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Membrane proteins, found at the junctions between the outside world and the inner
workings of the cell, play important roles in human disease and are used as biosensors.
More than half of all therapeutics directly affect membrane protein function while nano-
pores enable DNA sequencing. The structural and functional characterisation of mem-
brane proteins is therefore crucial. However, low levels of naturally abundant protein and
the hydrophobic nature of membrane proteins makes production difficult. To maximise
success, high-throughput strategies were developed that rely upon simple screens to
identify successful constructs and rapidly exclude those unlikely to work. Parameters that
affect production such as expression host, membrane protein origin, expression vector,
fusion-tags, encapsulation reagent and solvent composition are screened in parallel. In
this way, constructs with divergent requirements can be produced for a variety of struc-
tural applications. As structural techniques advance, sample requirements will change.
Single-particle cryo-electron microscopy requires less protein than crystallography and
as cryo-electron tomography and time-resolved serial crystallography are developed new
sample production requirements will evolve. Here we discuss different methods used for
the high-throughput production of membrane proteins for structural biology.

Introduction
Constructing a clone that yields sufficient functional protein is the rate-limiting step affecting mem-
brane protein (MP) production necessitating high-throughput (HTP) approaches (Figure 1). Different
homologues, truncates and functional mutants should be screened to ensure success. MPs are expressed
in prokaryotic and eukaryotic hosts as well as cell-free systems [1–3]. Production yields vary depending
on expression system, target protein and production scale but typically between 50 mg and 2 mg of
purified protein can be obtained from one litre of cell culture. To place this in the context of structural
biology, ∼100–250 mg of protein is required per crystallisation plate whereas 10–20 mg are required for
each cryo-electron microscopy (cryo-EM) grid. Many expression systems have been adapted for HTP
including full automation [4–6]. The rapid identification of successful constructs and exclusion of those
likely to fail is key to an effective approach. HTP MP production has developed significantly over the
last two decades and driven the deposition of over 4500 MP structures in the Protein Databank. While
HTP methods have addressed some rate-limiting production issues, the process is still largely empirical.

Manipulating genes for membrane protein expression
Template DNA is the primary prerequisite to generate different expression constructs. Now that the
cost of a single base-pair is as little as $0.07 de novo DNA synthesis is increasingly used to obtain tem-
plate DNA. HTP cloning is the only viable way to efficiently generate construct diversity. Although
restriction cloning has been adapted for HTP [9], recombination and ligation independent (LIC)
approaches are much more reliable. Gateway cloning [10], an example of recombination, enables par-
allel construction from multiple fragments but causes vector derived amino acid additions. LIC
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Figure 1. An illustrative overview of the HTP production of membrane proteins. Part 1 of 2

(Step 1) Bioinformatics servers and databases such as PSIpred [7] and Uniprot [8] are used to aid construct design,

highlighting secondary structural features, domain boundaries critical residues, PTMs and mutant and target isoforms.

six–24 constructs are designed for each MP target. Constructs include truncations, (of mainly disordered regions and domain

boundaries), functional and disease mutations, and a variety of fusion-tags. (Step 2) HTP-cloning enables a diverse library of
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approaches, such as In-Fusion [11] or Gibson assembly [12], utilise large single-strand overhangs in the vector
and PCR insert for targeted insertion. The In-Fusion system is our preferred method, enabling one-step,
insert-independent, cloning into most expression vectors without process derived amino acid additions. Choice
of expression vector is also important [1, 2]. We favour the pOPIN system [13] which supports screening in
multiple expression hosts and a wide range of fusion tags (Table 2).

Choosing an expression system
Many expression systems successfully produce MPs (Table 1). The most suitable host is usually selected after
iterative screening guided by MP target origin. We prefer to express prokaryotic MPs in Escherichia coli (E.
coli) which can be quickly grown in HTP using inexpensive media, in small or large volumes and at high cell
density [14]. The bacteriophage T7 promotor, often used for MP expression, can lead to overloading of the bac-
terial quality control system and accumulation of MPs in inclusion bodies [15, 16]. Mitigation efforts drove the
development of alternative bacterial expression hosts [15, 17, 18] and several E. coli strains temper the effects of
the T7 promoter [19, 20]. Other strains improve the expression levels of specific MPs [21] but MP functionality
depends upon the strain [22]. Typically, we screen 4–6 E. coli strains to establish the best production
conditions.
Eukaryotic MPs are expressed in prokaryotic and eukaryotic hosts [2]. We generally avoid prokaryotic hosts

as they lack essential lipids and machinery for post-translational modifications (PTMs). Other microbial expres-
sion systems including Saccharomyces cerevisiae [25] and Pichia pastoris [26] have been employed when bacter-
ial systems fail. Yeast are cheaper, easier to genetically manipulate and grow than other eukaryotic hosts, are
capable of some essential PTMs [2], but lack essential lipids, impairing human MP production [33]. Insect cells
present an alternative to yeast [27, 28] but use baculoviral vectors for construct delivery which is time consum-
ing [28]. We find that the ExpiSf system [34] improves production efficiency by maintaining higher cell dens-
ities. However, insect cells have a less well-regulated quality control system that results in accumulation of
unfolded, inactive protein compared with mammalian cell lines [35]. Transient transfection, baculovirus trans-
duction or stable transfection facilitate MP expression in mammalian hosts [5, 30, 36]. During initial screening,
we use transient transfection, which utilises chemical agents to introduce non-integrating plasmid DNA into
cells. Coupled with reporter proteins, such as green fluorescent protein (GFP), expression parameters can be
screened rapidly [29]. For large-scale production, baculoviral and stable cell systems are more cost effective.
Traditionally stable cell lines were unsuitable for HTP expression as the generation of monoclonal cell lines
took up to six months. Recently [31, 36], a lentivirus was adapted to enable inducible MP expression in poly-
clonal stable cell lines, achieving a transfection efficiency approaching 100%. Polyclonal stable cell lines are

Figure 1. An illustrative overview of the HTP production of membrane proteins. Part 2 of 2

clones to be established in a few days. (Step 3) HTP expression enables the parallel production of all cloned constructs in a

few days to 2 weeks depending on expression system. (Step 4) HTP purification using 96-well blocks and filter plates to purify

96 different conditions (constructs, encapsulation reagents, solvent conditions or additives) in under 12 h. (Step 5) HTP

characterisation using (A) SDS–PAGE to assess protein purity, yield and susceptibility to proteases. Protein bands can be

excised and analysed using mass spectrometry to identify the target protein or contaminants. Here 24 constructs are shown.

Strong protein bands are observed for A2, E2 and H3 among others. Protein bands must usually be observable after

Coomassie staining as well as GFP fluorescence. For example, although A3 can be detected by GFP florescence, the expected

yield would be too low to make this construct tractable. Some degradation is observed for multiple constructs (not uncommon

when using a GFP fusion). Note the high sensitivity of GFP. (B) F-SEC enables an assessment of monodispersity and

provisional oligomeric state. Well-behaved MPs tend to have a clear monodisperse profile but this is not an indication of

long-term stability. Seven constructs are labelled here and correspond to bands on the SDS–PAGE gel. GFP is not essential

for this analysis. We also use tryptophan fluorescence for MPs lacking GFP tags, especially when GFP removal is destabilising.

In these cases twin-strep tags are used to ensure the higher purity required to interpret the F-SEC profiles (C) Nano-DSF

enables the temperature at which half of a protein sample is folded to be determined and is a good estimate of long-term

stability. Ideally, a Tm½ would be more than 40°C. Not all MPs are shown here as low-yielding constructs will not be detected

by nano-DSF. A2 and E3 are the most encouraging constructs with good SEC profiles and Tm½ values. Although H3 has a

good SEC-profile its thermostability is lower (∼30°C) suggesting that the purification conditions require optimisation.
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generated on a similar timeframe to baculoviral methods. Along with other rapid stable approaches [5, 37] the
lentivirus system presents an exciting opportunity for the future HTP MP production.

Establishing a purification method
HTP purification methods tend to be restricted to small-scale screens that are used to identify the most suitable
purification conditions prior to scale-up. Purifying a MP is in essence no different from any other protein.
Common purification tags, proteases for tag removal and affinity resins are used for membrane and soluble
proteins. Extraction of the MP from the host membrane is the exception, with detergents commonly used for
this purpose. Selecting the most suitable detergent is not always compatible with the ideal encapsulation
reagent required for biological analysis, necessitating exchange. Detergents with high critical micelle

Table 1. Expression systems used to produce membrane proteins, including benefits and drawbacks

Expression system Benefits Drawbacks Comments

Escherichia coli
(manual induction)

Cheap, well-established technology,
minimal equipment needed, effective
for many bacterial targets.

Ineffective for most eukaryotic MPs. Common strains include BL21(DE3),
C41(DE3) & C43(DE3) [23], C44(DE3)
& C45(DE3) [20] Lemo21(DE3) [19],
BL21(DE3) containing either Rosetta2
or Origami.

Escherichia coli
(auto-induction)

As manual induction except avoids
need to monitor OD to add inducer.

Induction occurring after exponential
phase can impair expression of some
proteins.

Common strains used include many of
those listed above. Autoinduction
methods described by Studier [24].

Bacillus subtilis Effective for secretion of
(non-membrane) proteins into
growth medium. Gram positive.

Less well-established than E. coli. One of the original paper describing
the use of B. subtilis [17].

Lactococcus lactis Improved folding of eukaryotic
membrane proteins over E. coli

Less well-established than E. coli. Methods for protein production
recently described [15, 18].

Saccharomyces
cerevisiae

Improved expression of eukaryotic
MPs.

Expression levels lower than Pichia. Method that increases MP yield in
S. cerevisiae [25].

Pichia pastoris Improved folding and PTM of
eukaryotic MPs; higher expression
levels than S. cerevisiae.

Bottleneck due to need to screen many
clones. Less suitable for HTP.

Use of P. pastoris for MP
production [26].

Insect (Spodoptera
frugiperda &
Trichoplusia ni)

Improved folding and PTM of
mammalian MPs over yeast, yield
higher than mammalian cells.

Several weeks needed to generate
baculovirus, more expensive than
microbial systems. Cell culture lab and
expertise needed.

Sf9, Sf21, Hi5, ExpiSf cell lines have
been used to express MPs [27, 28].

Mammalian —

transient
Ideal for correct folding and PTM of
some eukaryotic MPs. Transfection
is simple – no need for virus
production or cloning/screening.

More expensive than microbial systems.
Cell culture lab and expertise needed.
Low yields. Large amounts of
transfection-grade plasmid DNA needed
for scale-ups.

Recent protocol production eukaryotic
MP in Human embryonic kidney (HEK)
cells [29].
An automated transient approach [5].

Mammalian —

BacMam
Ideal for correct folding and PTM of
some eukaryotic MPs. Useful for
large-scale production.

More expensive than microbial systems.
Cell culture lab and expertise needed.
Low yields. Virus production time
consuming.

Recent protocol describing use of
the BacMam system for MP
production [30].

Mammalian — stable Ideal for correct folding and PTM of
some eukaryotic MPs. Avoids
requirement for large amounts of
DNA or virus.

More expensive than microbial systems.
Cell culture lab/ expertise needed. Low
yields. Slower than transient. Lentiviral
systems require containment at early
stages.

Recent lentiviral protocol [31]. An
automated stable approach [5].

Cell-free Expression of highly toxic proteins
possible. MP directly incorporated
into encapsulation agents.

Cost prohibitive if large amounts needed. Cell-free systems have been adapted
from yeast, wheatgerm, insect and
mammalian expression hosts [3, 32].
Also adapted for automation [6].
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concentrations (CMCs) are easily exchanged by dialysis whereas hydrophobic beads are used at low CMCs.
Maltosides such as dodecyl-maltoside (DDM) enable efficient extraction and yield functional protein making
the maltoside class some of the most commonly used detergents in structural biology [38]. Hundreds more
detergents have been developed to stabilise MPs further leading to HTP screens to identify the most useful [39,
40]. Recently introduced detergents include the neopentyl glycols [41] and glyco-diosgenin (GDN) which along
with digitonin account for around a third of single-particle cryo-EM (cryo-SPA) structures. The recently devel-
oped oligoglycerol class is useful for native mass spectrometry [42]. Although detergents are commonly used to
manipulate MPs, drawbacks including disruption of tertiary and quaternary structure, MP inactivation and
occlusion of purification tags has led to the development of other encapsulation reagents. These reagents
include amphipols [43], membrane scaffold proteins (MSPs) [44], co-polymer lipid particles [45, 46], Saposin
A [47], peptidiscs [48] and proteoliposomes. MSPs and amphipols are particularly effective agents for cryo-EM
and useful encapsulation reagents for nuclear magnetic resonance spectroscopy [49] and small-angle X-ray and
neutron scattering [50]. Co-polymer lipid particles can directly solubilise MPs without detergents, retaining
native lipids, and have been used for cryo-SPA [51], lipidic cubic phase (LCP) crystallisation [52], functional
assays [51] and biophysical characterisation [53]. Lipids such as Cholesteryl hemisuccinate are commonly used
to stabilise MPs [38].
Fusion-tags for protein production range from a few amino acids e.g. polyhisitdine tags (his-tags) to small

proteins such as GFP (Table 2). His-tags enable affinity purification and comprise six to ten histidine residues.
Background contamination can be high when using his-tags [54] and we recommend a reverse purification
step. For one-step purification we prefer twin-strep-tags [55] which are ideal for HTP screening platforms [30].
GFP-specific nanobodies and megabodies also enable one-step purification for GFP tagged MPs [56, 57]. All
fusion tags can interfere with MP function, propensity to crystallise and may affect yield. Fusion tags such as
lysozyme aid GPCR crystallisation [58]; however, fusion tag removal can be an important step in eliminating
contaminants through a reverse purification step. Many proteases (Table 3) used to cleave MP fusion tags have
reduced efficiency in the presence of some detergents [59, 60]. We favour the Tobacco etch virus (TEV) and
Human rhinovirus (HRV) 3C proteases as both have stringent sequence specificity, are functional at 4°C and
are easily producible at scale in the laboratory. The Tag-on-demand system utilises amber-codon suppression
to enable tags to be ‘turned on and off’ when expressed which is advantageous for many drug screening plat-
forms [61].

Table 2 Fusion-tags that are useful for membrane protein structural and functional studies

Tag Use Binding Advantages Disadvantages

His-tag Purification, F-SEC along with NTA
linked fluorescent peptides,
Purification or experiments that
require surface attachment (e.g
Surface plasmon resonance)

Nickel/Cobalt/
Zinc

Small tag; easy
purification

Relatively poor specificity

Fluorescent
(GFP, YFP,
mCherry)

Tracking MP during expression and
purification, purification.

Specific
nanobody or
antibody

Easy to track protein
throughout
expression and
purification

Large tags; more likely to affect
protein function. Antibody/
nanobody needed to use for
purification

Strep II tag Purification or experiments that
require surface attachment (e.g
SPR)

Streptavidin or
Streptactin resin

High-affinity and
specificity purification

High cost of specific resin

GST tag Purification or experiments that
require surface attachment (e.g
SPR)

Glutathione
(GSH)

May increase MP
yields, useful for
pull-downs

Propensity for GST to dimerise

HA Detection and purification of proteins HA-specific
antibody

Small tag Tag is cleaved in apoptotic
cells

FLAG Detection and purification of proteins FLAG-specific
antibody

Small tag High cost of specific resin

ALFA-tag Detection and purification of proteins Specific
nanobody

Small tag; choice of
nanobodies

High cost of specific resin
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Assessing the quality of expressed membrane proteins
Protein engineering has been used to produce highly stable MP constructs [62, 63]. The alternative is the use of
HTP screens to identify the most stable conditions for purification. Either way the tag-dependant assessment of
MP quality and quantity in cells, solubilised lysates or using purified protein is essential. Expression alone is a
good indicator of failure but a poor indicator of success, as a MP’s stability or functional state is not considered.
We use a simple pulldown approach, after solubilisation, to obtain pure protein using 96-well blocks to screen
many conditions such as constructs, encapsulation agents, solvents and lipids in parallel. Purified MPs are ana-
lysed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS–PAGE), fluorescence size exclusion
chromatography (F-SEC), differential scanning fluorimetry [40] and mass spectrometry [64]. These techniques
can collectively assess yield, monodispersity, thermostability, PTMs and, identify the target. Multichannel pip-
ettes (or robotics) and careful plate layouts help avoid cross-contamination while mass spectrometry is used to
flag any cross-contamination events. To track MPs during expression and purification we use C-terminal GFP
fusions [65, 66]. Whole-cell GFP fluorescence correlates well with overall protein yield [67]. GFPtags also give
a crude indication of protein folding and localisation, and enable assessment of monodisperisty and stability,
by F-SEC, in different encapsulation reagents. However, GFP tags cause both false positives and negatives as
GFP is highly stable and can reduce expression levels [54]. A recently developed multivalent nitrilotriacetic acid
fluorescent probe [68] enables GFP-free screening but background histidine rich proteins can interfere.
Alternatively, a fluorescently tagged nanobody raised against the ALFA tag has enabled GFP-free screening
following a one-step purification method [69].

Changing requirements for membrane protein production
Future iterative developments to MP production will improve efficiency, reduce costs and boost yields.
Currently beyond the reach of many labs, cell-free expression systems [6, 70] present a different approach that
enables the rapid production of functional MPs directly incorporated into nanodiscs or proteoliposomes
without need for comprehensive production strategies. Nanodiscs have already proven their utility for cryo-SPA
and proteoliposomes were recently used when solving the structure of AcrB [71]. New purification strategies
could speed up the purification of MP samples [72].
New challenges will be placed on MP production as structural approaches are developed. HTP production

strategies are ideally placed to address these challenges through the parallel production of multiple constructs
for different applications. New techniques may also bring advantages; the (cryo-SPA) resolution revolution has
enabled new MP structures and requires less sample than crystallography. Nanobodies can facilitate cryo-SPA
of smaller MPs [73]. New nano-focus beamlines for X-ray crystallography and micro-electron diffraction will
allow structures to be solved from smaller MP crystals, at higher resolutions [74]. Electron cryo-tomography
will facilitate atomic resolution structures, solved directly from cells and tissue, negating the need for solubilised
and purified MPs [75]. Alone, each structural methodology is an effective tool to interrogate structure and

Table 3 Common proteases used for fusion tag removal

Protease Advantages Disadvantages

TEV Stringent cleavage-sequence specificity and few residual amino
acids after cleave.
Easily produced in house.
Good activity in a range of buffers and at 4°C.

Activity limited by some commonly used detergents.
Reducing agents required for activity.
Comparatively low activity.

HRV 3C Stringent cleavage-sequence specificity and few residual amino
acids after cleave.
Easily produced in house.
Good activity in a range of buffers and at 4°C.

Activity limited by some commonly used detergents.
Comparatively low activity.

Thrombin Not affected by the majority of detergents. Non-specific cleavage, Inhibited by reducing agents and common
protease inhibitors used during purification.

SUMO
protease

No recombinant linker region needs to be constructed, native
N-terminus of the target protein is maintained.

Little activity in many commonly used detergents.

Factor Xa Not affected by the majority of detergents. Non-specific cleavage, Inhibited by reducing and chelating
agents, phosphate ions.
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function. Together, through the power of integrative structural biology, disparate datasets will be brought
together to produce improved dynamic and spatial models supporting biomedical discoveries. Thus, the pro-
duction of high-quality MPs will continue to be essential.
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