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Abstract

Electron cryotomography (CryoET) is currently the only method capable of visualizing cells in 3D 

at nanometer resolutions. While modern instruments produce massive amounts of tomography 

data containing extremely rich structural information, the data processing is very labor intensive 

and results are often limited by the skills of the personnel rather than the data. We present an 

integrated workflow that covers the entire tomography data processing pipeline, from automated 

tilt series alignment to subnanometer resolution subtomogram averaging. Resolution enhancement 

is made possible through the use of per-particle per-tilt CTF correction and alignment. The 

workflow greatly reduces human effort and increases throughput and is capable of determining 

protein structures at state-of-the-art resolutions for both purified macromolecules and cells.

Introduction

Electron cryomicroscopy (CryoEM) is rapidly becoming the standard tool for near atomic 

resolution structure determination of purified biomolecules over 50 kDa. However, for 

studies of molecules within cells where the structure may be strongly influenced by the 

cellular environment or for purified molecules with high levels of variability, electron 

cryotomography (CryoET) is the preferred method1. In these experiments, the specimen is 
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tilted within the microscope providing 3D information for each molecule and permitting 

overlapping densities, such as those found in the crowded cellular cytosol, to be 

computationally isolated.

While recent microscope and detector advances have greatly boosted the throughput of 

CryoET data collection, substantial human effort and computational resources are still 

required to process recorded imaging data. Especially in cellular tomography projects, data 

processing has become a major bottleneck in studying high-resolution protein structures.

To expedite CryoET data processing, we present a complete tomography workflow as part of 

the EMAN2 environment that performs all steps, from raw tilt series alignment through high 

resolution subtomogram averaging. While many of these tools are based on knowledge 

gained from decades of development by many groups2–10, numerous innovations have been 

introduced to reduce the need for human intervention and improve the resolution of the final 

averaged structure. These include a fully automated tilt-series alignment method not 

requiring fiducials, rapid 3D reconstruction using direct Fourier methods with tiling, an 

optimization-based strategy for per-particle-per-tilt CTF correction, robust initial model 

generation, and per-particle-per-tilt orientation refinement (Figure 1a). In addition to 

algorithm development, this protocol also includes a user-friendly graphical interface and a 

specially designed book-keeping system for cellular tomography that allows users to study 

multiple features/objects within one cell, and to keep track of particle location to correlate 

structural findings with their location in the cellular environment.

Our integrated pipeline significantly increases the throughput of CryoET data processing 

and is capable of achieving the state-of-the-art subtomogram averaging results on both 

purified and in situ samples. We demonstrate subnanometer resolution from previously 

published in vitro datasets11, and cellular tomography of whole E. coli over-expressing a 

double-layer spanning membrane protein at 14 Å resolution.

Results

Automated tilt series alignment and tomogram reconstruction

The first stage of the tomogram processing workflow is tilt-series alignment. Our method 

uses an iterative 3-D landmark-based approach with progressive downsampling (binning) 

and outlier elimination (Figure 1b). It works well on a wide range of tomograms with or 

without fiducials and without any human intervention.

The method begins with a coarse cross-correlation based alignment of a downsampled tilt 

series, and a rough estimate of the orientation of the tilt axis. The input tilt series are 

downsampled to 512×512 pixels irrespective of their original size or sampling. Based on the 

coarse alignment, an initial tomogram is generated, despite the likelihood of significant 

alignment errors, and 3D landmarks are selected from the resulting volume to use in the next 

stage of alignment. These landmarks are simply the N darkest voxels in the downsampled 

map, with a minimum distance constraint (Figure 2b). When fiducials are present in the data, 

they will tend to be selected as landmarks, as long as they are sufficiently well-separated, but 
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they are not explicitly identified as fiducials. Selecting landmarks as localized high contrast 

points in 3-D rather than identifying them in 2-D is critical to the success of this procedure.

The next step is iterative alignment. This includes two stages: refinement of landmark 

coordinates and optimization of the tilt image transforms. First, 3D coordinates of the 

selected landmarks are projected back to the tilt series, and corresponding 2D patches are 

extracted from the tilt images. The 2D patches corresponding to each landmark form a 

subtilt series that is then reconstructed into a local 3D volume of the landmark, to provide a 

more accurate center of mass. Next, 2D patches are re-extracted from the tilt images using 

the refined landmark positions, and the translational alignment that centers each landmark in 

each extracted 2D patch is calculated. A global optimization algorithm is used to adjust the 

3D tilt transforms such that center of all landmarks in 2D patches match the projected 

coordinates of the landmarks to the greatest possible extent. With these improved alignment 

parameters, a new tomogram is generated with better alignment which is used during the 

next round of reprojection and alignment. To improve convergence and increase the speed of 

alignment, the process begins with highly downsampled images and gradually increases 

sampling as alignment error decreases, finishing with the unbinned tilt series in the final 

iteration. A specified fraction of the worst matching landmarks is normally excluded in each 

iteration, and this is critical to obtaining a self-consistent consensus alignment.

In the past, center of mass based alignment algorithms have suffered problems with 

identifying fiducials from the tilt series directly, where overlapping densities can produce 

many false positives. By identifying only well localized features in 3-D, not 2-D, and 

including aggressive outlier elimination to identify only a set of self-consistent landmarks, 

this algorithm achieves a remarkable level of success. In testing it has been able to achieve 

accurate automated tilt-series alignments on virtually every tomogram. The only exceptions 

have been tomograms with severe data collection issues, such as ½ frame alignment shifts in 

the middle of the tilt-series, etc.

In most non-cellular tomograms it is convenient for slice-wise visualization and annotation 

if the X-Y plane is parallel to the ice surface. It is assumed that on average the landmarks 

will be coplanar with the ice, and thus this plane is rotated to become parallel to the X-Y 

plane, using principal component analysis of the landmark coordinates (Figure 2e).

Tomogram reconstruction is performed using direct Fourier inversion rather than real-space 

methods such as filtered back projection2 or SIRT12. Fourier methods have gradually 

become the standard in single particle reconstruction13. Although there have been a few 

descriptions of Fourier methods for tomography data processing14,15, most tomography 

software still uses real space methods due to the size of tomographic volumes, concerns 

about edge effects, and image anisotropy 9,16. We have adopted a Fourier reconstruction 

approach using overlapping cubic tiles, which significantly reduces edge effects and memory 

requirements, while still remaining computationally efficient. For convenience, the tile size 

is defined by the reconstruction thickness, such that each reconstructed tile is a cube. While 

the algorithm can perform reconstructions on non-cubic volumes correctly, interpolation 

anisotropy can cause artifacts which are avoided by using cubic volumes. The overlapping 
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tiles are individually reconstructed, then averaged using a radial Gaussian weight 

(Supplementary Figure 1).

Although the tilt series alignment is performed using the original full-sized images, the 

reconstructed tomograms are normally downsampled to provide sufficient resolution for 

visual inspection, annotation, and particle selection, while dramatically improving 

interactivity and decreasing system requirements. For subtomogram averaging, the 

downsampled particle locations are automatically rescaled, and the particle data is extracted 

from the tilt series at full sampling. The entire iterative alignment and reconstruction 

algorithm is quite fast, typically requiring only ~10 minutes (12-core workstation) for full-

resolution alignment of a 60 image 4k × 4k tilt series with a 2k × 2k × 512 reconstruction 

(Supplementary Table 1). Since this is comparable to the time required for tilt series 

acquisition, it would be straightforward to include automated tomogram reconstruction as 

part of the data collection process in real-time.

As a real-world example, we reconstructed a cellular tomogram of E. coli over-expressing 

Tolc-AcrAB (Figure 2a, Supplementary Video 1)17 with gold fiducials. The improved 

alignment after the iterative process can be observed by comparing the reconstructions of 

fiducials before and after the iterative process. Internal cellular features are also clearly 

visible in the reconstruction. In fiducialless reconstructions, the program usually chooses 

small pieces of ice contamination or other localized high-density 3-D objects as landmarks 

(Figure 2d). However, even for a fiducialless apoferritin data set (EMPIAR-10171)18, which 

contained few obvious features to use as landmarks, the program produced high quality 

reconstructions where individual proteins were clearly visible (Figure 2c, Supplementary 

Video 2).

Multiple methods for particle localization

Earlier versions of EMAN2 included a graphical program for manually selecting 3D 

particles using orthogonal slices19. This particle picking interface has now been reworked, 

enabling users to simultaneously select and visualize particles of multiple types and different 

sizes within each tomogram (Figure 3a,c). Each type is then extracted into a separate stack 

of 3D particles and accompanying 2D subtilt series, with the original location metadata 

retained for later per-particle processing.

In addition to the manual 3D picking interface, two semi-automatic tools are provided for 

annotation and selection. For purified macromolecules imaged by tomography, a template 

matching algorithm can be used to rapidly locate particles. For more complex tomograms, 

our convolutional-neural-network-based tomogram annotation tool can be used to identify 

features20, followed by a second stage which converts annotations into subtomogram 

coordinates. For globular particles like ribosomes, the program locates and centers isolated 

annotations. For continuous structures like microtubules and protein arrays on membranes, 

the program randomly samples coordinates within the set of annotated voxels, with a 

specified minimum distance between boxes. The parameters of these semi-automatic tasks 

can then be tuned by visualizing results in the manual particle picking tool.
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Per-particle-per-tilt CTF correction

Accurate CTF measurement and correction is critical for obtaining high-resolution structures 

through subtomogram averaging. The most commonly used method in tomographic CTF 

correction is the simple tiled CTF correction of rectangular strips within each tilt series21. 

This method is effective in getting past the first CTF zero-crossing when working with thin 

layers of purified macromolecules; however, when working with cellular data or other 

thicker specimens, the error in defocus due to the Z position of the particle within the ice 

becomes significant and requires more accurate correction on a per-particle per-tilt basis.

In our CTF estimation strategy, the entire tilt image is used to determine its central defocus, 

by splitting the image into tiles and summing the information from the entire image to 

estimate the defocus. Instead of fitting one defocus value for each strip, we calculate the 

relative defocus difference from the center of each tile to the center of image based on the 

geometry of the tilt, and search for one defocus value for the center of image that optimizes 

the fitting of theoretical CTF curves in all tiles. With this approach, the information in the 

full tilt image is used to estimate one scalar defocus value, and achieve more robust defocus 

estimation under low SNR conditions.

At high tilt, the SNR in an individual image is typically so low, and the thickness of each tile 

so large, that even using all information in the image is not sufficient to provide an 

unambiguous defocus estimation without a starting estimate. Thus, for the higher tilts, we 

limit the defocus search to three standard deviations around the mean defocus of the low tilt 

images. With this additional constraint, sufficiently accurate defocus values can still be 

determined at high tilt.

After CTF determination, fully sampled CTF corrected subtomograms are generated directly 

from the raw tilt series. Since we have the alignment parameters for each micrograph in the 

tilt series and the coordinates of particles in the tomogram, we can extract per-particle tilt 

series, which we henceforth refer to as a “set of subtilts”, from 2D micrographs. The center 

of each subtilt is determined by projecting the 3D coordinates of the particle using the 

transform of the micrograph calculated from tilt series alignment, so each subtilt series can 

be reconstructed to an unbinned 3D particle using the corresponding tilt image transforms. 

From these defocus values at the center of each tilt, the defocus of each tilt for each particle 

can be determined from the 3D location of the particle and the tilt-series geometry 

(Supplementary Figure 2). After subtilt images are extracted from the tilt series, we flip the 

phase of each subtilt according to its determined defocus before reconstructing the subtilt 

into CTF corrected 3D subtomograms.

Initial model generation via stochastic gradient descent

In many cellular tomography projects, the identities of extracted particles are unknown 

before subtomogram averaging. While it is possible to use catalogs of potential candidate 

structures and exhaustively compare particles to each of these for purposes of 

identification22, there are many shortcomings to this approach, including the need for a 

complete catalog, the problem of model bias, and the difficulty of handling complexes. An 

unbiased approach would be to classify particles de-novo and generate independent initial 
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models for each class from the raw particles. Our previous subtomogram averaging methods 

offered several different strategies for handling this issue19, as the failure rate was 

substantial, and user guidance was always required. We have found that similar problems 

plague other subtomogram averaging software. We have now developed a stochastic gradient 

descent (SGD) based initial model generation protocol23, which produces reliable initial 

models even from cell-derived particles.

SGD is an optimization technique widely used in training for machine learning, offering 

advantages in both speed and avoidance of local minima. We begin with an effectively 

randomized map, produced by averaging a random subset of particles in random 

orientations, lowpass filtered to 100 Å. In each iteration, a batch of randomly selected 

particles are aligned to the reference map, and a new map is generated. This new map is used 

to update the reference using an adjustable learning rate. To avoid overfitting, the reference 

is filtered to a user-specified resolution (usually 30–50 Å) after each update. The alignment, 

average and map update steps are repeated until the reference map converges to a consistent 

initial model. As only a low-resolution initial model is needed, it is not critical that all 

particles be used. The program can typically produce good initial models within 1 hour on a 

typical workstation (Supplementary Table 1).

This method has performed well in testing on more than 20 structures with very distinct 

shapes from a variety of sources. This includes globular structures like ribosomes, linear 

structures such as microtubules, and even double-membrane spanning proteins (Figure 3b,d). 

While it is impossible to guarantee that any algorithm will be universally successful, we 

have found this method to work in the vast majority of cases.

Subtomogram alignment and averaging

There are two stages in producing a final high-resolution subtomogram average: traditional 

subtomogram alignment and averaging5,19 and per-particle-per-tilt refinement (Figure 1c). 

The initial stage makes use of our existing subtomogram alignment and averaging 

algorithms which automatically detect and compensate for the missing wedge6. The 

alignment algorithm employs an extremely efficient hierarchical method, which scales well 

with particle dimensions. The overall refinement process follows “gold-standard” procedures 

similar to single particle analysis24, in which even and odd numbered particles are processed 

completely independently with unique, phase-randomized starting models, with a Fourier 

shell correlation (FSC) used to filter the even and odd maps, assess resolution, and measure 

iteration-to-iteration convergence.

In the second stage, rather than working with subtomograms, we work instead with subtilt 

series. When full frame tilt series are aligned, we assume that each tilt is a projection of a 

single rigid body volume. With beam-induced motion, charging and radiation damage affects 

the assumption that the specimen remains globally rigid across a 1-μm span with the largest 

acceptable motion <10 Å is an extremely stringent requirement. Local deviations are 

common and can produce significant misalignments of individual objects in individual tilts. 

To compensate for this resolution-limiting effect, we have developed a strategy for 

refinement on a per-particle-per-tilt basis, where the alignment and quality assessment of 

each tilt of each particle are individually refined. Effectively this is a hybridization of 
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subtomogram averaging approaches with traditional single particle analysis. Some of these 

techniques are similar to those recently implemented in EMClarity8.

Our subtilt refinement procedure starts from an existing 3D subtomogram refinement, 

preferably with a resolution of 25 Å or better. Subtilt series for each particle were already 

extracted as part of the CTF correction process above. The iterative refinement process is a 

straightforward orientation optimization for each tilt image of each particle. All 5 orientation 

parameters are refined independently per-particle-per-tilt. It is quite common for some 

images in a tilt series to be bad, either due to excessive motion or charging. To compensate 

for this, the quality of each tilt for each particle is assessed, and weighted correspondingly, 

with the very worst excluded entirely. All of the realigned particles are used to compute a 

new weighted average 3D map, which is then used for the next iteration of the refinement.

The subtilt refinement protocol significantly improves map quality and resolution for 

purified samples in thin ice, where relatively little density is present above and below each 

particle. In the EMPIAR-10064 dataset (purified ribosomes)11, without subtilt refinement, 

subtomogram averaging achieved 13 Å “gold-standard” resolution (FSC>0.143) using 3000 

particles from 4 tomograms. With subtilt refinement, the resolution improved dramatically, 

to 8.5 Å (Figure 4a–d, Supplementary Video 3). In the averaged map, the pitch of RNA 

helices is clearly visible and long alpha-helices are separated. Similarly, in the case of 

EMPIAR-100457, our standard subtomogram averaging algorithm resolved the 80S 

ribosome structure to 16Å, and subtilt refinement extended this to 9.3Å. A more detailed 

comparison between our results and those from other software packages is included in 

online Methods.

We did not initially expect subtilt refinement to work well in a cellular context, due to the 

presence of so much confounding cellular mass present in each subtilt image. Surprisingly, 

we found that an in situ dataset of the double-membrane spanning TolC-AcrAB complex in 

E. coli, reached 19Å in initial averaging, which improved to 14 Å resolution after subtilt 

alignment17,25 (Figure 4e, Supplementary Video 4). We do not yet have sufficient test cases 

to set expectations for how well subtilt refinement will work in any given cellular system, 

but based on our preliminary studies, it may provide a significant improvement in a wide 

range of experimental situations.

Discussion

The entire protocol outlined above has been integrated into the graphical workflow in 

EMAN2.3 (e2projectmanager.py). This presents the process as a sequence of steps (Figure 

1), and an online tutorial can be found at http://eman2.org/Tutorials. Graphical tools are also 

provided for evaluating tomogram reconstructions and subtomogram refinements, which are 

useful for managing projects involving a large amount of data. Unlike single particle 

analysis where it is possible to transition data from other tools into EMAN2 at virtually any 

stage of processing, the stringent requirements for all of the metadata generated at each stage 

of processing make it challenging to, for example, import a reconstructed tomogram from 

other software, then proceed. While some tools will be usable on imported data, such as the 

Deep Learning based annotation20 and simple subtomogram alignment and averaging, the 
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new approaches, such as subtilt refinement, are simply not possible unless the complete 

EMAN2 pipeline is followed.

With per particle CTF correction and subtilt refinement, it is now relatively straightforward 

to achieve ~10Å resolution using 1000 – 2000 particles from a few good tilt series. This 

method can also be used with phase-plate data, though the difficulty of collecting Volta 

phase plate tilt series and determining per-tilt CTF parameters with continuously varying 

phase shift is significant. While we do optimize both the defocus and phase shift, 

particularly at high tilt, there is insufficient information available for simultaneous 

determination of both parameters. Our suggested approach is to target 0.5 – 1 μm underfocus 

with such tilt series, to put the first zero in a range where correcting beyond the second zero 

is not necessary to achieve slightly better than 10Å resolution. In this way, locating the first 

zero accurately is sufficient for subnanometer resolution.

One difficulty in subtomogram averaging in situ is masking and filtration of the averaged 

map after each iteration of refinement. In the cellular environment, proteins of interest are 

often surrounded by other strong densities and masking can have a strong impact on the final 

achieved resolution. To address this issue, we introduce the option of masking the averaged 

map with a large soft mask and filter it using the local resolution determined from even and 

odd sub-maps. This allows us to keep high-resolution information of the protein of interest 

for the next round of refinement and reduces misalignment caused by other densities 

surrounding the protein.

The algorithmic improvements we have discussed make it possible to perform data-driven 

cellular-structural biology research with CryoET. Researchers can take tomograms of cells 

or purified organelles, manually select a few features of unknown identity, and automatically 

annotate similar features in the whole dataset. Reliable, de novo initial models of the 

features of interest can be generated from raw particles without prior knowledge of the 

proteins. With per particle CTF correction and subtilt refinement, averaged maps at 10–15 Å 

resolutions can be achieved in a matter of days (Supplementary Table 1) with a few thousand 

subtomogram particles, so one can make reasonable hypotheses of the identity and 

composition of the proteins based solely on their structural features, and validate these 

hypotheses with biochemical experiments. Furthermore, the position and orientation of each 

protein particle can be mapped back to the tomogram to study the organization of proteins in 

cells (Figure 4f).

Online Methods

Tomogram reconstruction

To seed the iterative tilt-series alignment, a coarse alignment is first performed. First, the 

unaligned tilt series is downsampled to 512 × 512 pixels, subject to a real-space ramp filter, 

Fourier bandpass filter, and normalized to mean value of zero and standard deviation of one. 

A coarse alignment is then performed under a circular mask with soft Gaussian falloff. The 

alignment begins with the center tilt image (typically near untitled) and propagates 

sequentially in both directions. After the coarse translational alignment, the approximate tilt 

axis is identified by computing a coherent sum of the tilt series in Fourier space. The tilts 
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will approximately share one Fourier common-line without any rotational alignment. This 

can be readily identified by simply performing a coherent sum after translational alignment 

and looking for the axis with maximum intensity (Supplementary Figure 3). Only angles 0–

180 degrees are permitted in this process to ensure no handedness flips occur between 

different tomograms within the same set. Although the handedness is thus consistent 

throughout the dataset, it is not necessarily correct, due to the 180-degree ambiguity in the 

tilt axis direction. If the correct orientation of the tilt axis in the images has already been 

determined for the microscope, it can be specified as a fixed parameter instead of performing 

a search.

Finally, the tilt series is reconstructed to produce the preliminary tomogram using EMAN2’s 

normal direct Fourier inversion reconstruction algorithm1. The 512 × 512 box size is small 

enough that direct Fourier inversion can be used for this purpose without tiling. Since higher 

tilt images include information outside the frame of the zero tilt image, a soft mask is 

applied at the edges of each image parallel to the tilt axis as appropriate for each tilt just 

before reconstruction. The exact amount of required masking depends on the thickness of 

the specimen to achieve optimal results, but this can be ignored for purposes of tilt series 

alignment.

After the initial tomogram reconstruction, an iterative alignment-reconstruction process is 

performed beginning with 512 × 512 images gradually reducing downsampling until the 

fully sampled images are being used (typically 4k × 4k). Each iteration begins with 

landmark selection in the tomogram from the previous iteration, followed by multiple rounds 

of landmark location refinement and tilt parameter refinement as described above, and ends 

with the final downsampled tomogram reconstruction along with the optimized alignment 

parameters. By default, we perform 2 iterations at 512 × 512, and 1 iteration at 1024 × 1024, 

2048 × 2048 and 4096 × 4096. When the input tilt series is larger than 4096 × 4096, such as 

DE-64 or K2 super-resolution images, we only perform alignments from 512×512 to 4096 × 

4096. It is worth noting that in all iterations, reconstruction of the full tomogram is always 

done using the pre-filtered 512 × 512 tilt series. These tomograms are used only for 

selection of landmarks, whose locations are later refined in subtomograms using the 

appropriate downsampling.

To select landmarks, the 512 × 512 × 256 tomogram is further binned by 4 by taking the 

minimal value of each 4 × 4 × 4 cube and the result is highpass filtered to remove the impact 

of ice gradient in the tomogram. In this stage of processing, it is important to note that 

higher densities have lower values in raw tomograms, which is opposite from the normal 

EMAN2 convention. Voxel values in the tomogram are sorted and the program picks voxels 

separated by a minimal distance as landmarks. By default, 20 landmarks are selected with a 

minimum spacing between landmarks of 1/8 of the longest axis of the tomogram.

Multiple rounds of landmark location refinement and tilt parameter refinement are 

performed after landmark selection. In each round, we refine the 3D location of landmarks 

and one of the alignment parameters, including translation, tilt axis rotation, tilt angle and 

off-axis tilt. Because uncertainties vary for the determination of each parameter, we begin 
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with refinements of tilt image translation and global tilt axis rotation, then refine on and off-

axis tilt angles.

In landmark location refinement, we first extract subtilt series of the landmarks from the tilt 

series and reconstruct the landmarks at the current level of binning. By default, we use box 

size of 32 for bin-by-8 and bin-by-4 tilt series, 1.5x box size for bin-by-2 and 2x box size for 

unbinned iterations. We locate the center of landmarks by the coordinate of the voxel with 

minimal value for bin-by-8 and bin-by-4 iterations and by the center of mass for bin-by-2 

and unbinned iterations. This use of center-of-mass rather than aligning features within each 

landmark region might seem that it could reduce alignment accuracy. However, a common 

problem with tomographic alignments is that it is possible to have self-consistent alignments 

with an incorrect translation orthogonal to the tilt axis, producing distorted features in 

reconstructions when viewed along the tilt axis. Using of center-of-mass for alignment 

seems to largely avoid this problem, particularly when combined with exclusion of 

landmarks which are outliers in the alignment process.

To refine the alignment parameters, we first project landmark coordinates to each tilt using 

currently determined alignment, and extract 2D particles of the same box size at current 

binning. The center of each 2D particle is determined in the same way that 3D landmarks are 

centered, and the distance from the center of the 2D particle to the projection of 3D 

coordinates is computed. For each tilt, a local minimization routine (Powell optimizer from 

Scipy2,3) is used to refine alignment parameters and minimize the averaged distance from all 

landmarks. By default, 10% of landmarks with the highest average alignment distance in 

each tilt are ignored during the optimization. The averaged error per tilt is also used in the 

following round of landmark location refinement and tomogram reconstruction where 10% 

of tilt images with highest error are excluded.

After all the refinement iterations are finished, the final tomogram is reconstructed. When 

reconstructing the tomogram by tiling, we use a tile length of 1/4 the tomogram length and 

pad the 3D cube by an extra 40% during reconstruction. The step size between the tiles is 

1/8 tomogram length, and overlapping tiles are shifted by half tile in x and y. 2-D tiles are 

subjected to an edge decay mask along the x-axis similar to the mask used in the full 

tomogram reconstruction. After reconstruction of each tile, a mask with Gaussian falloff is 

applied to subvolumes before they are inserted into the final reconstruction. The mask is 

described by

f = 1 + e
−10 x2 + y2

− e
−10 x − 0.5 2 + y − 0.5 2

,

where x, y are the coordinate of the voxel from the center of tile, ranging from −1 to 1. This 

specific shape of mask is used so the summed weight in each voxel in the tomogram is 1, 

and the soft Gaussian falloff reduces the edge artifacts from the reconstruction of each tile. 

A Gaussian intepolation on a 2×2×2 voxel grid is used for tomogram reconstruction. After 

reconstruction, the tiles are clipped and added to the final volume to produce the final 

tomogram. This entire process requires on the order of 10 minutes per tomogram 

(Supplementary Table 1).
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CTF correction

To determine the defocus for an image in a tilt series, overlapping 256×256 tiles are sampled 

on the raw micrograph and power spectrum of each tile is computed. Power spectrum curves 

from tiles with the same distance to the tilt axis are coherently averaged to increase the SNR. 

Using a global search, we find the defocus value d that maximizes ∑iSi(pi,d + xi sin(θ)), 

where xi is the x position of the ith tile (y is the tilt axis), θ is the tilt angle, and Si(p,Δz) is 

the score function represented by the normalized dot product between a theoretical CTF 

curve with defocus Δz and the coherent, background subtracted power spectrum, p, of the ith 

strip of tiles parallel to the tilt axis.

Basic operations, including generation of theoritical CTF curves, computing power spetrum 

from image tiles and background substraction are implemented using the same strategy as in 

the single particle analysis protocol from the EMAN2 package.

Initial model generation for subtomogram averaging

Comparing to the classical gradient descent algorithm that calculates the gradient using the 

full dataset at every iteration, SGD breaks the training set into random small batches, 

calculates the gradient from each batch and update the model incrementally. The fluctuation 

introduced from the small batches makes it easier to get pass local minimums and achieves 

better convergence for high dimensional, non-linear functions.

In the SGD based initial model generation process, we use a very small batch size (12 

particles per batch by default) and a learning rate of 0.1 to introduce enough fluctuations 

into the system. The list of input particles is shuffled before grouping into batches. Particles 

may be optionally downsampled and lowpass filtered before alignment. Particles in the first 

batch are averaged in random orientations to produce a map which is then filtered to 100Å 

and used as the initial alignment reference, which will have roughly the correct radial 

density profile, but meaningless azimuthal information. In each subsequent batch, particles 

are aligned to the reference and an average is generated. Any empty region remaining in 

Fourier space is filled with information from corresponding Fourier regions in the current 

reference. We calculate the per voxel difference between the current reference and the new 

averaged map and update the reference toward the average by the learning rate. The program 

goes through only 10 batches in each iteration by default, and does not necessarily use all 

the given particles before converging to a good initial model.

When symmetry is specified, the map needs to be aligned to the symmetry axis before 

symmetry can be imposed. Because of the way that the initial reference is generated, at the 

beginning of the initial model generation process, the reference is often radially symmetric. 

Applying the symmtry too early in the process will trap the refinement in a local minimum 

and make it more difficult to get to the correct structure. So the program always starts the 

initial model generation with C1 symmetry even when a higher symmetry is specified. After 

the first 20 batches, the program searches for the symmetry axis of the reference and alignes 

the reference to that axis. The symmetry search is performed in a similar way as a 3D 

alignment, except at each orientation tested, instead of computing the similarity between the 

rotated map and a reference, the similarity between the rotated map and its symmetrized 
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version is used as the objective function for the alignment. The symmetrized map is used as 

the reference for later batches and the orientation of symmetry axis is refined after every 10 

batches.

Subtilt refinement

The first step of subtilt refinement is to compute the orientation of each subtilt using the 

orientation of the subtomogram and the alignment of tilt images in the tomogram. The 

refinement starts from 32 randomly distributed orientations centered around the previous 

orientation. One of the initial positions is always the previously determined orientation so 

the worst-case answer is no change. From these positions, an iterative search is performed 

starting from Fourier box size 64 to full box size, similar to the subtomogram refinement. 

During the refinement, the reference map is projected using Fourier space slicing with 

Gaussian interpolation. The comparison between the projection and the 2D particle is scored 

with CTF weighted Fourier ring correlation adapted from the single particle analysis 

protocol in EMAN21.

We refine even/odd particle sets independently in the subtilt refinement. By default, the 

program uses all tilt images and removes the 50% of particle images with the worst score. 

Generlally the low-scoring images correlate with tilt angle, such that higher tilts are most 

often excluded. There is also an option provided to explicitly exclude high angle tilt images. 

We also remove subtilt particles with scores beyond 2-sigma around the mean, because 

practically, particles with very high alignment scores often contain high contrast objects 

such as gold fiducials, and low score particles are often at the edge of the micrograph and 

has little signal. Before inserting the images to the 3D Fourier volume, we normalize their 

scores to (0,1) and weight the particles by their scores when reconstructing the 3D average. 

The 3D volume is padded by 2 to avoid edge artifacts, and reconstruction is performed with 

Gaussian interpolation with variable width with respect of Fourier radii. The averaged map 

is filtered by the “gold-standard” FSC.

Processing example data sets

We processed the 4 “mixedCTEM” tilt series from the EMPIAR-10064 purified ribosome 

dataset. The tomograms were reconstructed from the tilt series automatically, using default 

parameters. Defocus values were calculated using default options and the resulting defocus 

values range from 2.4 to 3.7 μm. CTF-corrected subtomograms were generated with a box 

size of 180. An initial model was produced using all particles as input, with 3x 

downsampling and a target resolution of 50Å. 3239 particles were selected via template 

matching using the initial model as a template, followed by manual bad-particle removal. 

Next, 4 rounds of subtomogram refinement and 3 rounds of subtilt refinement were 

performed to arrive at the final map, which was sharpened using a 1-D structure factor 

calculated from EMD-5592, masked via EMAN2 auto-masking, and filtered by the local 

gold-standard FSC.

Tomograms of the AcrAB-TolC pump in E. coli cells were collected on a JEOL3200 

equipped with a Gatan K2 camera. Tomogram reconstruction and CTF determination were 

performed in EMAN2 using default parameters. The unbinned particle data had an Å/pix of 
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3.365, and a box size of 140 was used during particle extraction. Channel-shaped densities 

crossing both inner and outer memebranes that are not present in the control cells are 

identified as particles of AcrAB-TolC pumps. 25 high SNR particles were used for initial 

model generation. For structures with symmetry, applying the symmetry before the initial 

model generation converges tends to trap the SGD in a local minimum and not achieve the 

optimal result. So here a two-step approach was used to build the initial model. First 5 

iterations of our SGD routine were performed imposing C1 symmetry. After aligning the 

result to the symmetry axis, we performed 5 more iterations with C3 symmetry. 

Subtomogram averaging was then performed using 1321 particles from 9 tomograms while 

applying c3 symmetry. To focus on the protein while preserving information from the 

membrane for improved alignment, a mask with values ranging from 0.5–1 around the pump 

and 0–0.5 covering a larger cylinder was applied to the map each iteration before alignment. 

The final map was filtered by local FSC and sharpened using a 1-D structure factor obtained 

from a high-resolution single-particle structure of the purified AcrAB-TolC complex.

Comparison with other software packages

Although it is difficult to find a good metric to compare the accuracy of an individual tilt 

series alignment from different software packages, when processing datasets of hundreds of 

tilt series using automated protocols, it is easy to spot “failed” cases of alignment from the 

successful cases visually. Very often there are some artifacts present in those “failed” cases 

(large area of ice contaimination, significant drift between tilt images, etc.), making the 

automated alignment protocol unable to align the tilt series at all. In many of those datasets, 

with some manual tracking, it is still possible to align the tilt series properly and retrieve 

meaningful information from the reconstructed tomograms. In our automated pipeline, our 

goal was to minimize the occurance of those problems in the tilt series alignment. To 

compare our automated approach with existing tilt series alignment pipelines, we obtained a 

sampling of ‘failed’ tilt series from three different research groups, and found that our new 

algorithm successfully aligned all of these tilt series, with the exception of a small handful 

with egregious data collection problems (useful tomograms cannot be reconstructed with 

even manual alignment). One example comes from the ETDB-Caltech database4, which 

contains more than 11,000 publicly available tilt series. For the tilt series which were aligned 

successfully with IMOD, our alignment algorithm produces similar results. We also tested 

an assortment of tilt series where IMOD had failed to produce good results, and our 

algorithm also succeeded on these (Supplementary Figure 4).

Since they do not share a common set of markers, we have found no good way to make 

quantitative comparisons of alignment quality between different algorithms beyond global 

success/failure. While having an alignment quality metric would be desirable, it is a 

somewhat academic exercise, as in the end, the global alignment only needs to be good 

enough to permit 3-D localization of particles. The final alignments are redetermined on a 

per-particle basis as part of subtilt refinement, so even if present, slight inaccuracies in the 

initial alignments would not limit final resolutions.

To assess the quality of tilted Fourier reconstruction method, we compare the reconstruction 

results with other common techniques, including back projection (BP), SIRT and direct 
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Fourier transform without tiling. Here the alignment and reconstruction using BP and SIRT 

are performed with IMOD, while Fourier reconstruction with and without tiling are done in 

EMAN2. While the differences between different reconstruction methods are generally 

subtle, some visible differences can be observed at the edges of tomogram, both in real and 

Fourier space. In Fourier space, real space reconstruction methods like BP and SIRT create 

reflection artifacts at the edge of the Fourier tomogram, unless the tilt images are lowpass 

filtered before reconstruction. In real space, the reconstruction quality tends to decrease at 

the boundary of the tomogram or near high contrast objects. To better visualize the 

differences, we zoom in a small region containing cellular ribosome at the edge of 

tomogram next to a piece of carbon edge to compare the results (Supplementary Figure 5). 

Visually, the tiled Fourier method produces better features than the Fourier method without 

tiling and BP, similar to the result from SIRT. It also does not have the low resolution 

artifacts along the x axis that appear in the SIRT reconstruction.

To evaluate our subtomogram averaging results, we compare the structure we obtained with 

the EMPIAR datasets with published structures using other software on the same datasets. In 

both EMPIAR 10064 and 10045 datasets, we achieved structures with higher measured 

resolution and better real space features (Supplementary Figure 6, 7) than the original 

publication that produced the datasets. For EMPIAR-10064, the resolution reported in 

original publication5 is 11.2 Å using PyTOM, and EMAN2 achieved 8.5Å; in 

EMPIAR-10045, the resolution reported by Relion6 is 13 Å and the measured resolution of 

the EMAN2 structure is 9.3 Å. A more recent software package, EMClarity7 also uses the 

two EMPIAR dataset as benchmarks, and reported 8.6 Å resolution for EMPIAR-10064 and 

7.8 Å for EMPIAR-10045. Since the EMClarity result for EMPIAR-10064 is not publicly 

available, we can only make comparison with the EMPIAR-10045 dataset (Supplementary 

Figure 7). Although the front view of EMClarity structure on EMPIAR-10045 shows high-

resolution features, significant anisotropic artifacts are visible from other orientations, 

showing the real space features to be clearly worse than the EMAN2 result. Accroding to the 

EMClarity authors, unpublished software improvements have largely resolved this 

anisotropy, but we have been unable to reproduce these results ourselves using EMClarity. 

As all of these software packages undergo continuous changes and improvements, any 

comparison among them has limited use beyond a narrow window of time.

It is also worth noting that in both cases, unlike in other software packages, tomogram 

reconstruction and most other processes in EMAN2 are performed automatically. That is, 

high resolution subtomogram averaging results can be achieved in EMAN2 with little 

manual effort in the entire process.

Finally, we compare the EMAN2 tomography pipeline with the currently commonly used 

IMOD/PEET pipeline using the EMPIAR-10064 dataset. We performed this test ourselves, 

and since the process has many manual steps, it is possible our results are typical but not 

optimal. The tilt series were aligned using automated fiducial tracking, and CTF corrected 

using the strip-wise CTF correction from IMOD. Tomograms were reconstructed using back 

projection, and ribosome particles were selected using template matching in EMAN2. The 

subtomogram refinement started from the same initial model used in and generated by 

EMAN2, using particles from bin4 tomograms. Three rounds of alignment search were 
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performed on the bin4 tomograms using PEET: a full rotational search with 30 degrees step 

size, followed by two rounds of local search with range of 30 and 10 degrees and step size 

10 and 3 degrees. We then switched to the bin2 tomograms for two more rounds of refined 

rotation search with search range 3 and 1 degrees, starting from orientation determined from 

the bin4 tomograms. Finally, we perform two rounds of rotation search with searh range 3 

and 1 degrees and step size 1 and 0.5 degrees on the unbinned tomogram. In the end, we are 

able to obtain a subtomogram average with ~13 Å resolution, close to the original result 

from pyTOM, again as compared to 8.5 Å resolution with clearly improved features in 

EMAN2. This comparison suggests that the EMAN2 pipeline can achieve better result from 

the same data and also requires much less human effort.

Visualization

Rendering of 2D images are performed in EMAN2, and rendering of 3D density maps is 

performed with UCSF Chimera and ChimeraX8,9.

Data availability

The subtomogram averages are depositted in the EMDatabank: EMD-0529 and EMD-0530.

Code availability

EMAN2.3 is a free and open source software available from http://eman2.org with source 

code on GitHub (https://github.com/cryoem/eman2).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Diagram of CryoET data processing workflow.
(a) Main workflow diagram. (b) Workflow of tomogram reconstruction. (c) Workflow of 

subtomogram refinement and subtilt refinement.
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Figure 2. Results of iterative tomogram alignment and reconstruction.
(a) Cellular tomogram of an E. coli bacterium with gold fiducials. (b) Selected landmark 

projections from (a) (left) x-y plane; (mid) x-z plane after the first iteration of the iterative 

alignment; (right) x-z plane after iterative alignment. (c) Tomogram of purified apoferritin 

without fiducials (EMPIAR-10171). (d) Selected landmark projections from (c). (e) 

Automatic specimen plane positioning. Left: (top) x-y slice (bottom) x-z slice, both before 

specimen plane positioning; right: the specimen becomes flat in the tomogram after 

automated positioning.
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Figure 3. Particle extraction and initial model generation.
(a) Slice view of a E. coli tomogram with particles of Tolc-AcrAB pump selected. (b) Initial 

model generation from Tolc-AcrAB pump particles. From the left to right are density maps 

of the initial seed, after 5 iterations with c1 symmetry, and after 5 iterations with c3 

symmetry. (c) A tomogram slice view of the flagellum of an anucleated Trypanosoma brucei 
cell, with cyan circles selecting microtubule doublets, and pink circle selecting ribosomes. 

(d) Initial model generated from microtubule (left) doubles and ribosomes (right).
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Figure 4. Subtomogram refinement.
(a) Subtomogram averaging of ribosome (EMPIAR-10064) before subtilt refinement. (b) 

Subtomogram averaging after subtilt refinement. (c) Zoomed-in view of (b) with yellow 

arrows pointing to RNA helices and cyan arrows pointing to resolved alpha-helices. (d) 

Gold-standard FSC curves of the ribosome subtomogram averaging before (red) and after 

(blue) subtilt refinement. (e) Subtomogram averaging of the tolc-acrAB drug pump. (f) 

Location and orientation of the drug pump particles mapped back to a tomogram.
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