated ‘‘a lot’’ (Figure 1).
The subjects were free to take as much time as necessary to
answer the questions. The experimental design is shown in
Figure 1.

Behavioral Analysis
A non-parametric t-test (Mann-Whitney U test, two-tailed)
was used to compare the ‘‘like’’ ratings of shared (S) vs. not
shared (N-S) videos and the response times to answer the
question ‘‘would you share the video?’’ We excluded response
time outliers (greater than or equal to ±3 SD from the mean
[n = 100]) and response times of <200 ms to avoid possible
anticipation errors. We also recorded the sharing behavior
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of each participant based on the number of videos they
decided to share. The behavioral analysis was performed using
STATISTICA data analysis software, version 12 (StatSoft, Inc.,
Tulsa, OK, USA, 2014). p ≤ 0.05 was considered statistically
significant.

EEG Data Acquisition and Pre-processing
EEGs were recorded using a BNT36 EEGmodel (EMSAr, Rio de
Janeiro, RJ, Brazil) at the following positions of the 10–20 system:
Fp1, Fp2, F7, F3, Fz, F4, F8, T7, C3, Cz, C4, T8, P7, P3, Pz, P4,
P8, O1, Oz, O2, A2 and A1. 10-20 electrode paste (D.O. Weaver
and Co., Aurora, CO, USA) was applied to each electrode before
placing it on the scalp. Electrode impedance was≤5 kOhms. EEG
signals were acquired at a 600 Hz sampling rate.

Data were pre-processed using EEGLAB toolbox (Delorme
and Makeig, 2004) for MATLAB. Continuous EEG data were
filtered using a 0.1–45 Hz band-pass filter and re-referenced
using the grand average reference algorithm as implemented
in the EEGLAB routine. EEG epochs were extracted using
a time window of 10.7 s (0.5 s pre-stimulus to 10.2 s post-
stimulus) and were divided according to the start of each video.
Noisy trials were removed by visual inspection. EEG data
were decomposed into independent components (ICs) using
the runica function implemented in EEGLAB. Components
representing eye movements and/or muscle contractions were
excluded by visual inspection to remove artifacts from the
neural data.

EEG Data Analysis
EEG data analysis was performed using the MATLAB toolbox
Fieldtrip (Oostenveld et al., 2011) and in-houseMATLAB scripts.
The PSD at each electrode was calculated in 1 Hz steps between
2 Hz and 30 Hz with a 7-cycle length sliding window and a
single Hanning taper in 50 ms steps. This gave a decreasing
time-window length as the frequency increased (e.g., 700 ms for
10 Hz and 350 ms for 20 Hz). For each channel, PSD values
obtained during viewing of S and N-S videos were averaged
for each EEG frequency band: (1) theta (4–8 Hz); (2) alpha
(8–12 Hz); and (3) beta (12–20 Hz).

PSD values were log-transformed for group-level analysis.
A cluster-based permutation test with a Monte Carlo approach
(Maris and Oostenveld, 2007) was used to test for significant
differences in PSD between the S (n = 316) and N-S (n = 1099)
trials. Cluster-based statistics involves grouping of neighboring
variables (here, t-values) into clusters and deriving characteristic
values. In practice, values are only considered for inclusion
in a cluster if they exceed a certain threshold (e.g., p value
of <0.05 in univariate analysis). It is then possible to compute
the clusters’ attributes and their associated probabilities (Pernet
et al., 2015). Therefore, a t-statistic was calculated for each
electrode for theta, alpha and beta frequency bands, with time
averaged from 0 ms to 9000 ms during viewing of S and N-S
videos. The final 1000 ms was not employed to eliminate possible
artifacts caused by the anticipation of answering questions.
Channel-frequency points with a t-value >95th percentile were
retained. Adjacent frequency-channel points were clustered, and
cluster statistics were calculated as the maximum sum of each

cluster. A permutation test was then conducted, consisting
of randomizing the trials for each condition (N or N-S)
and recalculating a t-statistic. This procedure was repeated
2000 times. Finally, we obtained a reference distribution of
cluster-based t-statistics and tested the distribution against the
observed t-statistic. We also conducted a time-frequency analysis
using cluster-based statistics as described before. Channel-
frequency-time points with a t-value >95th percentile were
retained.

For calculation of the FAA index, the normalized PSD of
the alpha frequency band (8–12 Hz) from the left mid-frontal
electrode F3 was subtracted from the right mid-frontal electrode
F4 (lnPSD F4 − lnPSD F3). Because alpha power is inversely
related to cortical activity (Gollan et al., 2014), a positive
FAA index reflects greater left-sided frontal activity (lnPSD
F3 > lnPSD F4); whereas negative values indicate greater right-
sided activity (lnPSD F3 < lnPSD F4). The FAA index for S and
N-S videos was compared using a permutation test.

Classification of EEG Data
To determine whether the EEG data can be used to classify
sharing intention, we used a SVM with a linear kernel (C = 1)
from a libSVM library (Chang and Lin, 2013). The utility
of SVMs for classifying brain states has previously been
demonstrated (Mourão-Miranda et al., 2005). Time-averaged
power of each frequency band with a significant difference
between S and N-S videos and FAA indexes were used as
features. Classification was performed using all 1415 trials as
samples. To account for the imbalance between the number
of S (n = 316) and N-S (n = 1099) trials, oversampling
was performed with the S condition using the synthetic
minority over-sampling technique (SMOTE; Chawla et al.,
2002). This method consists of creating synthetic data points
by taking the vector between one of the k nearest neighbors
in feature space (we worked with five nearest neighbors),
multiplying it by a random number between 0 and 1
and adding this point to the sample to create a new
one.

To determine whether the EEG data plus self-reported
measures are helpful in assessing sharing intention, we
compared SVM performed with a self-reported measure
(like/dislike scores) as the sole feature with SVM performed
with the self-reported measure plus EEG data (theta-
and alpha-band PSDs and FAA index) as features. All
performance measures were obtained in a 10-fold cross-
validation, and feature sets were divided into 10 mutually
disjointed training (final number = 1978) and test (final
number = 220) sets. The results are reported as accuracy,
the sum of true positive (TP) plus true negative (TN) cases
divided by the number of sample instances; and F1-score,
which is a weighted average of the precision and recall and
is defined as F1 = 2 ∗ (precision ∗ recall)/(precision+ recall),
where Precision = TP/(TP + FP) (with FP meaning ‘‘false
positive’’) and Recall = TP/(TP + FN) (with FN meaning
‘‘false negative’’). F1 scores range from 0 (worst) to 1
(best). The significance of classification scores was
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FIGURE 2 | Topographically distributed independent-samples t-values for theta- and alpha-band power differences when watching S vs. N-S videos. For graphical
purposes, the surface in between electrodes is interpolated to create scalp maps. Clusters with significant t-values are indicated by black circles. The colors bars
indicate the t-values of the clusters. N = 23.

FIGURE 3 | Change in log power spectral density (PSD; µV2/Hz) for the theta-band (4–8 Hz, left panel) and alpha-band (8–12 Hz, right panel) in the indicated
channel clusters during viewing of S and N-S videos. Data represent the mean ± SEM. ∗p ≤ 0.05.

assessed using a permutation test (Ojala and Garriga,
2009).

RESULTS

Behavioral Results
The median frequency with which videos were shared was
23% (range 3%–41%). After exclusion of outliers, the median
response to decide whether or not to share a video was
0.98 ± 0.67 s (±SD, n = 2200). The response time was

significantly shorter to decide to not share a video vs. to
share a video (0.74 ± 0.944 s [n = 1655] vs. 0.95 ± 0.945 s
[n = 545]; Mann-Whitney test, U = 344,878, p < 0.001,
r = −0.18). We also found that S videos were significantly
more liked than N-S videos (median score 0.75 vs. 0.45 on
a 0–1 scale; Mann-Whitney test, U = 78,572, p < 0.001,
r =−0.62).

EEG Analysis: PSD and FAA
Differences between PSD oscillations (theta, alpha and beta)
across frontal, central and parietal electrodes during viewing of

Frontiers in Behavioral Neuroscience | www.frontiersin.org 6 August 2018 | Volume 12 | Article 166

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


Fischer et al. EEG Correlates of Information Sharing

FIGURE 4 | Frontal alpha asymmetry (FAA) index (lnPSD F4 − lnPSD F3)
during viewing of S and N-S videos. Data are presented as the mean ± SEM
(t = 4.95, p = 0.002). More negative FAA values reflect higher alpha activation
in the right hemisphere when compared with the left hemisphere.

S compared with N-S videos were assessed using non-parametric
cluster-based permutation tests. No significant differences were
detected for the time-frequency analysis. However, for channel-
frequency (time averaged) analysis, significant differences were
detected between S and N-S conditions. These differences were
observed in midline-frontal and right parietal-occipital clusters
for theta-band power (4–8 Hz) and in right-central frontal
and right occipital clusters for alpha-band power (8–12 Hz;
Figure 2). No significant differences were detected in beta-band
clusters.

To examine the directionality of S vs. N-S-related changes
in theta and alpha bands, we plotted the log-transformed PSD
values for each electrode and computed their t- and p-values after
correction for multiple comparisons (‘‘Monte Carlo’’ method,
2000 randomizations). Theta-band, PSD values were significantly
higher in the N-S condition, when compared with the S
condition, for electrodes F3 (−0.24 vs.−0.29; t = 3.27, p = 0.018);
Fz (−0.05 vs. −0.14; t = 6.34, p = 0.002); F4 (−0.22 vs.
−0.31; t = 5.11, p = 0.002); P8 (−0.29 vs. −0.33; t = 3.16,
p = 0.02); P4 (−0.34 vs. −0.38; t = 3.73, p = 0.004) and O2
(−0.05 vs. −0.11; t = 3.83, p = 0.004). Similarly, for alpha-
band, PSD values were higher in the no-shared condition, when
compared to the shared condition, for electrodes Fz (−0.03 vs.
−0.09; t = 3.39, p = 0.010); F4 (−0.15 vs. −0.22; t = 3.53,
p = 0.006) and O2 (0.01 vs. −0.04; t = 3.13, p = 0.022;
Figure 3).

Since we observed significant differences in frontal alpha
oscillations between the right and left hemispheres, the FAA
index was computed. An independent-sample t-test showed a
significant difference between S and N-S conditions (t = −4.95,
p = 0.002, ‘‘Monte Carlo’’ method, 2000 times randomizations).
A more negative FAA score obtained for viewing S videos
compared with N-S videos (Figure 4), reflecting higher right
frontal alpha activity.

Classification Results
To determine whether the neural data obtained with our subjects
could improve prediction of sharing intention, we compared

classification models using SVM. Using only the pleasantness
rating (self-reported variable) as a feature, our classifier accuracy
was 78% and the F1 Score was 0.78 (F1 score reaches its
best value at 1 and worst at 0, p < 0.01, permutation test,
100 iterations, Table 1; F1 scores of 1 and 0 reflect the
best and worst scores, respectively). However, combining the
self-reported ratings with the theta- and alpha-band PSDs and
the FAA index as features increased the classifier accuracy
to 81% and the F1 Score of 0.81 (p < 0.01, permutation
test, 100 iterations), representing a significant improvement
in the general accuracy of 3% (t = 2.75, p = 0.005, t-test
between the predictions made by the two models using
the test data, Table 2). These results suggest that neural
markers may be useful parameters in evaluating sharing
intention.

DISCUSSION

In the present study, we investigated correlations between
EEG-derived data and information sharing behavior, using
viewing of videos that would or would not be shared as
the model system. Time-frequency analysis was conducted
revealing no significant differences between conditions (S vs.
N-S videos). EEG channel-frequency analysis revealed that
viewing of N-S videos resulted in higher PSD amplitudes
in the theta band, primarily over bilateral frontal (F3, F4
and Fz), right parietal (P4 and P8) and right occipital (O2)
sites and higher PSD amplitudes in the alpha band over
central-right frontal sites (F4 and Fz) and right occipital
(O2) sites compared with viewing of S videos. These data
are consistent with the lower FAA index (i.e., higher right
frontal brain activity) for viewing of S vs. NS videos. We
also discovered that these EEG measures could aid in the
prediction of sharing behavior. Using SVM, a machine-
learning algorithm widely used in neuroscience applications
(Quitadamo et al., 2017), we found that a self-reported
variable in combination with theta PSD, alpha PSD and
FAA index as features improved the prediction accuracy
by 3% compared with the self-reported variable alone.
Therefore, these data have identified an EEG oscillation
pattern that can improve the prediction of information sharing
behavior.

TABLE 1 | Classification results using only pleasantness ratings (self-reported
variable).

Condition Precision Recall (Accuracy) F1 score

Share 0.78 0.80 0.79
Not shared 0.79 0.77 0.78
Total/Avg 0.78 0.78 0.78

TABLE 2 | Classification results using pleasantness ratings (self-reported variable)
plus EEG parameters.

Condition Precision Recall (Accuracy) F1 score

Share 0.78 0.86 0.82
Not shared 0.85 0.75 0.80
Total/Avg 0.81 0.81 0.81
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First we found that theta rhythms in bilateral frontal
and right parietal and occipital sites were higher in N-S
trials, when compared to the S trials. Previous studies
have yielded conflicting evidence for the contribution of
theta-band power to cognitive processes. Klimesch (1999)
proposed that theta-band power could be negatively related
to cognitive and memory performance and brain maturity,
but in a complex and partly non-linear manner. The author
states that within the theta frequency range, EEG power
is negatively related to cognitive performance, whereas the
theta reactivity (or more specifically theta synchronization)
is related to a good cognitive performance and memory.
Additional studies have shown that theta frequency activity
is increased, especially at frontal sites, during cognitive
activities that require attention or short-term memory, such
as mental arithmetic and working memory load tasks, which
indicates a possible role of theta oscillations in working
memory maintenance (reviewed by Scheeringa et al., 2008).
This also hints at the possibility that information sharing
behavior might be associated with higher theta amplitudes,
particularly at frontal sites, since this behavior demands
engagement of higher cognitive processes. Falk and Scholz
(2018) noted that the decision to share information would
require increased externalized attention, given that this behavior
involves integration of brain processes related to stimuli
value computation, self-related relevance and inference of
another’s state-of-mind. However, other studies have shown
that more generalized theta rhythm activation pattern (i.e., not
restricted at frontal sites) can be related to more automatic
processes and diminished attentional efforts. Braboszcz and
Delorme (2011) showed that among participants performing a
breath-counting task, generalized theta EEG activity, especially
within occipital and parieto-central regions, was increased
during mind-wandering moments. Thus, higher theta activity
could reflect decreased alertness and sensory processing when
participants are disengaged from the task at hand. Hermens
et al. (2005) demonstrated that patients with attention deficit
hyperactivity disorder displayed higher theta power that
correlated with poorer performance in an attentional (oddball)
task compared with control subjects. Lin et al. (2016) also
demonstrated a relationship between higher theta power and
declining attentional effort and worsening of task performance.
Based on these observations, we suggest that in our study,
the higher theta PSD pattern along right frontal, parietal and
occipital sites and the lower response times associated with
the decision to not share a video reflect a lower cognitive
demand, thereby generating a quicker and more automatic
decision.

We also found that right frontal alpha rhythms are
associated with information sharing intention. EEG alpha
rhythms, which were first identified by Berger (1929), have
been interpreted by some authors to be an ‘‘idling’’ rhythm
with a diminished amplitude when the eyes are opened or
mental activity is engaged (Laufs et al., 2003). Consequently,
high and low alpha power is typically associated with low and
high mental activity, respectively (Goldman et al., 2002). It
has been shown that frontal asymmetries have physiological

relevance for inferring emotional behavioral patterns (for
an extensive review, see Harmon-Jones et al., 2010; Smith
et al., 2017) and are involved in motivation driven-behaviors.
Given this, our finding of alpha power asymmetry prompted
us to compare the FAA indexes obtained under S vs.
N-S video viewing conditions. We found that FAA scores
were more negative (higher right frontal brain activity)
when viewing S compared with N-S videos, which was
somewhat surprising because one might expect information
sharing behavior to be more associated with approach-related
behavior and thus with higher frontal left-brain activity
(Coan and Allen, 2003). Various studies have shown that
information sharing decisions and successful persuasive or
influential behavior involve increased activity in ‘‘valuation
network’’-related brain areas, such as the ventral striatum
and ventromedial prefrontal cortex (vmPFC; Falk et al., 2013;
Baek et al., 2017; Scholz et al., 2017). In addition, it has
been proposed that there may be some intrinsic reward or
positive value in information sharing (Tamir and Mitchell,
2012; Falk et al., 2013). However, it is important to note
that the value assigned to a particular choice or action is
subjective and involves a range of features dependent on the
individual and social context. The brain’s value system may
thus be involved in tracking non-compliance vs. conformity
with group opinion rather than simply the stimulus value.
Indeed, some evidence suggests that the brain initially computes
convergence and divergence with group opinion as the main
goal (Falk and Scholz, 2018). Schnuerch and Pfattheicher
(2017) showed that susceptibility to social influence (e.g.,
social conformity) is mainly guided by higher punishment
sensitivity and chronic avoidance behavior. Thus, the pressure
to conform is related to avoidance of detrimental consequences
of disagreement. These authors also showed that the tendency
to adopt the group’s response was negatively associated with
FAA, indicating that stronger right hemisphere activation is
associated with higher social conformity. This finding supports
the notion that social conformity is guided by avoidance-
related rather than approach-seeking behavior. Our finding that
higher right frontal brain activity is related to information
sharing behavior is therefore consistent with the hypothesis
that information sharing is driven by social conformity
and avoidance of negative outcomes of non-compliance
with a larger group, such as social isolation. However,
further research is necessary to assess the contribution of
reward vs. punishment processes to information sharing
behavior.

A third finding of our study is that EEG data features
combined with a subjective variable (like/dislike score)
improved the accuracy of information sharing intention
by 3% compared with the subjective variable alone. Other
authors have examined the predictive value of neuronal
activity parameters using videos as the stimuli. For example,
Dmochowski et al. (2014) examined EEG parameters
for subjects who viewed a recorded television broadcast
and used inter-subject correlation analysis to analyze the
association between EEG parameters and social media metrics
(viewership size and tweet frequency rates). They found
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that the social media interactions during commercial breaks
could predict the preference rating for each advertisement
after broadcasting. Similarly, Boksem and Smidts (2015)
compared the ability of neural measures and traditional
self-stated preference measures to predict the box-office
success of movies. Their results indicated that overall beta
and gamma activity in EEGs provided predictive information
about individual preferences and population-wide success,
respectively. Although the predictive power of the neuronal
measures was small (explained variance <2%), the magnitude
is comparable to the 3% improvement we obtained here.
Interestingly, several recent studies have discussed the use of
neurophysiological measures to improve brain state classification
and its potential applications in brain-machine interfaces and
prediction of behavioral outcomes (Hettich et al., 2016;
Gauba et al., 2017; So et al., 2017; Zhao et al., 2018). Our
work therefore provides additional support for the utility of
EEG features in improving prediction of information sharing
intention.

Our study has several limitations. First, we couldn’t
detect significant differences regarding time-frequency analysis
between S vs. N-S videos. We suspect that this negative result
happened because we conducted our analysis concerning the
answers that were given to each trial (video). It means the
trials within each condition were heterogeneous regarding the
videos they contained. It could lead to more complex frequency
oscillations patterns through time which could reduce the
chances to observe subtle effects between the two conditions
(S vs. N-S). We also suspect that movement-related artifacts
due to the long experimental sessions could have contributed
to blur possible time-frequency effects that might have arisen.
Second, recording of EEGs for sustained periods (>40 min
in our study) when head movements are not restricted can
increase the number of artifacts. This effect is exacerbated
by low electrode density recordings (<64 electrodes) because
it limits the number of artifacts that can be discarded after
independent component analysis (ICA) and increases the
removal of noisier epochs and even whole channels. Here,
we used 21 channels and rejected 37.7% of trials, which
is comparable to the 25% trial rejection rate of Braboszcz
and Delorme (2011), using 128 channels and long (20 s)
trials of a simple breath-counting task. Nevertheless, the 3%
predictive improvement in our study, which could potentially
be improved using high-density recordings, demonstrates the
power of EEG measures as potential candidates to explain
sharing behavior outcomes. Third, this was an exploratory
study without a priori assumption evaluate traditional neural
markers. Our only goal was to determine whether the three
frequency bands (theta, alpha and beta) might be involved in
information sharing decisions, and we had no preconceived
expectations of what we might observe. This approach can
increase the number of statistical comparisons leading to type
I error. However, we addressed this issue by implementing
nonparametric permutation testing as described by Maris
and Oostenveld (2007), which accounts for issues related to
the multiple comparison problem, especially in exploratory
studies.

Despite its limitations, the present study makes several
valuable contributions to the understanding of social
neuroscience dynamics. As stated earlier, the sense of
belonging to a society and social coordination is critical for
human well-being and survival (Baumeister and Leary, 1995;
Lieberman and Eisenberger, 2009). Influencing opinions
and ideas is a core mechanism by which different groups
interact and communicate. Consequently, diverse social,
emotional and cognitive processes must be integrated, often
without conscious awareness, when sharing information.
Combining neural activity and behavioral measures
with computational approaches can help to integrate
and understand the underlying mechanisms that drive
information sharing behavior, and thus improve the
predictive ability of statistical models of sharing. This
powerful knowledge has applications in domains such as
marketing research (Berns et al., 2010; Ohme et al., 2010;
Pozharliev et al., 2017), economic decisions (Camerer,
2008; Weber and Johnson, 2009) and social media and
public health campaigns (Falk et al., 2010, 2012, 2015;
Cascio et al., 2013). In conclusion, our identification of
neural markers related to sharing information behavior
may improve our understanding of the underlying motives
and mechanisms of such behavior. We also demonstrate
that analysis of neural oscillations in message propagation
research can improve the predictive strength of self-reported
measures.
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