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Phospholipases type A2 (PLA2s) are the most abundant proteins found in Viperidae snake venom. ey are quite fascinating
from both a biological and structural point of view. Despite similarity in their structures and common catalytic properties,
they exhibit a wide spectrum of pharmacological activities. Besides being hydrolases, secreted phospholipases A2 (sPLA2) are an
important group of toxins, whose action at the molecular level is still a matter of debate. ese proteins can display toxic effects by
different mechanisms. In addition to neurotoxicity, myotoxicity, hemolytic activity, antibacterial, anticoagulant, and antiplatelet
effects, some venom PLA2s show antitumor and antiangiogenic activities by mechanisms independent of their enzymatic activity.
is paper aims to discuss original �nding against anti-tumor and anti-angiogenic activities of sPLA2 isolated from Tunisian
vipers: Cerastes cerastes and Macrovipera lebetina, representing new tools to target speci�c integrins, mainly, 𝛼𝛼𝛼𝛼𝛼𝛼 and 𝛼𝛼v
integrins.

1. Introduction

Snake venom is a natural biological resource, containing sev-
eral neurotoxic, cardiotoxic, cytotoxic, and many other dif-
ferent active compounds [1, 2]. Due to this broad range
of biological functions, these biomolecules have been the
sub�ect of hundreds of scienti�c articles in different research
�elds, including biochemistry, biophysics, pharmacology,
toxicology, and medicine [2–5]. Viperidae snake venoms
contain class II PLA2s, which share structural features with
secreted PLA2 (sPLA2) of the class II-A present in in�am-
matory exudates in mammals. A number of venom PLA2s
have been shown to induce a variety of pharmacological
effects although comprehensive studies of the actions of

venom PLA2s in the various events of toxicity are scarce
[6, 7].

2. Viperidae Snake Venom Phospholipase A2
Enzymes: Secreted Phospholipases A2

Secreted PLA2 constitute a large superfamily of enzymes that
are widely distributed in living organisms. e sPLA2 from
Viperidae snake venoms fall under group II. ey are gen-
erally Ca2+-dependant enzymes that catalyze the hydrolysis
of the sn-2 fatty acid bond of phospholipids to release free
fatty acids and lysophospholipids [7]. ese enzymes are
small proteins (∼13-14 kDa), containing 120–125 aminoacid
residues, 7 disul�de bridges, and have a partially conserved
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structure that de�ne the PLA2 fold [8]. Group II snake venom
PLA2 enzymes can also be divided into different subgroups
on the basis of the aminoacid residue in the forty-ninth
position. Asp49 plays an important role in catalysis and
it is conserved in most snake venom PLA2 enzymes, and
hence these are identi�ed as D49 enzymes [9]. However,
in some of the group IIA PLA2 enzymes this aminoacid
residue is replaced by lysine, serine, asparagine, or arginine
and they are identi�ed as �49 [10], S49 [11], N49 [12],
or R49 [13] enzymes, respectively. Substitution of Asp in
the forty-ninth position interrupts the binding of cofactor
Ca2+ to the Ca2+-binding loop, and hence “mutants” show
low or no hydrolytic activity [10, 14, 15]. In addition, there
are several substitutions in the Ca2+-binding loops of these
mutant enzymes.

Secreted phospholipases A2 constitute major compo-
nents of snake venoms and have been extensively investigated
not only because they are very abundant in these venoms but
mainly because they display a variety of relevant toxic actions
such as neurotoxicity, myotoxicity, cytotoxicity, cardiotox-
icity, edema-inducing, arti�cial membrane disrupting con-
vulsant, hypotensive and proin�ammatory effects [7, 16–19].
Besides, they exert a wide range of biological effects, in-
cluding anticoagulant, platelet aggregation inhibiting [7, 20,
21], bactericidal [22], anti-HIV [23], antimalarial and anti-
parasitic [24], antitumor [21, 25, 26], and recently anti-
angiogenic effect [27–29]. Due to this functional diversity,
these structurally similar proteins aroused the interest of
many researchers as molecular models for study of structure-
function relationships. One of the main experimental strate-
gies used for the study of myotoxic PLA2s is the traditional
chemical modi�cation of speci�c aminoacid residues and
examination of the consequent effects upon the enzymatic,
toxic, and pharmacological activities. Furthermore, some
venom sPLA2 have no catalytic activity while they exert
various toxic and pharmacological effects [17, 21, 26]. e
absence of direct correlation between catalytic activity and
pharmacological effects has led to the hypothesis that speci�c
actions of sPLA2 are due to the presence of pharmacological
sites on the sPLA2 surface overlapping or distinct from the
catalytic site. ese pharmacological sites would allow the
sPLA2 to bind speci�cally to soluble or membrane-bound
proteins that participate to the sPLA2 mechanism of action
[30].

Since this hypothesis was proposed, a collection of
binding proteins have been identi�ed using several toxic
snake venom sPLA2 [31]. Besides 𝛽𝛽-bungarotoxin [32, 33],
early studies with the neurotoxic sPLA2 OS2 from Australian
Taipan snakeOxyuranus scutellatus scutellatus have led to the
identi�cation of two families of binding proteins called N-
and M-type receptors [31, 34, 35]. e N-type receptors are
present in mammalian brain and other tissues. Neurotoxic
sPLA2, such as OS2, bind with N-type receptors with high
affinity, while nontoxic sPLA2 including OS1 bind withmuch
lower affinity, suggesting that these receptors are involved in
neurotoxicity.

Conversely, the M-type receptors bind with high affinity
both toxic and nontoxic sPLA2 including OS1 and OS2 [31].

Importantly, the M-type receptors also bind with several
mammalian sPLA2 [31, 36], suggesting that these proteins
are the endogenous ligands for these receptors, and possibly
for the collection of binding proteins initially identi�ed with
venom sPLA2.

3. Tunisian Viperidae Snake Venom Proteins

Snake venom is a natural source for molecules known as
modulators of integrin-mediated functions [37]. Pharmaco-
logical study of snake venoms reveals structural and func-
tional polymorphisms of proteins they contain. In our
laboratory in Pasteur Institute of Tunis, we are interested
in studying different pharmacological effects of Tunisian
Viperidae venoms,mainly, the horned viper,Cerastes cerastes,
Macrovipera lebetina transmediterranea, and Cerastes vipera
[38]. Bazaa et al. showed that these venoms contain pro-
teins belonging to a few protein families. However, each
venom showed distinct degree of protein composition com-
plexity. e three venoms shared a number of protein
classes though the relative occurrence of these toxins was
different in each snake species. On the other hand, the
venoms of the Cerastes species and Macrovipera lebetina
each contained unique components [38]. e comparative
proteomic analysis of Tunisian snake venoms provides a
comprehensible catalogue of secreted proteins, which may
contribute to a deeper understanding of the biological effects
of the venoms and may also serve as a starting point
for studying structure-function correlations of individual
toxins.

ereby, disintegrins and C-type lectins (CLPs) are
among the most studied proteins proved to be components
of medical and biotechnological value [39–42]. Indeed, they
are potent and speci�c antagonists of several integrins, such
as 𝛼𝛼v𝛽𝛽3 and 𝛼𝛼5𝛽𝛽1 [43, 44] and can thus act in many bio-
logical processes including platelet aggregation, angiogenesis,
tumor invasion, and bone destruction [39, 45–47]. On the
other hand, CLPs were �rst described as modulators of
platelet before their antiadhesive activity was highlighted
[48–50]. CLPs are thus able to inhibit integrin-dependent
proliferation, migration, invasion, and angiogenesis [26, 44,
51, 52]. Sarray and coworkers have isolated lebectin and
lebecetin, two C-type lectins, from Macrovipera lebetina
snake venom inhibiting 𝛼𝛼5𝛽𝛽1- and 𝛼𝛼v-containing integrins
[43, 44]. Since their initial characterization, snake venom
disintegrins have been extensively studied [39, 46], they are
potent inhibitors of integrin-ligand interactions.e integrin
inhibitory pro�le of disintegrins primarily depends on the
sequence of a tripeptide located at the apex of a mobile
loop and constrained in its active conformation by the
appropriate pairing of disul�de bonds. So, CC5 andCC8 have
been previously characterized as Cerastes cerastes dimeric
disintegrins targeting 𝛼𝛼IIb𝛽𝛽3, 𝛼𝛼v𝛽𝛽3, and 𝛼𝛼5𝛽𝛽1 integrins [53].
In addition to dimeric disintegrins, Macrovipera lebetina
venom includes short disintegrin, namely, lebestatin which
targets 𝛼𝛼1𝛽𝛽1 integrin [46].

Recently, phospholipases A2 (PLA2s, EC 3.1.1.4) have
been demonstrated to modulate integrins which are essential
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protagonists of the complex multistep process of angiogen-
esis, the major target for the development of anticancer
therapies [21, 27, 28] (Figure 1).

4. Secreted Phospholipases A2 from
Tunisian Vipers

ree acidic, nontoxic, Asp49 phospholipases A2 have been
isolated from Tunisian vipers: CC-PLA2-1 and CC-PLA2-
2 from Cerastes cerastes, and MVL-PLA2 from Macrovipera
vipera. ey have a molecular weight of 13737.52, 13705.63,
and 13626.64Da, respectively. ey contain, respectively,
121, 120, and 122 aminoacids, including 14 cysteines each
[21, 26]. e sequences alignment shows similarity as high
as 50% (Figure 2). Furthermore, none of the three PLA2s is
cytotoxic up to 2𝜇𝜇M.

CC-PLA2-1 and CC-PLA2-2 present a high enzymatic
activity [21], while MVL-PLA2 shows a low one. Although
they differ greatly in their catalytic properties, these shared
many pharmacological activities proving the lack of correla-
tion between enzymatic and pharmacological activities.

5. Pharmacological Activities of
sPLA2 from Tunisian Vipers

CCPLA2-1, CC-PLA2-2, and MVL-PLA2 show many phar-
macological effects [21, 26].emost interesting are the anti-
tumor and antiangiogenic activities which involve integrins
[27, 28].

5.1. Tunisian Viperidae sPLA2 Effects on Haemostatic System.
Snake venom toxins are now regularly used in laboratories for
assaying haemostatic parameters and as coagulation reagents
[54, 55]. PLA2 enzymes are known to inhibit blood coagula-
tion. Depending on the dose required to inhibit coagulation,
they are classi�ed into strong, weak, and nonanticoagulant
enzymes [56, 57]. Strong anticoagulant PLA2 enzymes inhibit
the activation of FX to FXa by both enzymatic and nonenzy-
matic mechanisms and inhibit the activation of prothrombin
to thrombin by nonenzymatic mechanism [58, 59]. In our
case, 0.14 𝜇𝜇Mof both CC-PLA2s completely inhibited plasma
coagulation. us, CC-PLA2s could be considered among
the most anticoagulant yet described for PLA2s snake venom
[21]. Lizaro and coworkers showed that myotoxin II, a
basic PLA2 from Bothrops nummifer, was unable to inhibit
coagulation of the platelet-poor plasma until 3.57𝜇𝜇M [60].
Moreover, it has been shown that BaspPLA(2)-II, an acidic,
Asp49 PLA2 from Bothrops asper venom lacks anticoagulant
activity [61].

Platelet aggregation plays a role in clot retraction and
wound healing. Any alteration in platelet aggregation could
lead to debilitation or death. CC-PLA2-1 and CC-PLA2-
2 showed high antiplatelet aggregation activities induced
by arachidonic acid or ADP [21], contrary to b/D-PLA2
which displays high enzymatic and anticoagulant activities
but has no platelet aggregation [62]. Moreover, Kashima
and coworkers reported that BthA-I-PLA2, a nontoxic acidic
PLA2 from Bothrops jararacussu snake venom, inhibited
ADP-induced platelet aggregation with moderate effect [63].
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While, OHVA-PLA2, an acidic PLA2 fromOphiophagus han-
nah, strongly inhibited platelet aggregation in the presence
of ADP or arachidonic acid [64]. It thus appears that PLA2
platelet activity is not directly due to its acidic nature or its
anticoagulation activity.

5.2. Tunisian Viperidae sPLA2 Effects on Tumor Cell Behavior.
Snake venom sPLA2 present a wide range of pharmaco-
logical effects [7], including cytotoxicity on tumor cells [7,
63, 65]. Concerning CC-PLA2-1, CC-PLA2-2, and MVL-
PLA2, concentrations up to 2 𝜇𝜇M during 4 days did not
induce detectable cytotoxicity on human cell lines IGR39
(melanoma) and HT1080 (�brosarcoma) [21, 26].

Adhesion and cell migration are two fundamental steps
in numerous diseases, like cancer. CC-PLA2-1, CC-PLA2-2,
and MVL-PLA2 inhibit adhesion and migration of human
HT1080 and IGR39 cells to �brinogen and �bronectin. is
effect persists even aer complete blockage of the catalytic
activity suggesting that, contrary to Bth-A-I-PLA2 whose
antitumoral effect appears to be linked to enzymatic site
[63], the inhibitory and enzymatic activities are supported by
different sites. RVV-7, a cytotoxic basic PLA2 from Russsell’s
viper venom, inhibits also tumor development [65]. On
the contrary, b/D-PLA2 represents the exception of these
enzymes as it stimulates tumor growth [62]. Since Tunisian
phospholipases A2 are not cytotoxic, it seems that their anti-
tumoral activity is exerted by a different mechanism. Using
different assays, such as a solid-phase binding assay and a
panel of immobilized antibodies, we have proved that CC-
PLA2-1, CC-PLA2-2, and MVL-PLA2 inhibit cell adhesion
and migration by interacting directly with 𝛼𝛼v and 𝛼𝛼5𝛽𝛽1
integrins [26, 28].

5.3. TunisianViperidae sPLA2 Effects onAngiogenesis. Angio-
genesis is fundamental to normal healing, reproduction,
and embryonic development. However, this process is also
important in the pathogenesis of a broad range of disorders
such as arthritis and cancer [66]. Angiogenesis is thus
required to sustain malignant cells with nutrients and oxygen
for tumors to grow beyond a microscopic size. us, the
microvascular endothelial cell recruited by a tumor is an
important target in cancer therapy and has the advantage of
being genetically stable. erefore, treating both the cancer
cell and the endothelial cell in a tumor may be more effective
than treating the cancer cell alone.

e role of 𝛼𝛼v𝛽𝛽3 integrin in the angiogenic process is
well documented [67]. In the last decade, several clinical
trials evaluating the efficacy of 𝛼𝛼v𝛽𝛽3 blockers have led to
encouraging results in cancer therapy and diagnosis. Sim-
ilarly, 𝛼𝛼5𝛽𝛽1 integrin is involved in angiogenesis and more
precisely in growing vessels, but its expression disappears in
mature vessels [68]. ereby, when tested in vitro, the two
CC-PLA2 and MVL-PLA2 impaired adhesion and migra-
tion of HBMEC (human brain microvascular endothelial
cells) and HMEC-1 (human microvascular endothelial cell),
respectively, by interfering with integrin function. Moreover,
using the CAM assay, an ex vivomodel, these sPLA2 strongly
reduced vasculature development.e treatment reduced the

number of new capillaries and branching, without affecting
the mature blood vessels, suggesting once again the impli-
cation of 𝛼𝛼5𝛽𝛽1 integrin. Interestingly, CC-PLA2-1 and CC-
PLA2-2 inhibit spontaneous angiogenesis as well as angio-
genesis induced by growth factors such as VEGF or bFGF
[28]. e antiangiogenic effect of PLA2 can be due partly
to the blockage of the 𝛼𝛼v𝛽𝛽3 and 𝛼𝛼5𝛽𝛽1 integrins functions.
However, inhibition of angiogenesis can also result from
blockage of VEGF or its receptor. us, it has been reported
that inactive PLA2 homologues, such as KDR-bp isolated
from Eastern cottonmouth venom, are common antagonists
of KDR, a VEGF receptor [69].

Focal adhesions are specialized sites of attachment of cells
where integrins receptors, such as 𝛼𝛼v𝛽𝛽3, link the extracellular
matrix to the actin cytoskeleton, allowingmigration [70]. Cell
migration is a complex cellular behavior that results from
the coordinated changes in the actin cytoskeleton and the
controlled formation and dispersal of cell-substrate adhesion
sites. While the actin cytoskeleton provides the driving
force at the cell front, the microtubule network assumes
a regulatory function in coordinating rear retraction. e
polarity within migrating cells is further highlighted by the
stationary behavior of focal adhesions in the front and their
sliding in trailing ends [71].

Treatment of HMEC-1 cells with MVL-PLA2 induced
important changes in cell morphology. Treated cells have
a circular shape and actin stress �bers are thinner or
absent, with the actin mainly located at the cell periphery.
Moreover, MVL-PLA2 leads to drastic reduction in the
size of focal adhesions and their distribution all over the
ventral surface of cells, consistent with a decrease in 𝛼𝛼v𝛽𝛽3
integrin clustering and its absence from lamellipodia [27].
erefore, it appears that the inhibition of migration is asso-
ciated with important reorganization of the actin cytoskele-
ton and focal adhesions. Again, there is a clear dissoci-
ation between the anti-angiogenic effect and the catalytic
activity.

Furthermore,MVL-PLA2 strongly increasedMTdynam-
icity in HMEC-1 cells. Because the microtubule cytoskeleton
is essential in the orchestration of endothelial cell motility
[72, 73], microtubule-targeting agents are known to have
antiangiogenic effects through the modulation of cytoskele-
ton dynamicity [27]. us, microtubule-binding drugs are
widely used in cancer chemotherapy and also have clinically
relevant antiangiogenic and vascular-disrupting properties
[74].

�� �m�orta�ce o� the ��e�ti�catio� o�
Pharmacological Sites

e pharmacological sites of PLA2 enzymes determine the
affinity between the PLA2 and target proteins. e identi�-
cation of pharmacological sites helps in (1) understanding
the structure-function relationships of PLA2 enzymes, (2)
developing strategies to neutralize the toxicity and pharma-
cological effects by targeting these sites, and (3) developing
prototypes of novel research tools and pharmaceutical drugs
[7, 8].
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In our studies, we showed that CC-PLA2-1, CC-PLA2-
2, and MVL-PLA2 target the 𝛼𝛼5𝛽𝛽1 and 𝛼𝛼v integrins, partic-
ularly 𝛼𝛼v𝛽𝛽3. Moreover, angiogenesis involves expression of
the later, which binds to RGD-containing components of the
interstitial matrix [75].

To further understand the mechanism of action, we
report that endothelial cells are able to adhere on immobilized
MVL-PLA2 and that this adhesion is impaired by RGD
peptides [27]. is suggests that interaction between MVL-
PLA2, CC-PLA2-1, or CC-PLA2-2 and integrins involves
RGD-like sequence which may be responsible for the inhi-
bition of integrin function. is hypothesis is supported by
Ramos and coworkers’ study, showing that general folding of
electrostatic potential is the main intervening of disintegrin-
integrin interaction [76].

When MVL-PLA2 contains a NGD sequence, which
could be considered as an RGD-like motif, CC-PLA2-1 and
CC-PLA2-2 present NQD and NQI, respectively, that may
also be responsible for the inhibition of integrin function.

erefore, bioinformatics study and structural criteria
that would allow identifying biologically active RGD-sites
on the base of a protein’s spatial structure may become a
helpful tool for analysis of cellular function of proteins [77].
Furthermore, conformation of the integrin-binding loop in a
protein is de�ned not only by physicochemical properties and
conformation of the sequence itself, but also by its structural
environment and therefore of the potential biological activity.
Besides the RGD-like sequence site should be placed on
a loop or a beta-turn to be well exposed. We can cite
disintegrin, like applied model, in which we can note a loop
accessible stabilized by disul�de bridges [78].

7. Molecular Modeling of CC-PLA2-1,
CC-PLA2-2, andMVL-PLA2

In order to examine the site of the suspected RGD-like
sequence, using the SWISS-MODEL Workspace (http://
swissmodel.expasy.org/), we have determined the three-
dimensional models of CC-PLA2-1, CC-PLA2-2, and MVL-
PLA2.

Firstly, as shown in Figure 3(a), the three models are very
similar. Interestingly, we can note the presence of very-well-
exposed loop containing the suspected RGD-like motif. is
loop is very similar to that of the disintegrins.

In the case of MVL-PLA2, we �nd the NGD motif, while
for CC-PLA2-1 and CC-PLA2-2 there is NQD and NQI,
respectively. According to our hypothesis, the residue R in
RGD motif is replaced by the N which is hydrophilic and
polar residue, it is even more hydrophilic than R residue,
this leads to higher affinity towards the 𝛼𝛼v𝛽𝛽3 integrin [79].
Besides, the D residue favors recognition of 𝛼𝛼v𝛽𝛽3 and 𝛼𝛼5𝛽𝛽1
integrins [79]. In addition, in CC-PLA2-1 and CC-PLA2-
2 the RGD-like motif is �anked by two E residues, highly
polarized which could enhance the inhibitory effect towards
integrins that bind to ligands through RGD sites, including
the �bronectin receptor, mainly, the 𝛼𝛼5𝛽𝛽1 integrin [80].

On the other side, based on the study of disintegrins,
it is known that integrin-binding ability is apparently more
related to the Cys-rich domain. Similarly, CC-PLA2-1, CC-
PLA2-2, and MVL-PLA2 present 1� Cys forming 7 disul�des
bridges. We can postulate that disul�de bonds, especially
Cys50–Cys86 and Cys57–Cys79, stabilized the hypothetical
integrin-binding loop. e superimposition of the structural
models of CC-PLA2-1, CC-PLA2-2, and MVL-PLA2 shows
that they share similar conformational features (Figure 3(b)).

Nevertheless, further structure-function relationships
study must be carried to verify this hypothesis.

8. Conclusion

Secreted phospholipase A2 enzymes, especially from Viperi-
dae Snake venom, exhibit a wide variety of pharmacological
effects despite their structure similarity. ese enzymes
provide a great challenge to protein chemists as subtle and
complex puzzles in structure-function relationship. A better
understanding will contribute to our knowledge of protein-
protein interactions, protein targeting, and protein engi-
neering, and to the development of better-targeted delivery
systems. Further research in identifying target proteins will
bring details on the mechanisms of the pharmacological
effects at the cellular and molecular levels. Studies in these
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areas will result in new, exciting, and innovative opportuni-
ties in the future, both in �nding answers to the toxicity of
PLA2 enzymes and could bring useful tools for developing
proteins with novel functions.

Interestingly, we have demonstrated that two isoforms
of PLA2 (CC-PLA2-1 and -2), from horned Tunisian viper
Cerastes cerastes and another from Macrovipera lebetina
MVL-PLA2 target integrins, a large and very important
family of adhesionmolecules that promote stable interactions
between cells and their environment [26, 28]. Indeed, these
sPLA2 exhibit a potent antitumor and antiangiogenic activi-
ties. We showed that their effect is likely due to the inhibition
of 𝛼𝛼5𝛽𝛽1- and 𝛼𝛼v-containing integrins [26, 28].

ese nontoxic secreted phospholipase A2 could be new
tools to disrupt different steps of tumor and angiogenesis
progression through integrins. It is noteworthy that this effect
is independent of the enzymatic activity. is �nding may
serve, on the one hand, as a mean to discuss the molecular
regions involved in recognition of tissue targets and, on the
other hand, as starting point structure-function relationship
studies leading to design a new generation of anticancer
drugs.

Abbreviations

sPLA2: Secreted phospholipase A2
CLP: C-type lectin protein
VEGF: Vascular endothelial growth factor
bFGF: Basic �broblast growth factor
CAM: Chick chorioallantoic membrane.
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