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Abstract
Background As cancer cachexia (CC) is associated with cancer progression, early identification would be beneficial. The 
aim of this study was to establish a workflow for automated MRI-based segmentation of visceral (VAT) and subcutaneous 
adipose tissue (SCAT) and lean tissue water (LTW) in a B16 melanoma animal model, monitor diseases progression and 
transfer the protocol to human melanoma patients for therapy assessment.
Methods For in vivo monitoring of CC B16 melanoma-bearing and healthy mice underwent longitudinal three-point DIXON 
MRI (days 3, 12, 17 after subcutaneous tumor inoculation). In a prospective clinical study, 18 metastatic melanoma patients 
underwent MRI before, 2 and 12 weeks after onset of checkpoint inhibitor therapy (CIT; n = 16). We employed an in-house 
MATLAB script for automated whole-body segmentation for detection of VAT, SCAT and LTW.
Results B16 mice exhibited a CC phenotype and developed a reduced VAT volume compared to baseline (B16 − 249.8 µl, 
− 25%; controls + 85.3 µl, + 10%, p = 0.003) and to healthy controls. LTW was increased in controls compared to melanoma 
mice. Five melanoma patients responded to CIT, 7 progressed, and 6 displayed a mixed response. Responding patients 
exhibited a very limited variability in VAT and SCAT in contrast to others. Interestingly, the LTW was decreased in CIT 
responding patients (− 3.02% ± 2.67%; p = 0.0034) but increased in patients with progressive disease (+ 1.97% ± 2.19%) and 
mixed response (+ 4.59% ± 3.71%).
Conclusion MRI-based segmentation of fat and water contents adds essential additional information for monitoring the 
development of CC in mice and metastatic melanoma patients during CIT or other treatment approaches.
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Abbreviations
BAT  Brown adipose tissue
BMI  Body mass index
CC  Cancer cachexia
CIT  Checkpoint inhibitor therapy
CTLA-4  Cytotoxic T-lymphocyte-associated protein-4
CT  Computed tomography
LDL-C  Low-density lipoprotein cholesterol
LTW  Lean tissue water
MRI  Magnetic resonance imaging
PD-1  Programmed death-1
SCAT   Subcutaneous adipose tissue
TAG   Triacylglycerols
VAT  Visceral adipose tissue

Introduction

Cancer cachexia (CC) as an epiphenomenon associated with 
cancer and other chronic diseases is defined by an invol-
untary loss of muscle and fat mass [1]. It can be associ-
ated with a variety of diseases, such as chronic heart failure, 
chronic kidney disease, and cancer. In the latter case, CC is 
one of the major causes of death of tumor patients.

While several factors have been proposed to influence the 
development of CC, the main drivers leading to this phe-
nomenon are still poorly understood. In fact, even within 
the same cancer entity, a broad variation in the presence or 
absence of CC is reported. Among the main drivers, brown 
adipose tissue (BAT) [2] and inflammatory factors, such as 
interleukins, have been discussed [3–6] and recent advances 
in research have identified novel protein functions [7] and 
some hormones, e.g., PTHrP [8], as potential factors.

Our understanding of the mechanisms of CC that lead 
to reduced quality of life and mechanisms of resilience 
in tumor patients and possible interventions is increasing 
[9–12]. Thus, the challenge for the treating oncologist is 
not only the cancer treatment as such, but also to identify 
patients at risk for developing CC, as the initial changes 
might be subclinical, especially in an increasingly obese 
society. A consensus definition has outlined three stages of 
CC, with a refractory cachectic stage in which failure of 
all interventional attempts leads to further weight loss and 
morbidity, independent of the accompanying cancer treat-
ment [1, 4].

Imaging modalities, such as computed tomography (CT) 
and magnetic resonance imaging (MRI), are routinely used 
for cancer staging in oncology. Such examinations mainly 
focus on the detection of the primary tumor and metastases 
and their changes in response to therapy. However, recently, 
additional quantitative methods have been developed that 
use more of the information at hand, such as the segmen-
tation and mass of muscle and adipose tissue [13–17]. As 

this information can be extracted from whole-body staging 
examinations, automated analysis would provide valuable 
information for the treating physician.

Recent large-scale studies of breast cancer patients found 
prognostic value in the presence of clinically non-evident 
muscle wasting detected with routine CT scans for staging, 
even in nonmetastatic patients and in a setting of changes 
of subcutaneous adipose tissue [18, 19]. Other studies have 
investigated the prognostic value of body composition in 
association with metabolic risk factor profiles or adipokine 
levels, and found it added value to clinical decision mak-
ing and showed a prognostic impact [20–22]. Thus, imaging 
appears to be able to contribute predictive information that 
might not otherwise be accessible. However, none of these 
studies investigated the possible contribution of longitudinal 
monitoring of changes of body composition under check-
point inhibitor therapy (CIT).

To better understand the development of CC, several 
mouse models have been described over the last few decades 
to study the phenomenon observed in humans. While spon-
taneously developing cancer models most closely resemble 
human carcinogenesis and its associated changes in metab-
olism and immune function, they are difficult to monitor 
noninvasively in terms of their cachectic stage. While infe-
rior in terms of their comparability with human physiology, 
subcutaneous exogenous tumor models have the advantages 
of comparable tumor growth rates and weight loss within a 
cohort. The B16 melanoma model has been extensively stud-
ied in the past few decades and is a widely used experimental 
model to study CC [23, 24]. Exogenous B16 melanomas will 
grow in immunocompetent C57BL/6 J mice, which seems 
to be an essential factor with regard to the suggested role of 
immunological factors in CC development.

In a recent study, we noninvasively investigated changes 
in glucose metabolism in  vivo (employing multimodal 
18F-FDG-PET/CT or PET/MRI) in primary and secondary 
lymphatic organs of immune checkpoint inhibitor-treated 
experimental mice as well as metastatic melanoma patients 
and identified differential signatures enabling us to differen-
tiate between responders and nonresponders [25].

In this study, we aimed to establish a workflow for auto-
mated MRI-based segmentation of subcutaneous, visceral 
adipose tissue and lean body mass that is applicable for both 
preclinical CC studies in rodents and in metastatic cancer 
patients. This should allow for early identification of CC and 
monitoring of the progression of CC as well as monitoring 
body adipose tissue and water composition changes in cases 
of successful treatment or treatment failure for therapeutic 
regimes, such as CIT.
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Methods

All animal experiments were performed according to the 
German Animal Protection Law with permission from the 
local authorities (Regierungspräsidium Tübingen, Ger-
many). The prospective human study was approved by the 
appropriate local ethics committee and has been performed 
in accordance with the ethical standards laid down in the 
1964 Declaration of Helsinki and its later amendments.

Preclinical study

Animals

In this study, we used 8- to 10-week-old female C57BL/6 J 
mice (Charles River Laboratories, Sulzfeld, Germany). The 
mice were kept under standardized conditions in isolated 
ventilated cages (20 ± 1 °C room temperature, 50 ± 10% rela-
tive humidity, and a 12 h light–dark cycle) with free access 
to a standard diet for rodents (fed ad libitum) and tap water.

Cell culture

B16-F10 melanoma tumor cells (Perkin Elmer, Waltham, 
United States) were cultured in RPMI 1640, with 100 U/
mL penicillin, 100 mg/L streptomycin and 10% fetal calf 
serum (all from Biochrom GmbH, Berlin, Germany) at 
37 °C in a humidified atmosphere of 5%  CO2 in a cell culture 
cabinet (HeraSafe KS18, Thermo/Kendro, Dreieich/Hanau, 
Germany).

Experimental B16 melanoma model

To induce CC in the mice, 0.5 × 106 B16 melanoma tumor 
cells (Perkin Elmer, Waltham, United States) were injected 
subcutaneously into the lateral abdomen and the progres-
sion of CC was monitored by weight loss. The animals were 
weighed daily to monitor disease progression. For weight 
comparison to the control group, the tumor weight was iden-
tified after the last measurement by removing it and weigh-
ing it, and subtracting its weight from the final whole body 
weight.

In vivo MR studies

C57BL/6 J mice underwent MR measurements in a 7 T 
small animal MRI scanner (Clinscan, Bruker Biospin, 
Ettlingen, Germany) 3, 12 and 17 days after tumor inocu-
lation. Animals were anesthetized with 1.5% isoflurane 
(CP-Pharma, Burgdorf, Germany) evaporated in oxygen at 
a flow rate of 0.5 L/min. Body temperature was measured 

continuously and regulated by a warming pad, and anesthe-
sia depths were monitored by breathing frequency. The fol-
lowing scan parameters were used: whole-body imaging was 
performed using a 2D gradient echo sequence with 3 ech-
oes (1.26, 1.6, 1.94 ms) and the following parameters: slice 
thickness 2 mm, matrix 162 × 192; FOV 38 × 45; repetition 
time 450 ms, flip angle 20°. Decomposition of fat and water 
images from the acquired MR data was performed using in-
house software (implemented in MATLAB, version 2014b) 
based on a method previously described by Berglund et al. 
[26]. Subsequently, separation of VAT, SCAT and LTW was 
performed using in-house software based on active contour 
segmentation (implemented in MATLAB, version 2014b) 
as previously described in [27] and outlined below. For the 
analysis, the subcutaneous tumor was excluded.

Blood samples

After the last MRI scan, 17 days after tumor inoculation, the 
mice were sacrificed and blood samples were prepared, cen-
trifuged and frozen at – 80 °C before analysis of cholesterol, 
low-density lipoprotein cholesterol (LDL-C), triacylglycer-
ols (TAG) and total protein was carried out using an auto-
mated clinical chemistry analyzer ADVIA 1800 (Siemens 
Healthcare Diagnostics, Eschborn, Germany).

Prospective clinical study

Patient population

All participants gave written informed consent prior to entry 
into the study. Between 09/2014 and 10/2016, 18 patients 
with Stage IV melanoma were prospectively included 
before initiation of systemic immune therapy and their data 
were retrospectively analyzed. All patients were examined 
at 3 time points: before treatment, and at 2 and 12 weeks 
after initiation of treatment. The patients were categorized 
by therapeutic response as responder, mixed responder 
or nonresponder in accordance with the clinical response 
evaluation.

MR study

All whole-body MR examinations were performed as part 
of a clinically indicated FDG-PET/MR staging examina-
tion on a combined 3 T PET/MR scanner (Siemens Bio-
graph mMR, Siemens Healthcare, Erlangen, Germany). The 
study MR protocol consisted of a whole-body dual echo 
Dixon MR sequence in the axial orientation (skull base 
to mid-thigh level) with the following parameters: resolu-
tion 2.6 × 2.6 mm, slice thickness 3.1 mm, echo times 1.32, 
2.46 ms, repetition time 3.96 ms, flip angle 9°. The data were 
processed as described above.



1266 Cancer Immunology, Immunotherapy (2021) 70:1263–1275

1 3

MR data analysis

In animal studies as well as patient examinations, adipose 
tissue compartments (subcutaneous (SCAT) and visceral 
adipose tissue (VAT)) as well as the lean tissue water 
compartment (LTW)) were automatically segmented on 
the fat images using an active contour-based approach as 
previously described by Wuerslin et al. [27]. In short, this 
method is based on the use of active contours (so-called 
snake algorithm) to detect the boundary between SCAT 
and the underlying musculature/fascia. The outer contour 
of the skin is thereby used as initial contour for the sub-
sequent iterative inward-pointing propagation of the con-
tour. The energy of the contour finds a local minimum at 
the border between SCAT and muscle tissue/fascia on fat 
images due to a sharp signal edge along this border. The 
algorithm was applied to each single 2D slice separately 
from the skull base to the mid-thigh level. Automated 
segmentation results were validated visually, and correc-
tions of segmentations were performed where necessary. 
No specific adaptation of the algorithm was necessary for 
translation from human to animal data as the matrix size 
(and thus the step size of the snake algorithm) was compa-
rable between human and animal data and as the fat/water 
contrast was also similar between human and animal data. 
This was determined empirically.

Statistics

Values are given as mean ± standard deviation. Changes in 
body weight, fat and water content are given in percent-
ages. GraphPad Prism 7.03, GraphPad Software, La Jolla 
California USA was used for the statistical analysis. A 
normal distribution was confirmed using the Shapiro–Wilk 
normality test. For imaging data, measurements in follow-
up examinations were expressed as percent change from 
baseline to correct for individual baseline values and used 
for statistical analysis. One-way ANOVA was used for 
group comparisons and p values were corrected for mul-
tiple testing with Bonferroni measures. Pearson’s r was 
used for correlation analysis. Unpaired Student’s t test 
was used for two-group comparisons and for parameters 
from the blood sampling, and values < 0.05 were consid-
ered significant. Graphs were produced with MATLAB 9.5 
R2018b (The MathWorks Inc., Natick, Massachusetts) and 
GraphPad Prism 7.03.

Results

Determination of body composition and cachexia 
monitoring in the experimental B16 melanoma 
mouse model

A cachexia phenotype was confirmed by monitoring animal 
weight and characteristic changes in serum parameters. Sev-
enteen days after tumor inoculation, the weight of the B16 
melanoma-bearing animals (n = 7) was 18.7 ± 1.3 g com-
pared to 20.3 ± 0.4 g in the healthy control group (n = 6, 
p = 0.04). Blood samples acquired at day 17 demonstrated 
a cachectic phenotype in the tumor-bearing animals with 
cholesterol levels of 79 ± 10 mg/dl compared to 101 ± 5 mg/
dl in the control animals (p < 0.02). LDL-C in the cachexia 
mice (12 mg/dl) was increased threefold when compared to 
healthy control mice (4 mg/dl, p < 0.0001; Fig. 1a). In line 
with these data, we also found a significant increase in TAG 
in the tumor-bearing mice (88 ± 8 mg/dl) in comparison to 
the control mice (63.0 ± 3.4 mg/dl, p = 0.02, Fig. 1).

We conducted automated segmentation of VAT and 
SCAT, as well as LTW, of all experimental B16 melanoma-
bearing and healthy control animals. An example of the 
segmentation is given in Fig. 2. B16 melanoma-bearing 
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Fig. 1  Serum parameters 17 days after tumor inoculation. Total cho-
lesterol, LDL-C (low-density lipoprotein cholesterol), TAG (triacylg-
lycerols) and total protein 17 days after subcutaneous B16 melanoma 
cell inoculation (n = 7) compared to healthy control animals (n = 6). 
Values are given in mg/dl and g/dl, respectively, with mean and 
standard deviation. Significant group differences are present for all 
parameters (p < 0.0001, unpaired Student’s t-test)
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animals exhibited a volume of VAT at baseline (3 days 
after tumor inoculation) of 1000.1 ± 323.0 µl, while VAT 
in the control animals was 810.7 ± 111.6 µl (n.s.; Fig. 3a). 
After 12 days, VAT in the melanoma animals was reduced 
to 867.7 ± 285.1 µl (− 12% from baseline), while healthy 
controls showed a VAT volume of 841.9 ± 357.8 µl (+ 4% 
from baseline). After 17 days, VAT was reduced in the mela-
noma group by a mean of 249.8 µl (− 25% from baseline, 
n = 7; p = 0.003 to baseline), while in the healthy control 
animals, VAT increased with age (85.3 µl; + 10% from base-
line, n = 6; p = 0.26 for the group comparison after 17 days, 
n.s.; Fig. 3a).

SCAT volume in the B16-bearing and healthy control ani-
mals was 429.6 ± 149.3 µl and 337.6 ± 93.3 µl, respectively, 
at baseline (n.s.). After 12 days, the SCAT volume in the 
melanoma mice was 416.1 ± 142.4 µl (− 2% from baseline) 
and 390.9 ± 197.7 µl in the healthy control mice (+ 15% 
from baseline, n.s.). After 17 days, the SCAT volume in the 
B16 melanoma mice was reduced to 388.2 ± 55.0 µl (− 16% 
from baseline) and to 372.7 ± 25.7 µl in the control animals 
(+ 10% from baseline, n.s.).

In addition, the lean tissue water volume changed from 
12,934.5 ± 768.3 µl (at baseline) to 13,297.6 ± 503.9 µl (day 
12) and to 13,063.0 ± 227.2 µl (day 17) in the B16-bearing 
animals and from 13,322.8 ± 369.1 µl to 13,893.3 ± 553.6 µl 
(day 12) and to 13,817.5 ± 115.7 µl (day 17) in the control 

animals (p = 0.049). Figure 3b, c gives examples of the MRI 
segmentation with delineation of VAT, SCAT and LTW in 
a B16 melanoma-bearing mouse (B) and a healthy control 
mouse (C).

Identification and monitoring of CC in immune 
checkpoint inhibitor‑treated patients 
with metastatic melanoma

In a prospective clinical study, eighteen patients (10 male 
and 8 female patients with a mean age of 62 ± 10 years) 
underwent MR scans at baseline (before therapy) and follow-
up MR investigations after two weeks and 12 weeks after 
onset of PD-1- or CTLA-4 immune checkpoint inhibitor 
treatment (n = 16) or targeted therapy with BRAF inhibitors 
(n = 2). In addition, we determined the patient weight and 
body mass index at baseline and in both follow-up examina-
tions (Tables 1, 2). Automated segmentation of VAT, SCAT 
and LWT was feasible in all cases except for one patient due 
to a metallic hip prosthesis. In this case, the affected region 
was excluded for all three examinations. 

Five patients were classified as immunotherapy respond-
ers after 12 weeks (RTT), six patients demonstrated a mixed 
response (MIXED), whereas seven patients showed pro-
gressive disease (PD, Table 1). BMI changed with a mean 

Fig. 2  MRI-based segmentation in the B16 melanoma mouse model. 
Representative example for Dixon-based whole-body segmentation in 
a 10-week-old mouse at baseline (a) and 17 days after B16 melanoma 
inoculation with a cachectic phenotype (b), axial slices of the lum-

bar region. Fat and water MRI images (top row) as well as delineated 
segments of visceral adipose tissue (VAT, bottom left with VAT indi-
cated in red) and subcutaneous adipose tissue (SCAT, bottom right 
with SCAT indicated in blue) are shown
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of + 0.73% ± 1.59% for patients with RTT, − 4.66% ± 6.89% 
for MIXED and + 0.55% ± 3.25% for patients with PD.

The change in body weight in percent from baseline to 
the examination after 12 weeks of therapy correlated well 
with the change in total fat (r = 0.81, p < 0.0001). No cor-
relation was observed between the response to therapy and 
changes in BMI.

There were individual and overall differences in 
the composition and body fat changes, but no correla-
tion was observed between changes in body weight 
and therapy response (responder: change from baseline 
mean 0.7% ± 1.6%, range − 1.5% and + 2.6%, nonre-
sponder: − 1.3% ± 5.1%, range − 12.1% to + 4.8%).

LTW was increased in patients with a mixed 
response (+ 4.59% ± 3.71%) and progressive disease 
(+ 1.97% ± 2.19%) under CIT after 3 months compared 
to RTT (− 3.02% ± 2.67%, n = 16, F = 9.05, p = 0.0034; 
mean group difference for RTT vs. MIXED − 7.61 [95% 

CI − 12.4 to − 2.8] and for RTT vs. PD − 4.98 [95% 
CI − 9.6 to − 0.4], MIXED vs. PD n.s.).

Determination of VAT and SCAT revealed no signifi-
cant differences among responders, mixed responders and 
nonresponders. However, while patients with a response to 
treatment showed a relatively narrow band of changes in 
VAT and SCAT after 12 weeks, the standard deviation and 
range of extreme changes increased with a less favorable 
response to treatment for both VAT and SCAT (Fig. 5c).

Figures 4 and 5a give a representative example of the 
MRI segmentation in a 64-year-old patient with rapidly 
progressive disease under CIT (nivolumab). The body 
weight of the patient was 85.1 kg at baseline. The follow-
up examinations revealed a significant loss of the initial 
amount of total fat from 27,780 ml to 26,103 ml after 
2 weeks (− 6%) and to 20,530 ml after 3 months (− 26%, 
Fig. 5a). In line with these data, body weight was reduced 
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after two weeks to 84.0 kg (− 1.3%) and after 12 weeks to 
79.0 kg (− 7.2% from baseline).

Conversely, Fig. 5b shows a representative patient with 
a response to treatment (complete remission) under CIT 
(nivolumab) with unaffected weight. The initial body weight 
was 93.1 kg and the total body fat volume was 38,347 ml. 
After two weeks, the patient exhibited an almost unaffected 
body weight of 92.1 kg (− 1.1%) and after 12 weeks of 
92.9 kg (− 0.2% in total). Total body fat after two weeks of 

immunotherapy was 39,544 ml (+ 3.1%) and 38,664 ml after 
12 weeks (+ 0.8% total).

Discussion

In this study, we used an automated workflow for MRI-based 
quantification of visceral and subcutaneous adipose tissue 
and lean tissue water in mice and humans to noninvasively 

Table 2  Changes for BMI, VAT, SCAT and LTW for all patients categorized by response assessment for progressive disease (PD), mixed 
response to treatment (MIXED) and response to treatment (RTT); green: increase; red: decrease, yellow: no change

patient BMI change to baseline (%) VAT change to baseline (%) SCAT change to baseline (%) LTW change to baseline (%) response
7 -1.48 1.96 -0.49 -4.13 RTT

10 -0.21 1.88 -0.72 1.42 RTT
17 1.34 7.17 4.89 -3.62 RTT
14 1.41 1.96 1.25 -3.04 RTT

6 2.60 -4.07 -2.48 -5.72 RTT
15 -13.81 -13.86 -19.49 -14.67 MIXED

8 -7.17 -38.13 -17.07 6.76 MIXED
9 -4.09 -6.44 -4.58 -0.31 MIXED
5 -2.42 -14.50 -7.48 1.76 MIXED

18 2.80 17.13 7.42 6.15 MIXED
3 4.20 0.32 4.04 8.59 MIXED
1 -12.10 -44.83 -34.87 -1.31 PD
4 -4.37 -5.76 -3.78 1.65 PD

11 -1.82 12.96 -0.06 2.31 PD
16 0.44 -1.16 -8.36 4.00 PD
12 1.80 -3.50 2.69 4.80 PD
13 2.44 16.67 13.85 1.54 PD

2 4.78 4.86 0.26 1.11 PD

Fig. 4  MRI-based segmentation in human melanoma patients treated 
with an immune checkpoint inhibitor. Representative example for 
Dixon-based whole-body segmentation of a 64-year-old melanoma 
patient with PD-1-mAbs therapy at baseline (a) and with progressive 
disease after 3 months of CIT (b), axial slices of the lumbar region 

are given. Fat and water MRI images (top row) as well as deline-
ated segments of visceral adipose tissue (VAT, bottom left with VAT 
indicated in red) and subcutaneous adipose tissue (SCAT, bottom 
right with SCAT indicated in blue) are shown. Total fat was reduced 
by − 26% after 12 weeks, body weight was reduced by − 7.2%
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monitor changes in the development of CC in melanoma-
bearing mice and to investigate changes in body composition 
in patients with metastasized melanoma under immune ther-
apy. In both animals and metastatic melanoma patients, the 
quantification of visceral and subcutaneous fat was feasible.

The cachectic phenotype was confirmed in the mice by 
weight loss and serum parameters. While the effects of 
tumor induced cachexia on plasma lipids vary between dif-
ferent cancer types, both human and murine tumor cell lines 
lead to hyperlipidemia and can contribute to tumor growth 
[28].

The field of noninvasive fat-muscle quantification is of 
increasing interest. Starting from phantom studies [29], 
moving to feasibility studies in humans and animals [30, 31] 
and then to large-scale studies [32–34], multi-echo DIXON 
approaches have shown to be a robust and reliable method 
for fat and water quantification [35]. While DIXON tech-
niques are part of many clinical examinations of the abdo-
men, segmentation of fat and body water is not performed 
routinely.

With the help of an automated segmentation script, 
body composition analysis was feasible for both human and 
murine subjects at different field strengths and with differ-
ent scanner types. The equality of different fat segmenta-
tion strategies has recently been revisited [31, 36], making 
different approaches usable in broader clinical practice. 
Multi-point Dixon sequences have gained widespread use 
in clinical practice over the last years. While they show sev-
eral advantages, such as the ability to adaptable echo times, 
more robust correction for magnetic field inhomogeneities 
or benefits in obese patients [35, 37, 38], we used the 2-point 
Dixon as this sequence is routinely implemented as part of a 
PET/MR protocol for the purpose of MR-based attenuation 
correction. The sequence is optimized for the scanner used 
in this study and robust against fat/water swaps. Further-
more, this sequence can be acquired in breath hold which is 
important for thoracic and abdominal acquisition. To reduce 
scan time, and as the 2-point Dixon segmentation was robust 
for the purpose at hand, we did not acquire an additional 
3-point Dixon sequence. Most clinically oriented studies at 
hand focus on obesity-associated subjects [39], with predic-
tive impacts for patient care. Rospleszcz et al. emphasized 
the need for longitudinal assessment in cardiometabolic risk 
estimation [22]. For tumor patients, recent studies with large 
cohorts of nonmetastatic breast cancer patients by Bradshaw 
and Caan [18, 19] demonstrated these image analysis meth-
ods added additional prognostic information in the detection 
of sarcopenia and adipose tissue distribution as these are not 
easily assessable clinically.

With the introduction of more immune checkpoint inhib-
itor-based therapeutic regimens in clinical practice, the need 
for early therapeutic response assessment by imaging is of 
increasing importance. A series of studies with a focus on 

imaging in the context of CIT investigated side effects and 
induced autoimmune phenomena, such as pancreatitis and 
myositis [40, 41]. Recently, monitoring of systemic immune 
responses and prediction of long-term outcomes were dem-
onstrated for 18F-FDG-PET/CT [42] in ipilimumab- and 
nivolumab-treated melanoma patients. Despite the ease of 
direct assessment of therapeutic success of viable tumor tis-
sue or the detection of side effects, the analysis of concomi-
tant effects in immune therapy remains elusive.

Indirect patterns of favorable or unfavorable tumor 
therapy-associated metabolic signs of treatment success or 
tumor therapy-associated adverse metabolic consequences 
are becoming even more relevant with the use of CTI. CC, as 
an independent factor impacting cancer patient survival, is a 
tumor- and therapy-associated risk that is not easily assess-
able with clinical examinations and blood parameters [4].

We have recently investigated metabolic epiphenomena in 
melanoma patients receiving CIT and found increased meta-
bolic activity in the bone marrow of patients with a response 
to CTI compared to that in nonresponders [25]. Seeking 
additional auxiliary metabolic indications for therapeutic 
efficacy, the aim of this study was to investigate changes in 
VAT and SCAT as a profile of metabolic therapy response. 
Thus, we adjusted automated segmentation from whole-
body MRI-data to create a robust workflow for human and 
murine use and to monitor melanoma-associated metabolic 
phenomena, namely cachexia development and metabolic 
changes during CIT therapy in advanced melanoma.

We were able to observe the progress of CC in B16 mel-
anoma-bearing animals and demonstrate a mean reduction 
of 25% of total visceral adipose tissue volume after 17 days. 
Monitoring the changes in metastatic melanoma patients 
revealed limited changes with regard to BMI; however, as 
with VAT and SCAT, the variability seems to be increased 
when there is a more unfavorable outcome. Bradshaw and 
Caan [18, 19] saw increased mortality in patients with sar-
copenia and increased SCAT in nonmetastatic breast can-
cer patients. It remains difficult to compare various cancer 
entities and different metastatic stages, especially as it is 
well known that sarcopenia and cachexia are very variable 
between different cancer entities [4].

In our study, LTW values were increased in patients 
with a mixed response and those with PD in comparison 
to patients with a response to treatment. This might be an 
indicator of anasarca, as CTI is associated with cardiotoxic-
ity and heart failure [43], although ascites, heart failure, and 
other signs of cardiovascular toxicity were not documented 
in any of the patients.

A limitation of this study is the small number of 
patients. Melanoma patients were prospectively recruited 
and monitored for their responses to the therapeutic inter-
ventions, but the MRI examinations were analyzed in ret-
rospect. Thus, patients were not matched for sex, baseline 
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weight or other variables. The exposure to different envi-
ronmental factors, exercise and food intake, among others, 
could interact with systemic reactions to CIT. This makes 

it difficult to correct for different body compositions at 
baseline, individual food intake, and lifestyle, as well as 
effects of the immunomodulatory therapy.
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Conclusion

Noninvasive monitoring of the ancillary metabolic effects of 
tumor progression showed reduced amounts of visceral and 
subcutaneous adipose tissue in a melanoma mouse model, as 
well as increased variation in adipose tissue in CIT-treated 
metastatic melanoma patients with progressive disease or 
mixed response. Interestingly, LTW significantly increased 
in metastatic melanoma patients with a mixed response and 
those with progressive disease, while no change or even a 
decrease was determined in patients with a response to CIT. 
Thus, the results of this study emphasize the importance of 
the monitoring of image-derived metabolic markers of body 
composition, especially as checkpoint inhibitor therapies 
become more widely used in clinical practice.
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