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Airway smooth muscle (ASM) cells undergo remodelling and reside in a tissue structure that is subject
to heterogenous stress distributions that change dynamically during the breathing cycle. In this paper, we
develop a structural model of an ASM cell that consists of contractile units (actin and myosin filaments) in
series and parallel, anchored to a nonlinearly elastic cytoskeleton. We mimic a typical experimental pro-
tocol that involves isometric force generation through triggering of the contractile machinery, followed
by oscillatory length fluctuation of the cell. We use the model to predict the effect of a single instance
of rearrangement of the contractile machinery, combined with strain-stiffening of the cytoskeleton, on
the force generated by the sarcomeres, and the total force generated by the cell. By linking intra-cellular
events to whole-cell behaviour, the model reveals mechanistic relationships between structural proper-
ties and cell-level force–length loops. We show how contractile force, shortening velocity and sarcomere
operating lengths vary as the internal cell architecture is altered. Additionally, we show how interactions
between the internal contractile machinery and cytoskeletal structure play a role in the regulation of force
generation and hysteresis of the cell.
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1. Introduction

In chronic asthma, airway remodelling as a result of increased airway smooth muscle (ASM) is a
well-known phenomenon (Brightling et al., 2012). The elastic stress distributions in a remodelled (and
therefore thickened, relative to the lumen) airway wall are predicted to be highly heterogenous, with dif-
ferent regions experiencing either tensile or compressive hoop and radial stresses (Brook et al., 2010).
This suggests that ASM cells within the wall are likely to be in different stress micro-environments
depending on their position in the airway wall. The ability of ASM to adapt to changes in length and
maintain maximal force generation over a large length range (Gunst et al., 1995; Pratusevich et al.,
1995) appears to require plastic changes in sub-cellular structures that involve rearrangement of con-
tractile units within the contractile apparatus and reshaping of the apparatus itself. Smooth muscle
cell plasticity has also been demonstrated via force-fluctuation-induced re-lengthening of ASM cells
(Dowell et al., 2005, 2010). In order to understand the effect of different stress environments (partic-
ularly the dynamic changes during tidal breathing) on the contractility and plasticity of the ASM and
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hence on the airway, a bottom-up approach seems necessary to account for the multitude of mechanisms
operating at the cell- and sub-cellular levels.

A number of mathematical models have been proposed that address different aspects of smooth
muscle plasticity, such as the stochastic percolation model of Silveira et al. (2005) and the overlap one-
dimensional (1D) model developed by Lambert (2004). However, these models do not incorporate the
molecular mechanisms of force generation. Fredberg et al. (1999) and Mijailovich et al. (2000) based
their models of active force generation on the cross-bridge mechanisms that occur in the smooth mus-
cle cell, combining the original sliding-filament model of Huxley (1957) (which accounts for actin-
myosin interactions) and the Hai–Murphy four-state model (Hai & Murphy, 1988a,b). These have
subsequently been further developed and used by Wang et al. (2008), Politi et al. (2010) and Lau-
zon et al. (2012) in larger multi-scale models coupling molecular interactions to organ-level mechan-
ics. In addition, there is a growing consensus that while acto-myosin cross-bridge dynamics are key
(Fredberg et al., 1999; Mijailovich et al., 2000), they are not sufficient to explain all the observed
behaviour of the ASM cell. Emerging data support the view of the actin cytoskeleton of smooth
muscle cells as a dynamic structure (evolving through actin (de-)polymerization) which, in concert
with active force-generation mechanisms, could play an integral role in regulating the development
of mechanical tension and the material properties of smooth muscle tissues (Gunst & Fredberg, 2003;
Gunst & Zhang, 2008; Mehta & Gunst, 1999; Zhang & Gunst, 2008). None of the models described
above, however, account for force-generation, cytoskeletal dynamics and plasticity in a comprehen-
sive quantitative model of the ASM cell as a self-contained structure that forms part of a composite
tissue.

In order to link the multitude of intra-cellular events to behaviour at the level of the whole cell and
thus eventually to ASM tissue, we develop here a new model of an individual ASM cell that incor-
porates molecular cross-bridge interactions and cytoskeletal properties and the effects of contractile
unit re-arrangement. We assess the ability of such a model to explain biomechanical observations from
experimental protocols that are commonly used to investigate contractile and mechanical properties of
ASM tissue. Typically a strip of tissue is taken from an airway and the length of the strip is held fixed,
while a known amount of agonist is added. The agonist triggers contraction which evolves until a max-
imal isometric force is generated. The strip is then stretched sinusoidally. Contractile force is measured
and plotted against the length of the strip. Typical force–length loops (taken from Bates et al., 2009)
are shown in Fig. 1. In their paper, Bates et al. used a one-dimensional model for the tissue in which a
nonlinear viscoelastic Kelvin–Voigt element is in series with a single active force generator, all in par-
allel with a second nonlinear Kelvin–Voigt body, to account for the passive and active properties of the
strip. They were able to show that by selecting appropriate nonlinearity for the elastic and viscoelastic
elements, the observed ‘banana-shape’ force–length loops could be reproduced to some extent. While
this phenomenological tissue-scale model is useful, we believe that modelling individual cells, and their
intra-cellular structure, will more clearly reveal the mechanistic basis for the nonlinear expressions used
by Bates et al.

We begin this task by considering a simplified model of an individual ASM cell, accounting for
nuclear, contractile unit and cytoskeletal mechanical properties. The complexity of the numerous inter-
actions necessitates simplification of some of the mechanisms in order to understand thoroughly the
effect of different intra-cellular structural elements on overall cell behaviour. At this initial stage
our model allows us to explore the effect of changes in the cell’s internal architecture arising from
externally imposed strain and reveals the contributions of different elements to cell-level force–length
loops.
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Fig. 1. Force–time and force–length traces obtained in a strip of rat trachealis muscle. The grey curves show data obtained with
2 Hz length oscillations having amplitudes of ±1, ±2, and ±4% Lref as indicated, where Lref is the unstressed, resting length of
the tissue strip. Isometric force–time curves are shown in black (at left; solid lines obtained before collecting oscillation data,
dashed lines obtained afterwards). The black curves (at right) show the first (solid line) and last (dashed line) force–length loops
obtained during length oscillation. Reproduced with permission from Bates et al. (2009).

2. Methods

2.1 1D cell model

On the basis of the conceptual model of ASM cell structure proposed by Kuo & Seow (2004)
(see Fig. 2), we propose a 1D model of a smooth muscle cell as depicted in Fig. 3. We assume that
contractile units consisting of a myosin and two actin filaments connect to other contractile units via
dense bodies in series as depicted in Fig. 4. (We will refer to these contractile units as sarcomeres
although they are different in structure from the sarcomeres found in striated muscle.) The sarcom-
eres anchor via focal adhesions to the cell cytoskeleton directly or in series with the cell nucleus and
cytoskeleton (Kuo & Seow, 2004). We thus assume for simplicity that the sarcomeres form two types
of rows (termed A and B in our model) as depicted in Fig. 3. Histological sections of muscle cells (Kuo
& Seow, 2004) provide information about the proportion of sarcomeres present in the cell that connect
to the nucleus via actin filaments and dense bodies (type A), and the proportion that connect directly to
the cytoskeleton (type B). In the present study, we model a single instance of the rearrangement of these
contractile units because of an imposed length change of the whole cell.

In the model presented below, starred quantities are dimensional and bars denote quantities at max-
imally activated steady-state isometric conditions. At any time t∗ the length of an individual cell L∗(t)
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Fig. 2. Schematic of contractile filament architecture in a bundle of ASM cells. Reproduced with permission from Kuo & Seow
(2004).

Fig. 3. Model of a single ASM cell, consisting of contractile units or sarcomeres of length Y∗
A, each generating a force F∗

A con-
nected to a relatively stiff nucleus (stiffness E∗

A) in parallel with contractile units of length Y∗
B, connected only to the cytoskeleton,

each generating a force F∗
B. The elasticity of the cytoskeleton itself is depicted as another spring in parallel with stiffness E∗

C. The
effect of the extensional viscosity of the whole cell, is represented as a dashpot in parallel, with extensional viscosity μ∗

D.

and the lengths of the individual sarcomeres Y ∗
A(t∗) and Y ∗

B(t∗) (see Fig. 3) satisfy

L∗ = N∗
AY ∗

A + Z∗ = N∗
BY ∗

B, (2.1a)

where N∗
A and N∗

B are the number of sarcomeres connected in rows A and B, respectively. We assume
that all the sarcomeres in each row are identical. The total number of sarcomeres is N∗

S = N∗
A + N∗

B.
We assume that either N∗

A and N∗
B are constants for all time, or piecewise constant, with instantaneous

change in their value from their initial state N
∗
A, N

∗
B, to some new value, while ensuring that N∗

S is
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Fig. 4. (a) Schematic of a row of ASM contractile units in series. The row depicted here is row B, the contractile units connect to
the cytoskeleton via membrane adhesion complexes. (b) Reduction in the number of available cross-bridges as a result of stretch
and the reduction in the overlap length between actin and myosin filaments. (c) Reduction in the overlap length via compression
and hence a reduction in the number of available cross-bridges.

conserved, to mimic contractile apparatus rearrangement at a particular time. Typical parameter values
for these quantities and others that follow below are given in Table 1.

The total force, T∗, that the cell exerts (which may be tensile or compressive) on its neighbours is
given by the sum of the forces in each of the parallel contributions. Balancing forces, it follows that

T∗ = F∗
A + F∗

B + E∗
C(L∗ − L∗

0) + μ∗
DL̇∗, (2.1b)

where

F∗
A = E∗

A(Z∗ − Z∗
0 ), (2.1c)

the dot over L in (2.1b) denotes a time derivative. L∗
0 and Z∗

0 are the unstressed cell and nucleus length,
respectively. The stiffness of the cytoskeleton, E∗

C, represented by the spring in Fig. 3, can vary by
several orders of magnitude and is thought to depend on the strain amplitude and rate (Chen et al., 2010;
Krishnan et al., 2009). We, however, note that these reported measures are related to the cell stiffness
measured immediately after the cell has been transiently stretched and then returned to its reference
state. The hypothesis is that this observed ‘fluidization’ is a result of disrupted links between actin and
myosin filaments as well as cross-linkers within the cytoskeleton and is a time-dependent effect. Here,
we account for an instantaneous amplitude-dependence and apply an empirical nonlinear stress–strain
relationship E∗

C = a∗ exp(bL∗/L∗
0), where a∗ and b are constants. We refer to this as strain-stiffening,

consistent with the solid mechanics terminology (Holzapfel, 2000); this is distinct from, and not to be
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Table 1 Physiological dimensional parameter values. All chemical kinetic rate constants are
taken from Mijailovich et al. (2000)

Quantity Parameter name and value

Average length of individual sarcomeres at
maximum overlap

Y
∗
A ∼ Y

∗
B ≈ 2 µm (Kuo & Seow, 2004)

Average length of an ASM cell at maximum
activation

L
∗ ≈ 100 µm (Stephens et al., 1998)

Undeformed length of nucleus Z∗
0 ≈ 10 µm (Kuo & Seow, 2004)

Stiffness of the cell nucleus E∗
A ≈ 0.7 Nm−1 (Kuo & Seow, 2004)

Extensional viscosity of the cell μ∗
D ≈ 3 Ns m−1 (see below)

Stiffness of the cytoskeleton varies with
frequency

E∗
C ≈ 0.1 − 10 Nm−1 (Trepat et al., 2007)

Number of available cross-bridges at max
overlap in each sarcomere

ρ∗
i ≈ 6 × 107 m−1 (see below)

Stiffness of each cross-bridge K∗ = 1.8 × 10−3 Nm−1 (Warshaw & Fay, 1983)

Power-stroke length h∗ = 15.6 nm (Mijailovich et al., 2000)

Frequency of oscillation ω∗ = 2 Hz (Bates et al., 2009)

Myosin light chain kinase rate k∗
1 = k∗

6 = 0.06 s−1

Myosin light chain phosphorylation rate k∗
2 = k∗

5 = 0.1 s−1

Cycling cross-bridge attachment rate
constants

f ∗
p1 = 0.88 s−1

Cycling cross-bridge detachment rate
constants

g∗
p1 = 0.22 s−1, g∗

p2 = 4(f ∗
p1 + g∗

p1), g∗
p3 = 3g∗

p1

Latch bridge detachment rate constants g∗
1 = 0.1 s−1, g∗

2 = 20g∗
1, g∗

3 = 3g∗
1

confused with, the post-stretch fluidization observed in the cell-level experiments (Chen et al., 2010;
Krishnan et al., 2009). It is likely that the cell nucleus stiffens with stretch but we will assume here that
E∗

A is constant. Finally, we assume that the cell resists deformation via an extensional viscosity μ∗
D.

2.2 The Huxley–Hai–Murphy model of force generation

The Hai–Murphy four-state model (Hai & Murphy, 1988a,b) is based on observations that myosin exists
in four distinct states: (i) free unattached myosin (M ∗), (ii) phosphorylated unattached myosin (M ∗

p ),
(iii) phosphorylated myosin attached to actin (AM ∗

p ) (the so-called rapidly cycling cross-bridges) and
(iv) de-phosphorylated myosin attached to actin (AM ∗), which give rise to very slowly cycling or non-
cycling cross-bridges (also called latch-bridges). The transitions from one state to another are shown in
Fig. 5.

The forces generated by the sarcomeres are triggered by application of agonist and evolve with
time. The Huxley–Hai–Murphy (HHM) model (Mijailovich et al., 2000), based on the chemical model
of Hai & Murphy (1988a) and the sliding cross-bridge model of Huxley (1957), is used to determine
the magnitude of the force and shortening velocity. The equations that relate force generation by the
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Fig. 5. Transitions between the four states accounted for in the Hai–Murphy regulation scheme.

sarcomeres to their shortening velocity are given by

∂n∗
i

∂t
− V ∗

i

∂n∗
i

∂x∗ = S∗
i n∗

i , (2.2a)∑
n∗

i = ρ∗
i , (2.2b)

for i = A, B, where x∗ is an internal variable representing the displacement of the cross-bridges from
their unstressed position, n∗

i (x
∗, t∗) ≡ (M ∗

i (x∗, t∗), M ∗
pi(x

∗, t∗), AM ∗
pi(x

∗, t∗), AM ∗
i (x∗, t∗)) is the number

density (in x∗ space) of cross-bridges in each pool, ρ∗
i is the total number of available cross-bridges per

unit length of sarcomere, and the sum in (2.2b) is over the four components of n∗
i . V ∗

i is the shortening
velocity of the sarcomere and is positive for contraction, so that V ∗

i = −Ẏ ∗
i .

In previous studies that implement the HHM model (Mijailovich et al., 2000; Wang et al., 2008), ρ∗
i

was assumed to be constant throughout the simulation. In the model presented here, we assume that ρ∗
i

for i = A, B are either constant and maximal (i.e. ρ∗
i = ρ∗

i ) throughout, or piecewise constant, changing
from ρ∗

i to ρ∗
i /2 at a particular point in time. The reason for this choice is discussed further below.

The matrix S∗
i (x

∗, t∗) in (2.2a) describes the probabilities of transitions between the four states, and
how those probabilities depend on x∗. Phosphorylation transitions between M ∗ and M ∗

p , and between
AM ∗ and AM ∗

p are independent of x∗. Phosphorylation of myosin facilitates interaction with actin. Tran-
sitions between M ∗

p and AM ∗
p and M ∗ and AM ∗ depend on x∗ as the attachment of myosin heads to actin

binding sites is more likely when the cross-bridge is within a powerstroke length, h∗, of the nearest
binding site. Likewise, detachment is more likely outside this powerstroke length. S∗

i (x
∗, t∗) is given in

Fredberg et al. (1999) as

S∗
i (x

∗, t∗) =

⎛
⎜⎜⎜⎜⎝

−k∗
1 k∗

2 0 g∗(x∗)

k∗
1 −k∗

2 − f ∗
p (x∗) g∗

p(x
∗) 0

0 f ∗
p (x∗) −k∗

5 − g∗
p(x

∗) k∗
6

0 0 k∗
5 −k∗

6 − g∗(x∗)

⎞
⎟⎟⎟⎟⎠ , (2.2c)

where

(f ∗
p (x∗), g∗

p(x
∗), g∗(x∗)) =

⎧⎪⎪⎨
⎪⎪⎩

(0, g∗
p2, g∗

2), x∗ < 0,

(f ∗
p1x∗/h∗, g∗

p1x∗/h∗, g∗
1x∗/h∗), 0 � x∗ � h∗,

(0, (g∗
p1 + g∗

p3)x
∗/h∗, (g∗

1 + g∗
3)x

∗/h∗), h∗ < x∗.

(2.2d)
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Strictly, the conservation law (2.2b) is valid only during isometric contraction (Fredberg et al., 1999;
Mijailovich et al., 2000). Implicit in the use of this conservation law during non-isometric situations is
the assumption that the distance between actin binding sites is much larger than h∗, so that there is no
interference between neighbouring binding sites.

Assuming that the attached cross-bridges are linear elastic springs in parallel, and that both bound
species exert equal force, the total force generated by each sarcomere is calculated by

F∗
i = K∗

∫ ∞

−∞
x∗q · n∗

i dx∗, (2.2e)

where i = A, B, K∗ denotes the spring stiffness of the cross-bridges and q ≡ (0 0 1 1) .

2.3 Initial and boundary conditions

Following the experimental protocol described in Section 1, we consider two phases. First, in the period
0 � t∗ � t∗, we simulate isometric force generation in the presence of agonist by holding L∗ = L

∗ = L∗
0

and increasing the concentration of agonist from zero to some constant (simulated via a step change in
the constants k∗

1 and k∗
6 from zero to the values in Table 1). We assume that initially all the cross-bridges

are dephosphorylated and unbound so that

F∗
i (0) = 0 and n∗

i (0) = (ρ∗
i , 0, 0, 0). (2.3)

In the period 0 � t∗ � t∗, we assume that the internal architecture of the cell has a particular configura-
tion, i.e. N

∗
A = N

∗
B = N∗

S /2 (Kuo & Seow, 2004), and that there is maximal overlap between actin and
myosin filaments as depicted in Fig. 4, so that ρ∗

i = ρ∗
i .

In the second phase, t > t∗, length-oscillations are imposed on the tissue strip. We thus prescribe a
time-dependent cell length so that for the entire protocol, we write

L∗ =
{

L
∗
, 0 � t∗ � t∗,

L
∗ + L∗

ε sin(ω∗(t∗ − t∗)), t∗ > t∗,
(2.4)

where L∗
ε is the amplitude of length oscillation, and ω∗ its frequency.

We wish to investigate the effect of modified or remodelled cell architecture (both internal and
cytoskeletal) on force generation. We therefore assume the following possibilities for the internal archi-
tecture at t∗ = t∗.

(i) The internal architecture retains its initial configuration, i.e. N∗
i = N

∗
i = 0.5N∗

S and ρ∗
i = ρ∗

i for
i = A, B. Current models (Politi et al., 2010; Wang et al., 2008) that calculate force generation
in ASM via the HHM cross-bridge model assume implicitly that this is the case.

(ii) Alternatively, at t∗ = t∗, there is an abrupt change in internal architecture. This is conceived
in response to observations of Lavoie et al. (2009) who propose that length fluctuations may
completely disrupt actin–myosin connectivity. A mechanism that would lead to this is as fol-
lows. Imposed strain causes ρ∗

i to decrease with both increase and decrease in overlap length
(as depicted in Figs 4b and c, as proposed by Herrera et al., 2005) and therefore to vary con-
tinuously as a function of overlap length and hence time. At some threshold strain, ρ∗

i becomes
too small for myosin to hold on to actin filaments and the contractile unit disassembles and
reassembles somewhere else in the cell (i.e. a different row). The present model assumes that
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the strain imposed prior to the onset of oscillations causes this disassembly and reassembly to
occur instantaneously, resulting in changes in the number of row A and row B sarcomeres along
with sudden reduction of ρ∗

i . We model the subsequent rearrangement as a drop in the number of
sarcomeres in one row and an increase in the other row, ensuring conservation of N∗

S . Given the
observation that the ratio of actin to myosin filaments is ∼20:1 (Kuo et al., 2003), this assumption
makes sense physiologically. Thus, at t∗ = t∗, we assume that N∗

A drops to 1
4 N∗

S so that N∗
B = 3

4 N∗
S .

The fact that there are fewer (more) contractile units in row A (B) compared with row B (A) also
suggests that there will be a decrease in overlap length between actin and myosin filaments which
will result in a concurrent drop in ρ∗

A (ρ∗
B) (Herrera et al., 2005) as depicted in Fig. 4b and c.

We arbitrarily assume here that ρ∗
i drops to ρ∗

i /2. Once this architecture is established, we assume
that it remains in this configuration in t∗ > t∗. (A more realistic mechanism would allow for these
changes in ρ∗

i and N∗
i to occur dynamically and as continuous variables of overlap length which

is related to our definition of sarcomere length—the distance between two dense bodies on differ-
ent actin filaments (Fig. 3b and c). In this case, we would require ρ∗

i = ρ∗
i (Y ∗

i ) and N∗
i = N∗

i (Y ∗
i ),

but this complicates the model significantly, introducing nonlinearity in the expression for the
shortening velocity (see Appendix); this will further be explored in future work. We apply instan-
taneous changes here to ensure that this first model remains relatively simple.) The architecture
description is thus given by

(N∗
A, N∗

B, ρ∗
A, ρ∗

B) =

⎧⎪⎨
⎪⎩

(N
∗
A, N

∗
B, ρ∗

A, ρ∗
B), 0 � t∗ < t∗,

(
1

4
N∗

S , 3
4 N∗

S ,
1

2
ρ∗

A,
1

2
ρ∗

B), t∗ � t∗.
(2.5)

The cytoskeleton is also thought to be highly malleable (Chen et al., 2010; Krishnan et al., 2009)
with large changes in cell stiffness observed on applying transient stretch. This response, often termed
‘fluidization’, appears to be time-dependent one and is not accounted for here. On the other hand, the
instantaneous elastic response to imposed strain is characterized by a nonlinear stress–strain relationship
(referred to as ‘strain-stiffening’ in the solid mechanics literature). We account for such cytoskeletal
changes phenomenologically via the following cases:

(A) The cytoskeletal stiffness is constant (either E∗
C = 0.1 N m−1 or E∗

C = 0.001 N m−1) .

(B) The cytoskeletal stiffness varies with strain (and hence cell length Kim et al., 2011) according to

E∗
C = a∗ ebL∗/L∗

0 , (2.6)

where a∗ and b are constants chosen to ensure that E∗
C varies from 0.001 to 10 N m−1 over a

length range of ±10% of the reference length.

2.4 Maximally activated steady state at fixed length

In the first phase, 0 � t∗ � t∗, the proportions of myosin in the different states evolve as the myosin
phosphorylates (driven by the imposed change in k∗

1 and k∗
6 from 0 to 0.35 s−1) and begin to attach

to the actin filament, thus generating a time-dependent force in both rows of sarcomeres. The reac-
tions eventually settle to an activation steady state (n∗

i ) at which the contractile force is maximal at the
imposed length L

∗
, referred to as the maximum isometric force (which we denote as F

∗
i ) and where the
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shortening velocity Ẏ ∗
i = 0. In Section 2.5, we will rescale the variables with respect to this maximally

activated steady-state configuration.
The length of the row B sarcomeres, in the initial isometric phase, remains constant so that

N∗
B Y ∗

B = L∗, V ∗
B = 0. (2.7)

Equation (2.2a) reduces to a system of one-dimensional equations (parametrized by x∗):

∂n∗
B

∂t∗
= SB(x∗)n∗

B, (2.8)

subject to the initial condition n∗
B(x∗, 0) = ρ∗

B(1, 0, 0, 0). The time-dependent isometric solution is given
by

n∗
B(x∗, t∗) =

4∑
k=1

akvk(x
∗)eλk(x∗)t∗ , (0 � t∗ � t∗), (2.9)

where ak are constants; λk(x∗) are the eigenvalues and vk(x∗) the corresponding eigenvectors, of SB(x∗)
satisfying SBvk = λkvk . We numerically find that all but one of the eigenvalues are negative, and the
remaining one is always zero (and is true for all x∗). The zero eigenvalue (equilibrium) solution satisfies
the simultaneous equations

SBn∗
B = 0. (2.10)

n∗
B(x∗) is non-zero only in the region 0 � x∗ � h∗, in which its components are

M ∗
p B

(x∗) = k∗
5 k∗

1

(1 + κ)k∗
1 k∗

5 + k∗
1(k

∗
6 + g(x∗))κ + k∗

2 k∗
5 + g(x∗)κk∗

5
, (2.11a)

M ∗
B(x∗) =

(
k∗

2

k∗
1

+ g(x∗)
k∗

1
κ

)
M ∗

p B
(x∗), (2.11b)

AM ∗
B(x∗) = κM ∗

p B
(x∗), (2.11c)

AM ∗
p B

(x∗) = k∗
6 + g(x∗)

k∗
5

κM ∗
p B

(x∗), (2.11d)

where

κ(x∗) = fp(x∗)k∗
5

(k∗
5 + gp(x∗)) − k∗

5 k∗
6

. (2.11e)

The remaining eigenmodes decay as t∗ increases but contain boundary layers of time-dependent
thickness near x∗ = 0+ (based on numerical evidence). Since the equilibrium solution n∗

B(x∗) obtained
directly from (2.10) does not include such boundary layers, the maximum isometric force calculated via
(2.2e)

F
∗
B = K∗

∫ ∞

−∞
x∗q · n∗

B(x∗) dx∗, (2.12)

is only the leading-order approximation.
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We now consider the row A sarcomeres. These are able to shorten while the cell is held at fixed
length subject to (2.1a). Thus, at maximally activated steady state, where Ẏ ∗

A = 0,

N
∗
AY

∗
A + Z

∗ = L
∗
, (2.13a)

and from (2.1c), we obtain

Z
∗ = F

∗
A

E∗
A

+ Z∗
0 . (2.13b)

At equilibrium, therefore, n∗
A will again be the zero-eigenmode, satisfying SA(x∗)n∗

A = 0. Again the
leading order approximation for maximum isometric force F

∗
A is calculated via (2.2e) and can be sub-

stituted into (2.13) to obtain the equilibrium lengths Z
∗

and Y
∗
A.

The steady-state lengths are thus given by (2.13b) and

Y
∗
B = L

∗
/N

∗
B, Y

∗
A = 1

N
∗
A

(
L

∗ − Z∗
0 − F

∗
A

E∗
A

)
. (2.14)

In the transients leading to equilibrium, since the row A sarcomeres are able to shorten, the short-
ening velocity is not zero and is given by eliminating Z∗ from (2.1) and differentiating with respect to
time so that

Ẏ ∗
A = − 1

N
∗
A

(
Ḟ∗

A

E∗
A

)
. (2.15)

This is given further consideration when we consider solutions during length oscillation (see Appendix).

2.5 Non-dimensionalization

We non-dimensionalize lengths and stiffnesses with respect to the maximally activated steady state
according to

L∗ = L
∗
L, Y ∗

i = Y
∗
i Yi, Z∗ = Z∗

0 Z, x∗ = h∗x, t∗ = 1

ω∗ t,

(E∗
A, E∗

C) = E∗
A(1, EC), T∗ = E∗

AL
∗
T and F∗

i = ρ∗
i K∗

αh∗2Fi, (2.16)

for i = A, B, where the steady-state lengths are given by (2.14) and L
∗ = L∗

0 is the unstressed cell length.
Normalizing the number of sarcomeres with respect to N∗

S gives sarcomere fractions Ni = N∗
i /N∗

S for
i = A, B, so that NA + NB = 1.

Applying (2.16) together with (2.14) to (2.1a–c) yields

L = 1

ηA
[1 − β − αAFA]YA + β + αAFA = YB

ηB
, (2.17a)

αAFA = β(Z − 1), (2.17b)

T = αAFA + αBFB + EC(L − 1) + τ L̇, (2.17c)
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revealing the following dimensionless parameters:

ηi = Ni

Ni
= N

∗
i

N∗
i

, γi = Y
∗
i

h∗ , ρi = ρ∗
i

ρ∗
i

, αi = ρ∗
i K∗h∗2

E∗
AL

∗ ,

β = Z∗
0

L
∗ , EC = E∗

C

E∗
A

, τ = μ∗
Dω∗

E∗
A

, (2.17d)

for i = A, B.
The dimensionless equations governing the HHM model of force generation are thus

∂ni

∂t
+ γiẎi

∂ni

∂x
= Sini, (2.18a)∑

ni = 1, (2.18b)

for i = A, B, ni = (Mi, Mpi, AMpi, AMi) is the fraction of cross-bridges in each pool (i.e. Mi = M ∗
i /ρ∗

i ,
etc.), and Si is the matrix of dimensionless rate constants. The dimensionless x-dependent rate functions
are given by

(fp(x), gp(x), g(x)) =

⎧⎪⎨
⎪⎩

(0, gp2, g2), x < 0,

(fp1x, gp1x, g1x), 0 � x � 1,

(0, (gp1 + gp3)x, (g1 + g3)x), x > 1,

(2.18c)

where f ∗
p1 = ω∗fp1 and so on. The dimensionless force generated by each sarcomere is then given by

Fi(t) = ρi

∫ ∞

−∞
xq · ni(x, t) dx, (2.18d)

for i = A, B, where ρi = ρ∗
i /ρ∗

i .
The dimensionless boundary and initial conditions are given by

Ẏi(t) = 0, (2.19a)

L(t) = 1 + ε sin(t − t), (2.19b)

for t � t, where ε = L∗
ε/L

∗
is the dimensionless amplitude of length oscillation. Continuity of ni gives

ni(0
−, t) = ni(0

+, t) and ni(1
−, t) = ni(1

+, t). (2.19c)

Assuming that binding sites are independent of their neighbours requires

AMpi(x) → 0 and AMi(x) → 0 as x → ∞ (2.19d)

with Mi and Mpi given by dimensionless versions of (2.10a,b) with κ = 0.
The two internal architectures are characterized by the following dimensionless parameters:

(i)

ηi = 1, ρi = 1 for t � 0 and i = A, B; (2.20a)
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Table 2 Dimensionless parameter values

Parameter Parameter value

Ratio of sarcomere numbers at non-maximally activated state to that at
maximally activated state

ηA = 1, 2

Ratio of sarcomere length to powerstroke length γi = 100

Ratio of available cross-bridge numbers relative to that at maximally
activated state

ρA = 1, 0.5

Ratio of undeformed nucleus length to cell length β = 0.1

Dimensionless cytoskeletal stiffness EC = 0.001 − 0.1

Dimensionless amplitude of length oscillation ε = 0.01, 0.04

Ratio of cross-bridge properties to cell level properties αi = 0.004

Loss tangent or hysteresivity parameter τ = 0.001, 0.02

Dimensionless time at which oscillations are imposed t = 20

(ii)

(ηA, ηB, ρA, ρB) =
{

(1, 1, 1, 1), 0 � t < t,

(2, 0.67, 0.5, 0.5) t � t.
(2.20b)

Cytoskeletal stiffness is characterized by the following two cases:

(A)
EC = 0.001 or 0.1; (2.21a)

(B)
EC = aebL where a = 1.0 × 10−27 and b = 58. (2.21b)

The constants a and b are chosen to give the range of cytoskeletal stiffness in Table 1 when the
cell length is within ± 10% of its reference length.

The time-dependent dimensionless equations (2.17) and (2.18) together with (A.1) and (A.6) are
solved by recasting the equations into a form which may be solved computationally (see Appendix)
using a Godunov scheme (Harten et al., 1983; Roe, 1986). This scheme combines an upstream differ-
encing finite volume method with a method-of-characteristics approach.

2.6 Parameter values

Dimensional parameter values are given in Table 1, and the resulting dimensionless parameters are
listed in Table 2.

We determine the extensional viscosity μ∗
D in Table 1 from reported values in the literature. Deng

et al. (2006) report values of shear storage and loss moduli (G′ and G′′) of ASM cells that vary with
frequency. The hysteresivity, or loss tangent tan δ = G′′/G′, is reported to remain fairly constant at ∼0.2
over frequencies between 0.1 and 10 Hz. Typically for a Kelvin–Voigt viscoelasticity model, in which
an elastic element of stiffness E∗ is in parallel with a dashpot of viscosity μ∗, tan δ = μ∗ω∗/E∗. The
reported value and the nucleus stiffness in this expression yields an extensional viscosity μ∗

D as given
in Table 1, and corresponds to the larger value of the dimensionless viscosity parameter τ in Table 2.
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This value for viscosity, which is based on the experiment on whole individual cells, is likely to be
an effective value that combines the contributions of both cross-bridge mechanisms and cytoskeletal
structure changes. In the simulations, we find that the smaller value of τ provides closer agreement of
simulated force–length loops with experiment. The value used in the simulations therefore probably
reflects just the cytoskeletal contribution to whole cell viscosity (see Section 4).

To estimate ρ∗
i , we assume that binding sites are distributed uniformly along the actin filament with

a minimum distance of h∗ between them. Then under the assumption of one-to-one correspondence of
cross-bridges with binding sites, we use the sarcomere length Y

∗
i to determine an approximate lower

bound for ρ∗
i as given in Table 1.

3. Results

Figure 6 shows the shortening velocities of the two sarcomere types VA and VB and corresponding
contractile forces FA and FB plotted against time. In the isometric phase (inset of Fig. 6a), row A
sarcomeres undergo shortening with a velocity VA that increases in magnitude to a maximum, after
which it decreases to zero upon reaching maximal force generation (inset of Fig. 6b). This velocity is
several orders of magnitude smaller than that imposed by the subsequent length fluctuations (Fig. 6a).
In the oscillatory phase, the velocities of the two sarcomere types in architecture (i) are similar, the
presence of the nucleus modifying that of the row A sarcomeres slightly as indicated by the red and
blue curves in Fig. 6a. The difference, however, is more exaggerated in architecture (ii) where VA

is increased significantly compared with VB due to the decreased numbers of sarcomeres in row A.
This suggests that reorganization of the internal architecture could result in changes in shortening veloc-
ity as observed experimentally (Jackson et al., 2004; Jensen et al., 2001; Ma et al., 2002) and in model
simulations (Bullimore et al., 2011). In contrast to the model simulations of Bullimore et al. (2011) the
shortening velocity changes in our model as a result of changes in strain rate; cross-bridge cycling rates
fp, gp and phosphorylation rate k1 are not modified.

The contractile forces Fi corresponding to the shortening velocities in Fig. 6a are plotted against time
in Fig. 6b. Force-generation during the isometric phase is identical for both row A and B sarcomeres
and for both architectures (inset of Fig. 6b). At the onset of length oscillations, A and B sarcomeres in
architecture (i) generate almost identical force, as would be expected by the similar shortening velocities
seen in Fig. 6a. However, the amount of force that can be generated by the different sarcomere types
in the two different architectures becomes evident (Fig. 6b). The significant drop in contractile force
of row A and row B sarcomeres, as the architecture is modified, is particularly striking; this is a result
of the reorganized contractile apparatus restricting the availability of cross-bridges. Additionally, the
timescale associated with the reduction in contractile force on application of length fluctuations appears
to be different for the two sarcomere types for architecture (ii); an exponential fit suggests that force
generated by row A sarcomeres decays slightly quicker than row B sarcomeres (transients not shown).

Figure 7 shows the contractile force Fi, plotted against sarcomere length Yi, where i = A, B, for the
two architectures (i) and (ii) for the simulations shown in Fig. 6. For architecture (i) (Fig. 7a and b) the
force–length loop for row A sarcomeres is only slightly different from that of the row B sarcomeres. B
sarcomeres do not undergo length change during isometric force generation (indicated by the straight
vertical black curve at YB = 1) while row A sarcomeres contract from their relaxed length YA(0) (given
in (A.7)) to 1. At the onset of length oscillations, the slight difference in the force–length loops between
row A and row B sarcomeres is then attributed entirely to the presence of the nucleus. The force–length
loops for architecture (ii) are shown in Fig. 7c and d. The straight horizontal sections of the transient
curves are a result of the abrupt increase (decrease) in length of the row A (B) sarcomeres from their
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Fig. 6. Blue curves (Row A sarcomeres) and red curves (Row B sarcomere) correspond to the architecture described by (i),
while the architecture described by (ii) is represented by green curves (Row A) and magenta curves (Row B); see colour version
online. (a) Shortening velocity VA and VB plotted as a function of time during one oscillatory cycle for ε = 0.04 many cycles after
the start of the oscillatory phase in which the solution has settled to a periodic orbit. Inset: VA and VB as functions of time for
architectures (i) and (ii) during the early part of the isometric phase 0 � t �6, recalling that oscillations are imposed at t = 20.
Only the curves for architecture (ii) are visible as they overlay the architecture (i) curves identically. (b) Contractile force FA and
FB corresponding to shortening velocities in (a) plotted as a function of time for both oscillatory and isometric (inset) phases.
Note that FA and FB during the oscillatory phase in architecture (i) are almost identical and thus not easily distinguishable on the
graph. The same is true during the isometric phase for FA and FB for both architectures shown in the inset.

isometric length due to the abrupt change in NA (NB) imposed at t = t. Thereafter, there is a significant
difference between A and B sarcomeres in terms of operating length as well as the amount of force
generated; the latter is a result of fewer cross-bridges (ρi) available relative to the maximally contracted
equilibrium solution.

The cross-bridge populations ni are plotted against cross-bridge position x at t = 40 in Fig. 8
for architectures (i) and (ii). At this time point (denoted by black asterisks in the force–length loops
of Fig. 7), the sarcomere lengths are close to their minimum value and the contractile force is
approximately equal to the mean. As expected, the differences in the population densities between row
A and row B sarcomeres for architecture (i) is small (Fig. 8a). In contrast, the difference is significant
for architecture (ii) as shown in Fig. 8b. In the latter case (architecture (ii)), the row A cycling
cross-bridges (AMpA) and latch bridges (AMA) undergo more significant displacement due to the larger
amplitude of oscillation. This can be seen more clearly in Fig. 9; the attached cross-bridge populations
(AM + AMp) for the row A sarcomeres (Fig. 9a) at various time points through the oscillatory cycle
have very different shapes, are more significantly displaced and have lower peak values compared
with the row B sarcomeres (Fig. 9b). Thus, within the same cell, depending on the architecture of
the contractile machinery, it is possible to have a wide range of both rapidly cycling and latch-bridge
populations.

Force–length loops for the whole cell for the simulations above are shown in Figs. 10–12. Simula-
tions for architecture A(i) with baseline parameters as indicated by the caption (Fig. 10) are plotted in all
three figures for reference. First, for these baseline parameter simulations (low EC, τ = 0 and relatively
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stiff nucleus compared with cross-bridge stiffness (low αi)), nonlinearity, due entirely to the cross-bridge
mechanics, is immediately obvious in both architectures (Fig. 10a). The peak force in architecture A(ii)
is lower than in A(i). The areas contained within the closed loops (Fig. 10b) are an indication of the
magnitude of hysteresis in the system and hence the viscoelasticity that arises as a result of cycling
cross-bridges. Thus, hysteresis, due entirely to cross- and latch-bridges (with τ = 0) is lower for archi-
tecture A(ii) than in A(i). The loops, however, do not resemble the banana-shaped loops of Bates et al.
(2009) (Fig. 1).

We now turn to the effect of changing internal cell architecture. One of the key parameters associated
with this is αi, increases in which may be interpreted as increased cross-bridge stiffness K∗ or longer
actin or myosin filament lengths, via ρ∗

i , since a greater number of cross-bridges could be associated
with larger overlap lengths that would stem from having longer filaments. Additionally, increased αi

could also be interpreted as increased number of rows of type i. Increasing the stiffness of either the
row A or B cross-bridges (by increasing αA or αB) causes the cell to generate significantly higher peak
force as well as increased hysteresis relative to the baseline cases in both architectures (Fig. 10a). While
an increase in peak force would be expected as a result of increased cross-bridge stiffness, increased
αA or αB could also result from longer actin and myosin filament lengths. This could explain why,
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Fig. 8. Cross-bridge populations nA (solid curves) and nB (dashed curves) plotted against cross-bridge position x for (a) archi-
tecture (i) and (b) architecture (ii) at t = 40 (as marked by black asterisks in Fig. 7). Red curves represent the myosin population
Mi, green, phosphorylated myosin Mpi, blue, rapidly cycling cross-bridges AMpi and black curves represent latch bridges AMi for
i = A, B; see colour version online.

surprisingly, hysteresis is also significantly increased in both cases (Fig. 10b). Indeed it has been found
that actin and myosin filaments lengths within the cell are distributed normally about a mean length and
that both mean and variance can depend on degree of activation (J. Solway, personal communication).
Differences between architectures (i) and (ii) are particularly striking for higher αA or αB (Fig. 10b); the
drop in force for the rearranged architecture in case A(ii) is more significant for higher αi, suggesting
that contractile apparatus rearrangement has a much greater effect in cells with either long filaments or
stiff cross-bridges.

Increasing cell viscosity τ , generates slightly greater peak forces in cases A(i) and A(ii) (Fig. 11a)
and, as expected, slightly greater hysteresis (Fig. 11b). Increased cytoskeletal stiffness (with τ = 0)
generates significantly greater peak forces in both A(i) and A(ii) and interestingly also a significant
phase shift; an additional increase in τ generates only a slight increase in peak force and hysteresis.
Thus, changes in cell viscosity appear to have slightly greater impact on a more compliant cytoskeleton.
The most striking feature in Fig. 11 is the significant change in shape of the force–length loops; the
nonlinearity exhibited by the cross-bridge dynamics appears to be swamped by the linear cytoskeletal
mechanics, although hysteresis is still evident. In all variations investigated here, peak forces and hys-
teresis for A(ii) were always found to be lower than those for A(i). Very small values of τ are used
here to illustrate the role of the cytoskeletal viscoelasticity. Simulations for values of τ as large as those
reported in Table 2 (not shown) suggest that cell hysteresis dominates the mechanical behaviour com-
pletely, with force–length loops becoming almost circular. As mentioned above, the reported value of
viscosity in Table 2, which is based on experiment on whole individual cells, is likely to be an effec-
tive value that combines the contributions of both cross-bridge mechanisms and cytoskeletal structure
changes. The smaller values of τ reflects just the cytoskeletal contribution. It is interesting to note that
increases in αi (Fig. 10) cause an increase in peak force but do not cause a decrease in minimum force
so that the mean force is greater for increased cross-bridge stiffness. On the other hand, an increase in
cytoskeletal stiffness increases the range of total force but the mean force varies only a little relative to
the baseline cases (Fig. 11).
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The effect of changes in cytoskeletal stiffness with cell length (Kim et al., 2011) for architectures
B(i) and B(ii) is shown in Fig. 12. The strain-stiffening behaviour, applied phenomenologically, so that
cytoskeletal stiffness varies from EC = 0.001 to EC = 0.1 (to match the simulation of A(i) and A(ii) in
Fig. 11) gives rise to highly nonlinear behaviour. We recall that strain-stiffening is an instantaneous
elastic response characterized by a nonlinear stress–strain relationship as distinct from fluidization of
cells observed immediately after transient stretch. In both architectures B(i) and B(ii), for low strains
the force–time curves follow the baseline (for which EC = 0.001, Fig. 12a) but then generate increased
peak force upon stiffening of the cell as it increases in length (Fig. 12b). The nonlinear behaviour more
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closely matches the banana-shaped loops of the experimental observations in Fig.1. There are however
discrepancies between the two, specifically in that the narrow end of the loops with the sharp cusp
occurs at lower values of force in the experiments compared with present simulations. It is however
interesting to note that only a nonlinearity in EC (and not in τ ) was required to generate the banana-
shape loops. This is in contrast to the findings of Bates et al. (2009) in which nonlinearities in both
quantities were required. This may have been partly due to the fact that their models for contractile
force did not explicitly account for cross-bridge mechanisms but rather used an approximate kinetic
scheme.

4. Discussion

The manner in which contractile, cytoskeletal and associated proteins interact within the cell so as
to produce integrated mechanical effects (e.g. cellular contraction, stiffness or remodelling) remains a
major open question (Gunst & Fredberg, 2003). In an attempt to understand these interactions, we have
here developed a mechanistic model of an ASM cell that accounts for basic elements of its internal
architecture, rearrangements of its contractile apparatus and changes in cytoskeletal stiffness and cell
viscosity. The model is based on the conceptual models proposed by Kuo & Seow (2004), Gunst &
Fredberg (2003), Herrera et al. (2005) and Lavoie et al. (2009). Contractile force generation is pre-
dicted via the HHM model (described by Mijailovich et al., 2000) for a single contractile unit, with
contractile units arranged both in series and in parallel within the cell. In this study, stretching was
assumed to induce a single rapid rearrangement of this architecture, changing contractile unit numbers
between serial and parallel configurations. The model predicts the net force generated depending on
the cellular architecture, and the force–length relationships for a single cell determined by contractile
and cytoskeletal components. Results from model simulations are compared against length-fluctuation
tissue-strip experiments that have been extensively used (e.g. Fredberg et al., 1997) and in particular
the simulation results are compared with data of Bates et al. (2009) shown in Fig. 1.
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showing the effect of introducing cytoskeletal strain-stiffening; see colour version online. Baseline parameter simulations are as
for Figs 10 and 11. In all cases, solid curves represent architecture (i) and dashed curves represent architecture (ii). (b) Total force
T , plotted against cell length, L corresponding to simulations in (a). Colour coding and cases are identical to (a). Transients to this
oscillatory steady state are not shown and solutions shown are for 39 � t �40.

By taking a mechanistic approach to modelling a single ASM cell, we are able to investigate the
effect of varying properties of different components within the model that have a direct physical corre-
spondence with real cell components. The tissue-level model of Bates et al. (2009) takes into account
elastic and visco-elastic elements and a single contractile element (which does not explicitly include
cross-bridge mechanisms) in an attempt to understand the observed behaviour of activated tissue-strips
undergoing length-fluctuations. Their conclusion was that both nonlinear elastic and viscoelastic com-
ponents were required to generate the banana-shaped force–length loops observed in experiment. While
they were able to reproduce the experimental results it is not clear what gives rise to nonlinearity or
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hysteresis at the cell level in their model. Given that most experimental treatments applied to cells
involve manipulation of contractile apparatus or cytoskeletal structures, (e.g. Latrunculin B, which pro-
motes actin depolymerization, Dowell et al., 2005), it is desirable to understand the contribution of these
various cell-level components to observed phenomena and how different components may be targeted
to obtain a particular outcome. The results from this model demonstrate a number of important cell-level
interactions that could play an important role in molecular-level force generation mechanisms.

4.1 Cell properties may be inferred from force–length loops

The fact that cross-bridge cycling contributes to the hysteresis observed in experimental force–length
loops has been known since the HHM model was developed. For example, Mijailovich et al. (2000)
showed that cycling at higher frequencies or smaller amplitudes reduces the degree of hysteresis.
Our model incorporates two main sources of hysteresis: cross-bridge cycling and cell viscosity.
However, they affect hysteresis very differently. Increased hysteresis with increased peak tensile force
without increased peak compressive force suggests either relatively high cross-bridge stiffness or large
filament (or overlap) length (Fig. 10). If the cell also strain-stiffens, the width of the force–length loop is
maintained at low strains, generating a sharp cusp at peak tensile force (Fig. 12). Increased cell viscosity
has a different effect; at low cytoskeletal stiffnesses there is an overall increase in the width of the loop
(Fig. 11), with increases in peak tensile and compressive forces. The increased width is also maintained
at low strain when the cell strain-stiffens, so that the cusp at peak tensile force is maintained (Fig. 12).
The other difference between these two hysteresis-generating mechanisms is that nonlinearity, clearly
evident from the cross-bridge cycling, is further exaggerated for large cross-bridge stiffness or filament
length, but gets swamped by large cell viscosity, with force–length loops becoming circular. The com-
ponents we have included in the model so far are not able to reproduce the cusp at the low-strain end
of the force–length loop (Fig. 1). Model simulations also suggest that cytoskeletal viscosity (τ ) may be
estimated from a knowledge of whole cell extensional viscosity and prediction of hysteresivity from the
cross-bridge mechanisms. A further potential source of hysteresis may be length adaptation that results
from sarcomere or cytoskeletal reorganization, which has not been accounted for here.

Cytoskeletal stiffness is also evident from the force–length loops of the whole cell. Increases in
both peak tensile and peak compressive forces indicate increases in cytoskeletal stiffness, without
strain-stiffening (Fig. 11). The nonlinearity due to cross-bridge cycling can be swamped by the large
linear cytoskeletal stiffness, although hysteresis is maintained (Fig. 12). Phase-shifts in the force–time
plot are also related to increases in cytoskeletal stiffness (Fig. 11). Neither the changes in cross-bridge
stiffness nor changes in strain-independent stiffness are capable of generating the force–length loops
resembling the experimentally observed banana-shape (Fig. 12). One way in which the current model
is able to generate force–length loops that more closely resembles the banana-shaped loops is through
the incorporation of a nonlinear stress–strain relationship to characterize instantaneous changes in
cytoskeletal stiffness. Furthermore, the strain-stiffening behaviour also accounts for the change in
force–length loop shapes as the amplitude of length fluctuations is varied, as observed by Fredberg
et al. (1997) (results not shown). There are numerous additional possible sources of nonlinearity that
we have not included here. Inferences about strain-stiffening may have to be modified upon further
exploration of these additional elements.

4.2 Transitions from serial to parallel configurations play a quantifiable role in force generation

The change in architecture in this model is conceived in response to observations of Lavoie et al.
(2009), who proposed that length fluctuations may disrupt actin–myosin connectivity. The present
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model accounts for such internal rearrangement brought about instantaneously at the onset of oscil-
lation. Despite the total number of contractile units being conserved between both architectures (i) and
(ii), the cell’s contractile force is modified significantly by contractile apparatus rearrangement when the
cytoskeleton is relatively compliant, the cross-bridges are stiffer than the nucleus, and filament lengths
are relatively long. Additionally the length about which the sarcomeres oscillate is perturbed signifi-
cantly from its equilibrium value (Figs 7c and d). A drop in the number of row A sarcomeres, and hence
also the number of available cross-bridges, results in a smaller force being generated by these sarcom-
eres. The associated increase in row B sarcomeres and consequent reduction in number of available
cross-bridges also results in a decrease in contractile force. Thus, the overall effect is a drop in the total
contractile force. Creation of additional rows would further affect the total contractile force with a rela-
tive pay-off between increased parallel sarcomeres versus decreased available cross-bridges. Although
we have assumed only two rows, our model can represent the possibility of increased rows provided the
parameters αi and ρi are chosen appropriately.

We note that constant ρi is effectively the small-deformation limit of situations in which ρi may
vary with overlap length. Large deformations cause large changes in overlap length between actin and
myosin filaments, thus reducing the total number of cross-bridges available for binding. Additionally,
the oscillation amplitudes applied here generate a significant difference in rapidly cycling and latch
bridge populations in row A compared with those of row B (Fig. 8b). The simple conservation law
(2.2) assumes that the distance between binding sites is much greater than h∗. The larger the amplitude
of oscillation (particularly in row A sarcomeres), the more unrealistic this assumption becomes, since
latch-bridges take large excursions out of the power-stroke region. We have assumed here that the
transition from row A to row B occurs instantaneously. An extension to this model could allow for these
transitions to occur over some finite time. Further refinement of the model will thus demonstrate the
effect of dynamic changes by incorporating a more realistic mechanism that allows for contractile units
to disassemble and reassemble.

4.3 Contractile apparatus rearrangement causes significant change in shortening velocity

A relationship between increased ASM shortening velocity and airway hyper-responsiveness has been
suggested both experimentally (Bullimore et al., 2011; Jackson et al., 2004; Jensen et al., 2001; Ma
et al., 2002) and via the use of model simulations (Bullimore et al., 2011). Other experimental observa-
tions suggest a relationship between shortening velocity and myosin filament density (Smolensky et al.,
2005). We have shown that the shortening velocity of sarcomeres that attach to the cytoskeleton via
the nucleus is modified both by the mechanical properties of the cell nucleus and by changes in the
architecture of the cell (Fig. 6a). The modifications are a result of changes in strain rate; cross-bridge
cycling rates fp, gp and phosphorylation rate k1 are not modified here. In contrast, it is these rates that
are modified to generate changes in shortening velocity in the model simulations of Bullimore et al.
(2011) to investigate the relationship between increased shortening velocity and hyper-responsiveness.
Interestingly, and in contrast to their findings, the architecture change chosen for these simulations,
which caused an increased shortening velocity of row A sarcomeres (Fig. 6a), was accompanied by
a reduction in corresponding contractile force (Fig. 6b). Nucleus deformation in an activated ASM
cell is evident from electron microscopy of its ultrastructure (Kuo & Seow, 2004) and so is likely to
have an effect on the shortening velocity of type A sarcomeres in the manner we have outlined. If the
nucleus is sufficiently stiff, however, or stiffens instantaneously with imposed stretch, then the shorten-
ing velocity of row A sarcomeres will approximate the cell shortening velocity. Here, we have assumed
a relatively compliant nucleus and for this, along with an increase in row A shortening velocity, the
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shortening velocity of row B sarcomeres drops relative to that of architecture (i). In this model, we are
able to apply length changes and predict the force generated. The inverse problem of applying force
oscillations, and predicting length changes is a non-trivial initial value problem, for which a numerical
solution has been proposed (Bullimore et al., 2011) and could be used in future work. At this time, how-
ever, we are not able to investigate how force-oscillation-driven internal remodelling affects shortening
velocity. We have shown however, that architecture changes affect shortening velocity of some of the
sarcomeres and suggest that architecture changes may thus contribute to the factors that cause airway
hyper-responsiveness.

In summary, we have combined a number of conceptual models into a mathematical model of an
individual ASM cell. We have shown how remodelling of the internal and external structures of the
cell significantly modifies the mechanical behaviour of the cell. Given the very different effects of the
contractile apparatus and cytoskeletal behaviour and their interaction, we propose ways in which cell
properties may be inferred from force–length loops. We show that contractile force, shortening velocity
and sarcomere operating lengths vary as the internal cell architecture is altered, and that force generation
and hysteresis characteristics depend strongly on interactions between internal and external structures.
We believe this bottom-up approach that accounts for cell structure is crucial in understanding how
molecular mechanisms within the ASM cell affect airway properties in the diseased lung.
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Appendix A

A.1 Solution of governing equations

At any time, t, (2.17b) gives YB as function of time so that the velocity imposed on the row B sarcomeres
is given by

ẎB =
{

0, 0 � t � t,

εηB cos(t − t), t > t.
(A.1)

Substituting this into (2.18) for i = B allows determination of nB(x, t) and hence FB(t). Rearranging
(2.17a) for YA and differentiating with respect to time gives

ẎA = ηA
L̇ − αAḞA

1 − β − αAFA
, (A.2)

assuming NA is constant. Differentiating (2.18d) with respect to time gives

ḞA = ρA

∫ ∞

−∞
xq ·

(
−γAẎA

∂nA

∂x
+ SAnA

)
dx, (A.3)
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using (2.18a) and assuming that ρA remains constant. The first term in the integral can be integrated by
parts giving

Ḟ = ρA(γAẎAH2(t) + H1(t)), (A.4)

where

H1(t) =
∫ ∞

−∞
xq · SAnA dx, (A.5a)

H2(t) =
∫ ∞

−∞
q · nA dx. (A.5b)

Substituting for ḞA into the expression for ẎA (A.2), and solving for ẎA yields

ẎA = L̇(t) − αAρAH1(t)

(1/ηA)(1 − β − αAFA) + αAρAγAH2(t)
, (A.6)

where L̇(t) = ẎB(t)/ηB. This expression for ẎA then used in (2.18) for i = A to determine nA(x, t) and
FA(t). At any time t, having calculated FA(t), the sarcomere lengths for the A contractile units is
given by

YA(t) = ηA
L − β − αAFA

1 − β − αAFA
. (A.7)

Comparing this with the equation for YB (2.17b), we note how the elasticity of the cell nucleus modifies
the behaviour of the row A sarcomeres. It is then possible to determine the time-dependent tension on
the cell via (2.17d) and (2.17c) yields Z(t).

The time-dependent dimensionless equations (2.18) together with (A.1) and (A.6) are solved com-
putationally subject to the initial and boundary conditions (2.19), using a Godunov scheme (Harten
et al., 1983; Roe, 1986). This scheme combines an upstream differencing finite volume method with a
method-of-characteristics approach. To ensure simulation results were accurate, the code was validated
by comparing results obtained with the Godunov scheme on a single sarcomere, and corresponding
results obtained using a predictor-corrector McCormack scheme; solutions were identical. The numer-
ical artefacts in Fig. 6 appear in every cycle and are a result of having to apply a CFL stability condi-
tion for values of shortening velocity larger than some threshold value in the solution of the Godunov
scheme. If applied to very small values of shortening velocity the corresponding time steps get very
large, which, although allow stability for the PDE solution, causes problems with the chemical kinetics
steps of the solution procedure.
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