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Ultra-large-scale molecular docking can improve the accuracy of lead compounds in drug
discovery. In this study, we developed a molecular docking piece of software, Vina@
QNLM, which can use more than 4,80,000 parallel processes to search for potential lead
compounds from hundreds of millions of compounds. We proposed a task scheduling
mechanism for large-scale parallelism based on Vinardo and Sunway supercomputer
architecture. Then, we readopted the core docking algorithm to incorporate the full
advantage of the heterogeneous multicore processor architecture in intensive
computing. We successfully expanded it to 10, 465, 065 cores (1,61,001
management process elements and 0, 465, 065 computing process elements), with a
strong scalability of 55.92%. To the best of our knowledge, this is the first time that
10 million cores are used for molecular docking on Sunway. The introduction of the
heterogeneous multicore processor architecture achieved the best speedup, which is 11x
more than that of themanagement process element of Sunway. The performance of Vina@
QNLM was comprehensively evaluated using the CASF-2013 and CASF-2016
protein–ligand benchmarks, and the screening power was the highest out of the 27
pieces of software tested in the CASF-2013 benchmark. In some existing applications, we
used Vina@QNLM to dock more than 10 million molecules to nine rigid proteins related to
SARS-CoV-2 within 8.5 h on 10million cores. We also developed a platform for the general
public to use the software.
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INTRODUCTION

The virtual screening technology can be employed to obtain lead compounds from a large number of
candidate compounds, thus significantly reducing the cost of drug discovery (Pagadala et al., 2017).
Currently, the molecular docking technology is one of the most commonly used virtual screening
technology. The accuracy of virtual screening depends on the scale of molecular docking. The
mainstream ZINC15 database in the field of drug screening currently contains 750 million
compounds that can be purchased (Irwin et al., 2012). To determine the ideal lead compounds
in molecular docking, each target needs to be docked with each compound. In addition, more than
20,000 drug targets have been identified. In such a massive computing scenario, if only a single
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computer or small cluster is used for docking, then the running
computing time is unacceptable. Therefore, large-scale parallel
computing is required to solve this problem.

Super-large-scale molecular docking parallel computing has
large bottlenecks in multiple links, such as input/output (I/O),
task allocation, and communication. To realize large-scale
parallel computing, we need to encapsulate a series of
interfaces at the job scheduling level. Meanwhile, the massive
read and write processes overwhelm the file system, and the
necessary integration and optimization of I/O operations must be
conducted. The thread and cache utilization of the docking
algorithm should be optimized to totally improve parallelism
while reducing inefficient operations, such as access and storage
(Dong et al., 2018). The accuracy of virtual screening, such as
molecular docking, is highly dependent on the size of the candidate
molecular library and the performance of the screening algorithm.
Themisprediction of early lead compounds can be costly and time-
consuming in the subsequent stages of drug development. The
molecular docking algorithm estimates the most likely binding
structure and energy between a pair of ligands and receptors.
Currently, we aim to obtain the ideal conformation by considering
the atomic space interaction, hydrophobic interaction, hydrogen
bonding, and other factors. However, excessive physical descriptors
limit the running speed, thus affecting the screening scale and
reducing the screening accuracy. Therefore, it is necessary to
reasonably design a docking algorithm and improve the speed
of molecular docking and the screening scale (Zhang et al., 2013; Li
et al., 2019).

The first molecular docking software DOCK (Allen et al., 2015)
was developed in 1980. However, because of the limitations of the
algorithm in this software, its calculation accuracy is poor. In addition,
it is a serial program with limited computing power. Accordingly, a
parallel strategy was introduced to solve the computing efficiency
problem. The message passing interface (MPI) was introduced to
achieve process-level parallelism using a large number of cores
to reduce the docking completion time (e.g., VinaMPI) (Nocedal
and Wright, 1999; Ellingson et al., 2013; Liu et al., 2020; Zhang et al.,
2013). At the same time, the docking efficiency is improved through
thread-level parallelism. Multiple CPUs of a single processor—each
of which simultaneously performs optimized search
algorithms—implement thread-level parallelism [e.g., AutoDock
Vina (herein referred to as Vina)] (Trott and Olson, 2009).

In the past decade, graphical processing units (GPUs) have
shown superior performance in the field of image processing. In
the field of molecular docking, a GPU is gradually introduced to
facilitate the computation. For example, MolDock (Thomsen and
Christensen, 2006) was used in the multithreading technology to
accelerate the calculation process. Heterogeneous multicore
systems adopt the main processor + coprocessor architecture.
In this architecture, the main processor handles complex logic
control tasks, such as the distribution of molecular docking tasks
and reading of files. The coprocessor processes the computational
part of the molecular docking and docking algorithm that
performs multiple iterations. This type of computation has a
high density and a simple logical branch of large-scale data. The
two works together provide an efficient computing platform for
specific applications, and different parallelism strategies can be

used to solve different problems in the field of molecular docking
(Altuntaş et al., 2016). Heterogeneous multicore architectures
have advantages in the field of molecular docking owing to their
unique architecture (Fu et al., 2016; Chen et al., 2017; Xiao et al.,
2021).

In this study, we successfully extended the molecular docking
system to 10 million cores in Sunway supercomputer by
introducing new strategies and algorithms and demonstrate
parallelism in the molecular docking. We evaluated our
algorithms and strategies on Sunway supercomputer, a
heterogeneous multicore processor system. Experimental
results show that the docking accuracy is better than that of
traditional molecular docking methods and has a good
parallelism efficiency and computation speed. Our main
contributions are as follows:

• We added an ultra-large-scale molecular docking scheduling
parallelism for large-scale parallelism based on Vinardo’s and
Sunway supercomputer architecture. We managed to scale to
1,61,001 management processing elements (MPEs) and
10,304,064 computing processing elements (CPEs) with a
strong scalability of 55.92%.

• We readopted the core docking algorithm to take full advantage
of the heterogeneous multicore processor architecture in
intensive computing. The introduction of the heterogeneous
multicore processor architecture achieved the best speedup,
which is 11x more than that of the management process
element of Sunway. The accuracy of the software was evaluated
using the CASF-2013 and CASF-2016 benchmarks.

• We developed a docking platform, including core docking
functions, to meet the docking needs of general users.
Existing docking practices include docking more than
10 million molecules to nine rigid proteins about SARS-
CoV-2 within 8.5 h.

BACKGROUND

Sunway’s Processor
Sunway’s processor was developed based on the previous-
generation SW26010 processor. Sunway’s multicore processors
integrate several core groups (CGs), each of which contains an
MPE and an array of 8 × 8 CPEs, which are connected through a
ring network. MPEs mainly include computation, control,
communication, and I/O functions. CPEs are mainly used for
computation. A CPE and MPE are called a master core and slave
core, respectively. The CPEs in the CGs are interconnected with
one another and with external interactions through an intra-array
network. Data communication (peer-to-peer and aggregate
communication) between any two CPEs in the array can be
performed via a register-level data communication method (see
Supplementary Figure S1B).

The MPE uses an autonomous SW64 instruction set with a
data cache. The computing processing element supports double-
precision, single-precision, and half-precision floating-point
computation and integer operations. Each CPE has its own
independent instruction cache and data storage space. The
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data storage space can be configured as a fully user-controlled
local data memory (LDM), or part of the data storage space can be
configured as a hardware piece’s automatically managed local
data cache (LDcache). The data transfer between the LDM and
main memory can be achieved using the direct memory access
(DMA) or conventional load/store instructions between the
LDcache and main memory.

Sunway’s Supercomputer
Sunway supercomputer system inherits and develops the
architecture of “Sunway TaihuLight” based on high-
performance heterogeneous multicore processors and
interconnection network chips. The system consists of a
computing system, interconnection network system, software
system, peripheral service system, maintenance and diagnosis
system, power supply system, and cooling system (see
Supplementary Figure S1B).

The software system supports themanagement and scheduling of
super-large-scale programming resources with more than 10million
cores; it provides system-wide monitoring management, fault-
tolerant mechanisms, multilevel debugging, and performance
tuning of application software. In addition, it supports parallel
programming environments, such as MPI, OpenMP, and
OpenAcc. Thus, it can boost the implementation of the
molecular docking parallel strategy.

Vina@QNLM
Vina is a popular molecular docking program in drug discovery at
early stages and opts for the iterated local search global optimizer
to search for the minimum affinity for molecular docking.
Specifically, the software uses the Broyden–Fletcher–Goldfarb–
Shanno (BFGS) method (Nocedal and Wright, 1999) to find the
local optimum.

The value of the scoring function and its gradient, such as the
derivative of the scoring function with respect to its parameters,
are used in the BFGS algorithm. The parameters of the scoring
function include the orientation and position of the small
molecule and the values of the torsions for the active rotatable
bonds. As for the binding energy, the sum of distance-dependent
atom pair interactions is considered in Eq. 1:

E � ∑ epair(sd). (1)

Here, sd is the surface distance, which is equal to the difference
between the interatomic distance and the radii of the atoms in the
pair. There are five terms in total.

As can be seen in Eq. 2, the final predicted binding affinity is
that each term is multiplied by a constant and then added to the
sum. For more details, please refer to the original article by Trott
and Olson (2009).

epair(sd) � w1pGauss1(sd) + w2pGauss2(sd)
+ w3pRepulsion(sd) + w4pHydiophbic

+ w5pHBond(sd). (2)

Vinardo (Quiroga and Villarreal, 2016) is based on AutoDock
Vina and uses a simpler scoring function, while improving the

docking, scoring, ranking, and virtual screening results of the
scoring function. First, the main difference of Vinardo is that the
second minimum, which is physically unreasonable in the Vina
space interaction, is eliminated, and then, Vinardo adjusts atomic
radii, such as nitrogen and oxygen aliphatic carbons, to further
improve the performance of the scoring function. Vinardo uses a
combination of Gaussian gravity and quadratic repulsion to
manage steric interactions. Finally, a hydrophobic term in
Vinardo, which is approximately the same as the diameter of a
water molecule, can be obtained. The scoring function of Vinardo
shows good performance on the CASF-2013 benchmark (Li et al.,
2018).

In our implementation, we present a molecular docking piece
of software called Vina@QNLN, which adopts the scoring
function of Vinardo and is reconstructed based on the
architectures of Vina and Sunway supercomputer. We added
an ultra-large-scale molecular docking scheduling parallelism.

DESIGN AND OPTIMIZATION

In this section, we introduce the parallel implementation of
Vina@QNLM on Sunway supercomputer in detail. A two-level
parallelization strategy, including the combination of the
master–master core and multi-thread heterogeneous
parallelism of a new processor on Sunway supercomputer, is
introduced to achieve the scalability and speedup of Vina@
QNLM.

Large-Scale Parallelism for Molecular
Docking Tasks
In the process of ultra-large-scale docking, scheduling and I/O
operations have been a problem. First, this is a typical many-to-
many problem. Multiple targets are required, and there are
multiple pocket files. Each molecule must be docked with the
target. Second, the program needs to be carefully designed so that
pocket information and grid data can be reused. To reduce the
number of I/O operations, the data must be packaged and stored.

There are a lot of previous successful experiences in parallel
computing on Sunway [e.g., Parallel CFD Simulation Software,
reactive force field simulation, and parallel implementation of the
discontinuous Galerkin density functional theory (DGDFT) on
Sunway’s supercomputer] (Tsutsui and Collet, 2013; Gao et al.,
2020; Hu et al., 2021). According to the current software
foundation, we employed MPI for data transmission, which
supports point-to-point communication and is mature on
Sunway supercomputer.

As the first level of parallelism, we adopted MPI to realize the
docking of proteins and ligands between different MPEs,
addressing the task scheduling and allocation problems (see
Figure 1A). First, a process called the “protein manage node”
was allocated to read all the target and pocket information in
batches, and subsequently, the information was broadcasted to
each work node. Thereafter, a certain amount of “ligand manage
node” was allocated to read small-molecule information, thus
realizing the reuse of pocket and grid information. The number of
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ligand manage nodes must be carefully selected. If it is considerably
large, then it will cause a decrease in computing efficiency;
otherwise, it will cause a performance bottleneck. The size of the
PDBQT format data of small molecules is approximately
1,500 bytes, and the number of ligand manage nodes is
positively correlated with the total number of processes. Thus,
we selected the total number of processes/ligand manage nodes
as ∼300. Subsequently, a certain number of small molecules were
evenly distributed to each work node to form a small-molecule
library. The number of molecules that each ligand manages to send
to the worker was calculated by Eq. 3, where nl, ntp, and nlm
represent the number of molecules in each ligand set, the number of
all processes, and the number of ligand manage nodes, respectively.
By docking each target with the molecules in the small-molecule
library, docking simulation data were generated. Thereafter, the
results were returned to the MPE, and the docking result data were
saved. The MPE in the worker sends a finish or break signal to the
ligand manage node, and the ligand manage node sends the signal
to the protein manage node. Finally, the program ends.

f (x) � nl

(dlp − 1 − nlm)*nlm

. (3)

To ensure that each process remains busy and reduces the idle
time based on the characteristics of multicores and heterogeneity
of the processor and to increase the I/O efficiency, a multilevel
processing scheme was adopted to separately open up multiple
processes to read a large number of small-molecule input data
files, target data files, and pocket files. This process plays the role
of a scheduler. Because the target data are cumbersome and have
many coordinates, when a large number of targets need to be
docked, it may result in an insufficient stack space. Therefore, we
gradually eliminated the target data that had completed docking,

thereby reducing the number of times the file was read, while
increasing the I/O efficiency.

Adaptation of the Molecular Docking
Algorithm
The original strategy is that each MPE uses a hard disk to read the
data. However, this approach causes performance bottlenecks.
Through the scheduling strategy mentioned in Section 3.1, the
target data can be reused considerably. Here, the MPE in a CG
reads pocket information in the memory and generates grid data.
This information can be reused for the same protein. Considering
the docking time and efficiency, we transplanted the most time-
consuming search algorithms as a second level of parallel and
adopted the Monte Carlo simulated annealing algorithm using
time as the random number seed to search for the conformation
of the molecule. The algorithm also maintains a high
computational efficiency, accuracy of the docking results, and
speed of large-scale docking. Inspired by Vina, we executed
algorithms on each CME (Figure 1B). We employed the BFGS
algorithm to determine the minimum local energy for the
optimal local spatial orientation and location information.
This process is accompanied by data interactions by the
DMA and cache method. It reserves the best 20 poses in
each CME and then transfers them to the MPE. After
comparison, the MPE retained the specified poses.

Acceleration of the Docking Algorithm
Based on Sunway
The CPE contains local data management (LDM). To achieve a
high memory bandwidth, the CPE core accesses the data by

FIGURE 1 | Parallel framework of Vina@QNLMbased on Sunway supercomputer, large-scale parallelism for molecular docking tasks (A), and data communication
and optimization between MPE and CPE (B).
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directly accessing the main memory or transferring the data to
the LDM through a DMA operation and then loads it from
the LDM. Three types of data should be loaded into the
LDM: configuration information, parameters, and molecular
coordinates. These configurations were loaded into the LDM
prior to the task cycle. Therefore, during the actual
conformation search and position-matching process, the data
could be accessed quickly.

The values of the four parameters, including the van derWaals
force and Gauss term between the receptor and ligand atoms, are
not related to the small ligand molecule. The software distributes
the four parameters in a virtual three-dimensional grid
containing a receptor small molecule. The data volume of the
energy grid is too large to be completely incorporated into the
local memory of the CPE. For the conformation search and
energy calculation process, we used the cache method to
access the main memory data to facilitate the docking
calculation. The force, which is a combination of quadratic
repulsion and Gaussian gravity to handle steric interactions,
adopted the same method.

RESULTS AND DISCUSSION

Scoring Function and Sample Power
To evaluate the accuracy of the scoring function, we conducted
evaluations on the CASF-2013 (Li et al., 2018) and CASF-2016
benchmarks (Su et al., 2019). The two benchmarks evaluate
scoring functions using four metrics: ranking power, scoring
power, docking power, and screening power. We also added
another metric: sample power for evaluating Vina@QNLM
predicting the ligand pose. In this article, we only briefly
review the definitions; a more precise and complete definition
can be found in the CASF-2013 article (Li et al., 2014) and CASF-
2016 article (Su et al., 2019).

Evaluation on the CASF-2013 Benchmark
The CASF-2013 benchmark consists of 195 ligand–receptor
complex structures with associated affinities. In addition,
16,123 computer-generated ligand poses were provided for
docking power evaluation and 6,36,010 for screening power
evaluation. The correctness of Vina@QNLM after
transplantation was verified using the entire CASF-2013

FIGURE 2 | Scoring power of crystal structures and optimized
structures and Pearson correlation coefficients of Vina@QNLM in single-point
(sp) and local (l) modes (blue and orange bars), compared to the methods
evaluated in CASF-2013 and recalculated.

FIGURE 3 | Ranking power of high- and low-level success rate of Vina@
QNLM in single-point (sp) and local (l) modes (blue and orange bars),
compared to the methods evaluated in CASF-2013 and recalculated.
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benchmark, and it was added to 27 docking software models with
the results of the CASF-2013 test for a comparative analysis.

Scoring Power and Ranking Power
The scoring power (see Figure 2; Supplementary Table S1)
determines whether a score generated by the scoring function
in Vina@QNLM could be linearly correlated with the
experimental binding constants. Pearson’s correlation
coefficient was used to measure this metric. The ranking
power (see Figure 3; Supplementary Table S2) evaluates the
ability of a scoring function to correctly rank the ligands of a
target protein based on their experimental affinities. The ranking
power is measured by the “high-level” success rate, and the
number of targets where the three complexes are correctly
ranked is counted (i.e., best > median > poorest). A “low-
level” success rate is counted with a relaxed criterion (best >
median and best > poorest). For the scoring power in single-point
and local modes, Vina@QNLM achieved correlation coefficients
of 0.625 and 0.641 for crystal structures and 0.534 and 0.624 for
optimized structures. Compared to the 27 methods, Vina@
QNLM is the best in relation to experimental data. In
addition, the two modes of Vina@QNLM showed two extreme

results in terms of the ranking power. The local mode showed the
best success rate in the high and low levels, whereas the single-
point mode showed the worst success rate.

Docking Power and Screening Power
The docking power is used to evaluate the ability of Vina@QNLM
to distinguish between the native pose and decoy ligand binding
poses for a given receptor. If a ligand binding pose is less than or
equal to 2 Å as compared to the experimental ligand pose, then we
consider the pose to be native. Typically, a ligand pose is
evaluated using the root-mean-square deviation (RMSD) and
does not take into account the hydrogen atoms of the ligand. For
each receptor, the poses considered include the computer-
generated poses and ligand crystallographic structure. The
docking power was measured by the success rate: the
percentage of proteins with a native pose as the best (top 1),
second (top 2), or third (top 3) scored pose. For the docking
power, Vina@QNLM nearly ranked in the middle of the 27
methods (see Figure 4; Supplementary Table S3).

The purpose of the screening power is to evaluate the ability
of the molecular docking software to separate the two ligands.
We adopt the enrichment factor and success rate to assess the
screening powder of our molecular docking software. The
enrichment factor is defined as the number of binder ligands
among the best 1% (top 1%), 5% (top 5%), or 10% (top 10%)
scored poses, divided by the total number of binder ligands
times 1, 5, or 10%. Among the 27 methods, Vina@QNLM was
almost the best (see Figure 5A; Supplementary Table S4). The
success rate is the percentage of targets for which the ligand with
the best experimental affinity is among the best 1% (top 1%), 5%
(top 5%), or 10% (top 10%) scored poses. Vina@QNLM is at
the top among the 27 methods (see Figure 5B; Supplementary
Table S5).

Sample Power
The sample power refers to the ability of the molecular docking
software to predict the binding poses of a ligand. We used RMSD
to evaluate the sampling power. The prediction of Vina@QNLM
is regarded to be successful if the RMSD between the native
binding pose and docked binding pose is below 2.0 Å. Two
methods were used to evaluate the sample capability in our
work, including the highest conformation generated by the
molecular docking software (referred to as the top-score
RMSD) and the closest conformation to the native binding
pose (referred to as the top RMSD). The figure indicates that
the success rate of Vina@QNLM for the top-scored pose is 59%,
but that for the top RMSD pose is significantly higher (73%) (see
Figure 6). With reference to other molecular docking software
(not the same benchmark) (see Wang et al., 2016), Vina@QNLM
is in between the middle to upper levels.

Evaluation on the CASF-2016 Benchmark
We also use the updated benchmark to evaluate the scoring
function of Vina@QNLM. CASF-2016 is basically the same as the
CASF-2013 benchmark, only slightly different in some indicators.
The same data were prepared with some definitions of terms that
we do not describe here but can be referred to Wang et al. (2016).

FIGURE 4 | Docking power of top 1 (1%), top 2 (5%), and top 3 (10%)
success rates of Vina@QNLM in single-point and local modes (blue, orange,
and gray bars), compared to the methods evaluated in CASF-2013 and
recalculated.
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Scoring Power and Ranking Power
The scoring power of the scoring function was measured by the
correlation between the calculated binding score and the
experimental binding constants of a given protein ligand.
Supplementary Table S6 shows the Pearson correlation
coefficient and standard deviation (SD) generated by 35
scoring functions. Figure 7 shows the evaluation results of all
scoring functions on the structure of the original crystal complex.
The highest Pearson linear correlation coefficient is that of
ΔVinaRF20, that is, 0.816, significantly higher than those of
other scoring functions. The second highest is Vina@QNLM,
whose Pearson linear correlation coefficients are 0.641 and 0.649
in the single-point and local modes, respectively.

In addition to using the original crystal complex structure, the
scoring ability of the locally optimized complex structure was also
tested. The Pearson correlation coefficients and SDs are presented
in Supplementary Tables S6, S7; Figure 7. The Pearson
correlation coefficient of ΔVinaRF20 is the highest among the
35 scoring functions, reaching 0.774, followed by Vina@QNLM,
that is, 0.633 and 0.642 in the single-point and local modes,
respectively.

In the CASF-2016 benchmark, the average Spearman rank
correlation coefficient (ρ), Kendall correlation coefficient (τ), and
prediction index (PI) are equivalent for the score function.

FIGURE 5 | Screening power of top 1%, top 5%, and top 10% success rates (A) and enrichment factors (B) of Vina@QNLM in single-point (sp) and local (l) modes,
compared to the methods evaluated in CASF-2013 and recalculated.

FIGURE 6 | Sample power by comparing cumulative frequencies of
TopScore_RMSD and TopRMSD, compared to the methods evaluated in
CASF-2013 and recalculated.
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Accordingly, the Spearman rank correlation coefficient is shown
in Figure 8; Supplementary Tables S8, S9. Vina@QNLM scoring
function ranked fourth and fifth, and its Spearman's rank
correlation coefficient was 0.616 and 0.604 in the single-point

and local modes. After the local optimization of the compound
structure, its Spearman's rank correlation coefficients were 0.584
and 0.612, respectively, ranking 10th and second in the single-
point and local model.

FIGURE 7 | Scoring power of original complex structures and optimized complex structures and Pearson correlation coefficients of Vina@QNLM in single-point (sp)
and local (l) modes (blue and green bars), compared to the methods evaluated in CASF-2016 and recalculated.

FIGURE 8 | Scoring power of original complex structures and optimized complex structures and Spearman’s correlation coefficients of Vina@QNLM in single-point
(sp) and local (l) modes (blue and green bars), compared to the methods evaluated in CASF-2016 and recalculated.
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Docking Power and Screening Power
In the docking power test, each scoring function detected the success
rate of the native ligand-binding site (RMSD <2.0 Å). Similar to the
CASF-2013 dataset, we also divided the docking ability into three
parts, namely, top 1 (1%), top 2 (5%), and top 3 (10%). AutoDock
Vina showed superior performance in all the three sections. Vina@
QNLM is in the middle of the top 1% but not far behind in the top
5%. It reached 93.3% in the local mode and 94.70% in the single-
point mode (see Figure 9; Supplementary Table S10).

In CASF-2016, the forward screening power of a scoring
function is measured by its success rate of identifying the
highest-affinity ligand for a given target protein. The success
rates by considering the 1, 5, and 10% candidates in screening for
all the scoring functions are illustrated in Figure 10. The data for
making this figure are presented in Supplementary Table S11. In
this test, the top five scoring functions, namely, VinaRF20,
GlideScore-SP, ChemPLP@GOLD, Vina@QNLM(I), and
Vina@QNLM(sp), have success rates above 30% at the top 1%

level. Vina@QNLM(I) has the third highest success rate of
35.10%, only a little worse than those of VinaRF20 and
GlideScore-SP. Considering the size of our test set, this scoring
function has a chance of 35.10% to rank the highest-affinity
ligand among the top three candidates.

In CASF-2016, the screening power was also evaluated in a
reverse screening trial. Here, the reverse screening power of a
scoring function was measured by its success rate of identifying the
true target protein for a given ligand molecule. The success rates by
considering the top 1 (1%), top 5 (5%), and top 10 (10%)
candidates in the screening for all the scoring functions are
illustrated in Figure 11; Supplementary Table S12. In this test,
the top five scoring functions are ChemPLP@GOLD, GlideScore-
SP, Vina@QNLM(I), DrugScoreCSD, andVinaRF20. Their success

FIGURE 9 | Docking power of top 1 (1%), top 2 (5%), and top 3 (10%)
success rates of Vina@QNLM in single-point (sp) and local (l) modes (blue,
green, and orange bars), compared to the methods evaluated in CASF-2016
and recalculated.

FIGURE 10 | Screening power of top 1 (1%), top 2 (5%), and top 3 (10%)
forward screening success rates of Vina@QNLM in single-point and local
modes (blue, green, and orange bars), compared to the methods evaluated in
CASF-2016 and recalculated.
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rates of selecting the true target protein as the best-scored
candidate are over 15%. Here, Vina@QNLM(l) has the third
highest success rate of 15.80%, only a little worse than those of
ChemPLP@GOLD and GlideScore-SP. These top-ranked scoring
functions are also generally top-ranked in the forward screening
trial. However, their success rates in the reverse screening trial are
only half (or even lower) compared to their performance in the
forward screening trial. For example, the success rates of Vina@
QNLM(I) are 35.10 and 15.80% in the forward screening and
reverse screening trials, respectively.

Sample Power
In the evaluation of the conformation search ability of molecular
docking, when the RMSD between the simulated value and

experimental value is less than 2.0 Å, the simulation is
considered to be effective, ranking fifth in the top magician
RMSD mode and sixth in the best magician RMSD mode. The
figure indicates that the success rate of Vina@QNLM for the top-
scored pose is 38%, but that for the top RMSD pose is slightly
higher (43%) (see Figure 12). By referring to other molecular
docking software, the prediction ability of Vina@QNLM is at a
medium level.

Speedup Effect Comparison
The docking time is proportional to the number of active
rotatable bonds in a ligand. Therefore, we used two sets of
data to measure the acceleration effect, including the number
of rotating bonds between 0–6 and 7–12. The elapsed time of
molecular docking was measured by calculating the average time
per receptor–ligand pair of a single molecule and a single target.

In this study, we used an Intel Core i7-4610 M processor to test
the molecular docking times under the X86 platform. The
docking time was positively correlated with the number of
receptor–ligand pairs, with the figure increasing modestly from
1,976.35 s to approximately 19,378.34 s, and the receptor–ligand
pairs were 100 and 800 (see Supplementary Table S13).
Molecular docking with the number of rotating bonds between
7 and 12 showed the same tendency (see Supplementary
Table S14).

The docking speed on Sunway’s MPE was significantly
reduced as compared to the elapsed time of X86 owing to the
hardware characteristics of the processor (see Figure 13A).
Furthermore, we employed different compilation optimization
methods provided by Sunway, but the computing time did not
significantly improve. As a heterogeneous multicore processor, it

FIGURE 11 | Screening power of top 1 (1%), top 2 (5%), and top 3 (10%)
reverse screening success rates of Vina@QNLM in single-point and local
modes (blue, green, and orange bars), compared to the methods evaluated in
CASF-2016 and recalculated.

FIGURE 12 | Sample power by comparing cumulative frequencies of
TopScore_RMSD and TopRMSD, compared to the methods evaluated in
CASF-2016 and recalculated.
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is important to properly use the core to speed up the computation
time. We completed the migration of the algorithm and
guaranteed the maximum utilization of the CPE. By
calculating the average docking time per receptor–ligand pair
of a single molecule and single target, we can observe that the
optimized Vina@QNLM elapsed time is faster than that of the
X86 platform and previous version of Vina@QNLM (Table 1).
For both ligands, the number of rotating bonds between 0–6 and
7–12 has a large speedup. Compared with the execution time of
the serial version on MPE, speedups of approximately 10× on
average and 11.0× at best were achieved.

Parallel Efficiency
As previously described, there are some barriers in the original
molecular docking program to heterogeneous computers, such as
the Sunway TaihuLight. Each process can be allocated a certain
number of molecules to ensure a load balance based on MPI.
Therefore, we employed two methods to evaluate the docking
efficiency, that is, docking time and overall docking time, which
included I/O and the time of sending molecular data. The
computing time gradually decreased with the increase in the
number of computing processes (see Figure 14).

We randomly selected 9,59,000 small molecules in the Zinc12
(Irwin et al., 2012) library, docked them with 6BFA protein, and
recorded the elapsed time. The parallel efficiency of 10,501
processes was 100%, and the parallel efficiency slightly

dropped with an increase in computing processes. A strong
parallel efficiency of up to 55.92% was realized when Vina@
QNLM was expanded to 4,80,001 processes. As for the parallel
efficiency calculated based on the total elapsed time, the value was

FIGURE 13 | Comparison of the calculation speed in three ways: X86, MPE, and the core group. (A) The torsion of the docking molecule is 0–6. (B) The torsion of
the docking molecule is 7–12.

TABLE 1 | Parallel efficiency of the total elapsed time and docking elapsed time.

Protein–ligand pair Process Total elapsed
time (s)

Docking elapsed
time (s)

Parallel efficiency
(docking) (%)

Parallel efficiency
(total) (%)

9,59,000 4,80,001 240.66 117.26 55.92 53.68
9,59,000 2,40,501 441.75 250.86 52.17 58.37
9,59,000 1,61,001 467.68 303.00 64.52 82.35
9,59,000 80,501 929.45 495.65 78.88 82.87
9,59,000 41,001 1752.41 844.38 90.91 86.30
9,59,000 20,501 3,319.41 2015.56 76.17 91.12
9,59,000 10,501 5,905.00 2,997.23 100.00 100.00

FIGURE 14 | Scaling results on Sunway supercomputer.
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lower than the docking elapsed method, and 4,80,001 processes
were used for docking, with a scalability of 53.68% (Table 1).
Thus, Vina@QNLM can guarantee good scalability when run on
Sunway supercomputer.

Typical Applications
SARS-CoV-2
The global spread of the coronavirus disease continues to harm
the public health. To screen molecules with promising medicinal
purposes, first, we obtained 837,370,487 molecules in ZINC20
(http://zinc20.docking.org/tranches/home/). Then, almost
10 million (10,593,000) of these molecules were randomly
selected. The molecules have a LogP between 1 and 4.5 and a
molecular weight between 300 and 500. The 10 million molecules
were docked with nine targets related to SARS-CoV-2: Mpro,
RdRp, RdRp_noMg, Spike-RBD, ACE2, NSP16, PLpro1, PLpro2,
and X-domain.We used 161,001 processes (10,465,065 cores) for
virtual screening and completed 95,337,000 times docking in 8.
5 h. Some of the molecules were selected for further molecular
dynamic experiments and clinical trials. The docking results for
the top 1,000 compounds at each target can be seen in
Supplementary Material result_Top1000.zip.

TRIP13 Target
Another typical application is the docking demand from the
Shanghai Institute of Materia Medica of the Chinese Academy of
Sciences. The Thyroid Hormone Receptor Interacting Protein 13
(TRIP13) target plays an important role in the preparation of
tumor therapy drugs (Wang et al., 2019). Accordingly, Vina@
QNLM is used to complete the docking of 100 million
compounds with the TRIP13 target in 12 h on a parallel scale
of 1,00,000 processes.

AVAILABILITY OF VINA@QNLM

To ensure that the vast number of users can use our software, we
developed an online system (http://vina.qnlm.ac/index.html).
General users can submit docking tasks after registration and
can use Vina@QNLM for molecular docking after being reviewed
by the administrator.

CONCLUSION

Molecular docking is important in the field of drug discovery.
Large-scale and efficient molecular docking procedures can
significantly shorten the lead compound discovery time. In
this study, we propose an ultra-large molecular docking
scheduling mechanism. We adopted the Vinardo software to
fit the hardware architecture of the Sunway processor, which
consisted of heterogeneous CGs (1 MPE and 64 CPEs). We
realized molecular docking in the CPEs of Sunway’s CG
through data exchange between the MPE and CPEs. The
performance of Vina@QNLM was comprehensively evaluated
using the CASF-2013 and CASF-2016 protein–ligand complex

benchmarks and achieved an optimum of 11× speedup. We
managed to expand to 10,465,065 cores, including
161,001 MPEs, reaching a strong scalability of 55.92%. Nine
targets related to SARS-CoV-2 were docked with more than
10 million molecules, with a total of 95,337,000 times docking
completed in 8.5 h. We also made the top 1,000 best-rated
compounds available to the public for targets related to SARS-
CoV-2 and developed a platform for ordinary users to submit
docking tasks. Our ultra-large molecular docking scheduling
mechanism and optimization methods can inspire other
software adaptations in Sunway and other heterogeneous
multicore supercomputers.
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