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putational modeling of charge
transfer and intersystem crossing reactions in
complex chemical systems†

Andrea Amadei*a and Massimiliano Aschi *b

In this paper we present a theoretical-computational methodology specifically aimed at describing

processes involving internal conversion or intersystem crossing, from atomistic (semiclassical)

simulations and, hence, very suitable for treating complex atomic-molecular systems. The core of the

presented approach is the evaluation of the diabatic perturbed energy surfaces of a portion of the whole

system, treated at the quantum level and therefore preventively selected, in semi-classical interaction

with the atomic-molecular environment. Subsequently, the estimation of the coupling between the

diabatic surfaces and the inclusion of the obtained observables within a properly designed kinetic model

allows the reconstruction of the whole phenomenology directly comparable to the experimental

(typically kinetic) data. Application to two systems has demonstrated that the proposed approach can

represent a valuable tool, somewhat complementary to other methods based on explicit quantum-

dynamical approaches, for the theoretical-computational investigations of large and complex atomic-

molecular systems.
1 Introduction

The Born–Oppenheimer (BO) approximation, i.e. the separation
of electronic and nuclear degrees of freedom and the conse-
quent possible use of classical physics to model the nuclear
motion, has always dominated our mental representation of the
chemical processes. However it is well known that the success of
BO approximation for the quantitative resolution of whatever
problem concerning electronic structure or chemical dynamics
is limited to such phenomena in which the coupling between
nuclear and electronic subsystems, i.e. non-adiabatic coupling,
can be considered as negligible. These phenomena are usually
termed as adiabatic because they can be considered as deter-
mined by the motion of nuclei on a single (electronic) potential
energy surface (PES) with no crossing with any other PES. The
deviation from adiabaticity is anything but uncommon in
chemistry and the introduction of corrections beyond the BO
approximation become in these cases essential.1–3 As a matter of
fact typical possibly non-BO phenomena such as Charge-
Transfer (CT), energy transfer or spin transitions (Intersystem
Crossing, ISC) play a key role in many of the processes occur-
ring, for example, in biological systems or material science4–11
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and hence their modeling is of great intellectual and practical
relevance. Nowadays a number of elegant theories and efficient
algorithms are available for studying in great detail such effects
in the dynamics of small to medium-sized molecular
systems12–27 both in the gas-phase and even taking into account
coupling with external baths (see for example28 and references
therein cited). However the modeling of non-BO effects in
complex molecular systems at atomistic level, e.g. reactions in
solution, are still very challenging even though, because of their
appeal, several procedures have been proposed in the last years
either based on the Marcus theory or Fermi golden rule29–31 or
involving more advanced procedures32–47 In this context,
particularly inspired by approaches taking into account the
dynamical effects of the perturbing environment,48 including
mixed quantum-classical (QM/MM) methods based on the
surface-hopping procedure,49–52 we have recently proposed
a theoretical-computational methodology which makes use of
Molecular Dynamics (MD) simulations and the Perturbed
Matrix Method (PMM),54,55 for evaluating the possible crossing
between different perturbed diabatic energy surfaces in large-
sized atomic-molecular systems.53 Such a methodology, here-
aer termed as MD-PMM, is based on the evaluation, at each
step of a MD simulation, of the perturbed eigenstates (e.g.
electronic) of a pre-selected species (hereaer termed as
Quantum Center, QC) in semi-classical interaction with the
atomistic environment (e.g. the solvent). In this respect MD-
PMM, should be perceived as somewhat complementary to
the already cited procedures designed for non-BO processes as
relies in the extended phase-space sampling of the whole
This journal is © The Royal Society of Chemistry 2018
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system, allowing the modeling of atomic-molecular systems
whose complexity, far beyond the limitations of explicit
quantum-dynamical approaches, is an essential and indis-
pensable ingredient for the reliability of the nal result. All the
applications carried out so far56–58 have been characterized by
two common features. Firstly, all the investigated processes
have been limited to Electron Transfer (ET) reactions, i.e. CT
reactions formally involving a complete donor to acceptor
electron transfer, characterized by donor and acceptor species
which can be treated as electronically independent (i.e. inde-
pendent QCs), at least as far as the evaluation of their energy is
concerned. In all these cases we have factorized the donor–
acceptor couple states, hence termed as diabatic, as the product
of the donor and acceptor perturbed eigenstates obtained by
MD-PMM either xing the exchanging charge in the donor or in
the acceptor moiety.53 Secondly, in all the above applications we
have systematically assumed purely adiabatic behaviours, i.e.
processes characterized by an instantaneous quantum relaxa-
tion on the adiabatic state (the BO Hamiltonian eigenstate),
without addressing the possible dynamical effects leading to
diabatic transitions. In this study we extend our approach to
explicitly estimate the possible diabatic behaviour by means of
the method proposed in the 30's of the last century by Landau,
Zener and Stueckelberg59–61 which represents an efficient
approximation to model the quantum dynamics of chemical
systems possibly undergoing non-BO behaviour, i.e. when the
BO Hamiltonian eigenstates are very close in energy, avoiding
the use of non-adiabatic coupling. Moreover, in the present
paper we no longer assume CT reactions with electronic inde-
pendent donor and acceptor,53 extending the kinetic model to
be used and addressing more thoroughly the issues of the
denition and role of the diabatic states and the productive
intermediate (i.e. the transition region, vide infra). Compared to
other QM/MM similar methodologies based on the Landau–
Zener or related approaches,62,63 our method is based on three
peculiar aspects: (i) a diabatic rather than an adiabatic repre-
sentation of the relevant electronic states is involved; (ii) an
extended, in principle exhaustive, QC-environment phase-space
sampling for the reactive events can be achieved with virtually
no limitations in the denition of the perturbation environ-
ment; (iii) the reactive events statistics obtained is used to
construct a complete master equation for the reaction kinetics
allowing to fully reproduce the experimentally observed
process. Two case studies are presented in this paper. In the
rst application we have studied the photoinduced CT reaction
of the DMN(4)DCNE in tetrahydrofurane (THF), where DMN
stands for 1,4-dimethoxynaphthalene and DCNE stands for 1,2-
dicyanoethylene We will hereaer refer to this species as simply
DMN. (see Fig. 1). In the experiment of transient absorption
Fig. 1 Chemical Structure of DMN.
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spectroscopy,64–66 DMN is irradiated at 308 nm and prepared
into a localized excited state which then undergoes a unim-
olecular charge transfer process with a time-constant of 360 fs
in THF as schematically reported in Fig. 2. In the second
application we have tested the reliability of our approach for
a photoinduced ISC reaction, namely the singlet-triplet transi-
tion in uorenilydene (FL, see Fig. 3) in solution.67,68 In the
related experiment the singlet FL is generated by the photo-
detachment of N2 moiety from 9-diazouorene (FL-N2) and
shows a solvent dependent ISC rate characterized by a time-
constant of 440 ps in acetonitrile (ACN) and 88 ps in apolar
medium (cyclohexane). In both the investigated cases, despite
the utilized approximations required for a numerical imple-
mentation of the theoretical method, our approach reveals
rather accurate in reproducing the observed kinetics.

2 Theory
2.1 General considerations

Non covalent CT or ISC reactions (i.e. CT or ISC reactions not
involving any covalent bond disruption/formation) comprise
a large variety of processes which, although all characterized by
a large variation of a quantum property/observable ideally cor-
responding to a complete electron-transfer from a donor (D) to
an acceptor (A) group for the former or to the complete spin
transition for the latter, can involve rather different mecha-
nisms thus possibly requiring different modeling approaches.
In fact, such reactions must be considered as a sudden and
dramatic change of such a property/observable of the reactive
system, as provided by any kind of time-dependent perturbation
inducing the exchange of the electronic distribution/spin state
in two (rst neighbour in energy) Hamiltonian eigenstates,
typically occurring within tiny perturbation regions (the tran-
sition regions) where such eigenstates are close in energy.
However, according to the type of time-dependent perturbation
(i.e. the semiclassical perturbation) and vibronic states
involved, the reaction inherent mechanism is different.

It is now necessary to introduce a set of denitions/
assumptions to be used:

� As usual we assume that we can properly divide the
simulated system into the QC, where the reaction occurs and
that needs to be treated at quantum mechanical level and its
environment, perturbing the QC quantum states, which we treat
at semiclassical atomistic level.

� With QC adiabatic states we dene the true Hamiltonian
eigenstates of the perturbed QC: either the electronic eigen-
states (adiabatic electronic states) or the vibronic eigenstates
(adiabatic vibronic states) possibly including the effects of the
nuclei-electron coupling (non-adiabatic coupling) which
become non-negligible when the adiabatic electronic states are
degenerate or quasi-degenerate.

� With QC diabatic states we dene the Hamiltonian eigen-
states (either the electronic eigenstates or the vibronic BO
eigenstates) of the perturbed QC as obtained constraining the
electron distribution or the spin state to be xed in either the
reactant (R) or the product (P) chemical condition, according to
the choice of the R and P chemical species made to describe
RSC Adv., 2018, 8, 27900–27918 | 27901



Fig. 2 Schematic view of the photo-induced charge transfer reaction in DMN.

Fig. 3 Reaction scheme for the photogeneration of singlet FL and
subsequent unimolecular decay into triplet FL.

Fig. 4 Schematic picture of the diabatic (solid lines) and adiabatic
(dashed lines) energy surfaces as a function of the perturbation
coordinate, the latter representing the environment perturbing field
(i.e. providing the QC-environment interaction) as well as the QC
semi-classical internal motions, if present.
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properly the reaction. Moreover, we always assume for the dia-
batic states the corresponding non-adiabatic coupling being
(approximately) negligible.

� We assume that each possible reactive event can be prop-
erly described by two QC adiabatic states which are virtually
indistinguishable from the corresponding diabatic states except
within tiny perturbation regions, i.e. the transition regions
(TR's) including the crossing of the diabatic energy surfaces
(conical intersection), where each adiabatic state is a mixture of
the diabatic ones and the reaction event occurs (i.e. the adia-
batic states can be expressed as linear combinations of the two
diabatic states, thus allowing to treat each reactive event within
the reduced two-dimensional subspace dened by the diabatic
states, see Fig. 4). We always consider that outside the transition
regions the statistical ensemble for the reaction (the reactive
ensemble) can be thought as constructed by reactive trajectories
with the QC dynamical quantum state coinciding with a given
adiabatic state and hence virtually identical to either the R or P
QC diabatic state. Therefore, for each trajectory of the reactive
ensemble representative of e.g. the R / P reaction, the QC is
always in the R state when entering the TR (i.e. at the beginning
of the transition process) and in either the R or P state when
exiting the TR (i.e. when the transition process is completed)
and thus the dynamics of the reactive ensemble can be properly
described by usual chemical kinetics equations for the diabatic
states interconversion (i.e. we consider the QC-environment
system as a quantum dissipative system within the Markoff
approximation69–71). Only within the TR's we need to consider
the explicit quantum dynamics of each reactive trajectory as
within such limited perturbation regions the Markoff
27902 | RSC Adv., 2018, 8, 27900–27918
approximation is typically inapplicable and the QC quantum
state dynamics possibly involves signicant mixing of the
diabatic/adiabatic states.

� We assume that, due to its tiny dimension, each TR
crossing be fast enough to avoid any relevant change of the QC
diabatic states involved, which can be considered as time-
independent during the whole event with a virtually constant
coupling term and linear time-dependent energies. Therefore,
by also assuming that such a limited crossing time for the
diabatic state denition may correspond to a virtually innite
relaxation time for the QC dynamical quantum state, we can use
the Landau–Zener approach59 to obtain the diabatic/adiabatic
behaviour of the transition, i.e. the probability for the R and P
state as obtained by the QC dynamical quantum state emerging
from the TR (note that the presence of the diabatic states
coupling in the Hamiltonian matrix expressed in the diabatic
basis set, makes the typically much smaller non-adiabatic
coupling negligible). For each possible reactive event the QC
transition, occurring within the TR, may involve a perturbation
interval varying from the whole TR providing the complete CT
or ISC process (i.e. for fully adiabatic transitions corresponding
to a complete hop from one diabatic state to the other) to
virtually no perturbation interval around the diabatic states
energy crossing providing the reactive ux over either the R or P
diabatic state energy surface and hence not involving any CT or
ISC process (i.e. for fully diabatic transitions corresponding to
a complete hop from one adiabatic state to the other).

In the following theory subsections we describe in details
rst (The TR based reaction scheme) how to model the kinetics
This journal is © The Royal Society of Chemistry 2018
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for each CT or ISC reaction step, i.e. involving only diabatic
energy crossings due to a single P diabatic state, on the basis of
the TR properties. Subsequently (the diabatic states) we
specically address the issue of the denition of proper diabatic
states and related energies to be used, employing the PMM
framework (within the dipolar approximation) for both CT and
ISC reactions. Finally, (the general model for the reaction
kinetics) we derive a general and efficient model for the reaction
kinetics considering CT and ISC processes possibly involving
several reaction steps due to the presence of productive diabatic
energy crossings involving several P diabatic states.
2.2 The TR based reaction scheme

In general, whenever the system crosses a TR, during the reac-
tive dynamics, a possible reaction event can occurs according to
the usual scheme shown in Fig. 4 where we describe the process
in terms of the energy surfaces of the adiabatic and diabatic
states involved in the reaction. From the gure, beyond the TR
itself, we can identify four different chemical states (RI, RII and
PI, PII) corresponding to perturbation regions where the adia-
batic states I and II are virtually identical either to the R or the P
diabatic state. According to Fig. 4, within the denitions and
assumptions described above, for a TR crossing process char-
acterized by a given adiabatic fraction c as provided by the

Landau–Zener approximation (i.e. cy 1� e�
2pjHR;Pj2

ħvcr with HR,P

the reactant–product coupling and vcr the absolute value of the
diabatic energy difference time derivative at the crossing) we
can schematize the R / P reaction occurring through the TR
crossing as shown in Fig. 5 where A and B stand for either the I
or II adiabatic surface index and the TRRA

represents the TR
chemical state as obtained by the reactive trajectories entering
the transition region from RA (i.e. the reactive trajectories
moving over an energy surface comprised within the A adiabatic
and R diabatic surfaces).

Given its tiny dimension and the typically high vcr values, we
have kRA

� k+ + k� implying the stationary condition for TRRA

[T _RRA
] ¼ [kRA

[RA] � (k+ + k�)][TRRA
] y 0 (1)

hence providing

½TRRA
�y kRA

kþ þ k� ½RA� (2)
Fig. 5 Reaction scheme for the R / P reaction as occurring through
the TR crossing.
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From eqn (2) we then obtainh
R
�

A

i
y � kRA

kþ

kþ þ k� ½RA� ¼ �K RA
½RA� (3)

h
R
�

B

i
y ð1� cÞ kRA

kþ

kþ þ k� ½RA�

¼ ð1� cÞK RA
½RA� (4)

h
P
�

A

i
yc

kRA
kþ

kþ þ k� ½RA� ¼ cK RA
½RA� (5)

Note that in the present extended treatment we no longer
assume any equilibrium53 within TR (implying k+ y k�) as in
typical ET and ISC reactions the transition region mean resi-
dence time is shorter than the autocorrelation mean time of the
crossing velocity, thus implying k� y 0. It is also worth to note
that within the condition kRA

� k+ + k�motivating the stationary
approximation we have [T _RRA

]/[ _RA]y [TRRA
]/[RA]y 0 and so the

kinetics of [RA] is virtually indistinguishable from that of [RA] +
[TRRA

] or any combination of [RA] with a TRRA
subpopulation (in

particular the fraction time decay of the reactive trajectories not
yet passed through the diabatic surfaces crossing, although
possibly within the transition region).

The previous equations refer to the reaction as occurring via
a single crossing process characterized by a given value of c. In
general, for the same R and P diabatic states, many possible
crossing events characterized by different c values can occur
and, therefore, eqn (3)–(5), must be generalized considering
different reactant subpopulations in fast interconversion, each
reacting via given cl,K RA,l values, providing

½RA� ¼
X
l

½RA;l � (6)

½RB� ¼
X
l

½RB;l � (7)

½PA� ¼
X
l

½PA;l � (8)

h
R
�

A

i
y �

X
l

K RA ;l½RA;l � (9)

h
R
�

B

i
y
X
l

K RA;lð1� clÞ½RA;l � (10)

h
P
�

A

i
y
X
l

K RA ;lcl ½RA;l � (11)

Eqn (9)–(11) can be simplied by considering that each [RA,l]/
[RA] be stationary (i.e. [RA,l]/[RA] y rl with rcl y 0) within the
reasonable assumption of statistical independent K RA

,l and cl

(i.e. hK RA,lcli y hK RA,li hcli), thus allowing to write

[ _RA] y �K RA
[RA] (12)
RSC Adv., 2018, 8, 27900–27918 | 27903
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[ _RB] y K RA
(1 � a)[RA] (13)

[ _PA] y K RA
a[RA] (14)

with

K RA
¼
X
l

rlK RA ;l ¼
�
K RA ;l

�
(15)

a ¼
X
l

rlcl ¼ hcli (16)

1 � a ¼ 1 � hcli (17)

Eqn (12)–(17) provide the link between the kinetic model and
the computational data as obtained by our MD-PMM method.
In fact, by means of proper MD simulations it is rather
straightforward to evaluate for a given R and P diabatic states
couple the distribution of the time-lengths needed to reach the
diabatic energy surfaces crossings in the reactant ensemble of
trajectories and thus to reconstruct the [RA] kinetic trace with
the corresponding rate constant (K RA

), as we obtained in
previous papers.53,56–58 Moreover, from the ensemble of the
diabatic surfaces crossings as provided by the reactive trajec-
tories it is also possible to obtain a ¼ hcli by simply evaluating
by means of the Landau–Zener approach the adiabatic fraction
at each crossing and then averaging over the crossings.
2.3 The diabatic states

In order to obtain the information necessary to model the
reaction kinetics, each CT or ISC reaction event needs to be
modeled by proper R and P diabatic states. Unfortunately, such
diabatic states depend on the specic choice of the QC
observables/properties selected to dene the corresponding
reactants and products chemical conditions and thus, in prin-
ciple, different diabatic states for the same reaction could be
used. In line with our previous paper,53 when considering
adiabatic ET reactions with electronically independent D and A
species we can use the (constrained) D or A location of the
exchanging electron to dene via PMM the proper diabatic
states to be used. However, in the present extended treatment
we neither assume full adiabatic behavior nor the D and A
electronic independence, thus requiring for CT reactions
a different, more general, denition of the diabatic states (note
that in order to estimate the diabatic effects we need to evaluate
the D–A coupling). The treatment of the possible diabatic
behavior implies that we cannot rely anymore on the electronic
states only but inclusion of the vibrational effects is mandatory,
thus requiring the explicit use of diabatic vibronic states.

2.3.1 CT reactions. In typical CT reactions, for each reactive
event, the two relevant QC adiabatic states can be well approx-
imated by linear combinations of only two unperturbed
Hamiltonian eigenstates, i.e. the electronic or BO vibronic
eigenstates of the isolated QC we always consider with well
separated electronic Hamiltonian eigenvalues, thus ensuring
a negligible non-adiabatic coupling. Therefore, a simple well
suited choice for the diabatic states in CT reactions is to use the
27904 | RSC Adv., 2018, 8, 27900–27918
two QC unperturbed BO vibronic eigenstates best correspond-
ing to the R and P electronic condition, respectively (the treat-
ment of more complex cases involving adiabatic states dened
by higher dimensional linear combinations of the unperturbed
eigenstates and/or quasi-degenerate unperturbed electronic
eigenstates is beyond the scope of the present paper). Note that
for CT reactions we disregard any magnetic interaction (i.e. the
QC Hamiltonian eigenstates are also spin eigenstates),
assuming that only CT reactions involving diabatic states cor-
responding to the same spin eigenstate can occur (i.e. CT
processes involving also a spin transition are assumed to be
fully diabatic and hence irrelevant for the reaction).53 We always
consider the R population semiclassical vibrational coordinates
(i.e. the QC nuclear semiclassical internal coordinates providing
only small harmonic-like uctuations with little or no effect on
the QC quantum properties except, of course, the electronic
energy) as fully relaxed for each position of the QC conforma-
tional coordinates xc (i.e. the QC nuclear internal semiclassical
coordinates providing relevant structural changes), with hence
the relevant R diabatic vibronic state involving a xc-dependent
quantum vibrational state and semiclassical vibrational coor-
dinates, if present, relaxed to the xc-dependent minimum
energy position over the (electronic) R-energy surface (i.e. we
disregard the small local uctuations in modeling the reaction
kinetics). However, for a given R diabatic vibronic state several P
diabatic vibronic states (with semiclassical coordinates at the
same position of the R state) are to be considered for the reac-
tion, as different quantum vibrational states of the P electronic
diabatic state could be involved in productive reaction events
(i.e. the corresponding diabatic energy crossings do not provide
fully diabatic transitions). It is worth to note that within the
approximation we use of R-energy minimized semiclassical
vibrational coordinates, the diabatic R and P electronic states
involved in the reaction (i.e. the unperturbed electronic states
F0
e,R, F

0
e,P functions of the electronic coordinates as expressed

within the internal QC reference of frame which is fully dened
by the QC nuclear positions) can be considered as parametrical
functions of only the conformational coordinates xc and
internal coordinates b corresponding to the QC nuclear
quantum vibrational degrees of freedom, as it follows from the
roto-translational invariance of the unperturbed electronic
states (we clearly adopt the usual approximation of roto-
translational invariance of the unperturbed vibrational states,
i.e. fully uncoupled vibrational and roto-translational motions,
and thus each xc position fully determines also the local
unperturbed vibrational modes). Within the PMM approach,
using xc-dependent energy minimized semiclassical vibrational
coordinates, for each QC xc, b conguration the corresponding
orthonormal unperturbed electronic eigenstates
F0
e,j, eigenfunctions of the unperturbed (gas-phase) QC for

a given spin eigenstate, provide the basis set for constructing
the perturbed electronic Hamiltonian matrix (fHe ) within the
dipolar approximation

fHe yfHe

0 þ ~IqTV þ ~Z1 þ DV ~I (18)
This journal is © The Royal Society of Chemistry 2018
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[ ~Z1]j,j0 ¼ �E$hF0
e,j|m̂|F

0
e,j0i (19)

where fHe
0
is the unperturbed electronic Hamiltonian matrix

(diagonal within the chosen basis set), qT and m̂ are the QC total
charge and dipole operator, V and E are the electric potential and
eld as exerted by the environment on the QC centre of mass and
F0
e,j(xc, b) becoming parametrically functions of only the QC

conformational xc coordinates when considering also the
b coordinates as relaxed to their xc-dependent energy minimized
position as obtained in a reference eigenstate (e.g. the ground
state), thus disregarding any explicit quantum vibrational effect73

(note that the use of electronic coordinates within the internal
QC reference of frame requires that both m̂ and E must be also
expressed within the internal QC reference of frame or, equiva-
lently, that hF0

e,j|m̂|F
0
e,j0i be expressed in the reference of frame

providing E). Finally, DV includes all the other terms treated as
a simple short range potential and ~I is the identity matrix. Note
that we assume, as usual, the R and P quantum vibrational
modes as fully dened within the same QC internal coordinates
subspace (i.e. the diabatic states share the same QC semiclassical
congurational subspace) and thus in both diabatic states the
same xc, b coordinates can be used. The eigenvalues and eigen-
vectors of fHe provide the actual perturbed electronic energies
and eigenstates (adiabatic electronic states) while its elements
corresponding to the diabatic electronic states of the CT reaction
of interest (i.e. F0

e,R, F
0
e,P) can be used to obtain the diabatic

electronic energy change (electronic transition energy) DU e

DU eðxc;b;EÞ ¼
hfHe

i
P;P

�
hfHe

i
R;R

yDU 0
e � E$

D
F0

e;PjbmjF0
e;P

E
þ E$

D
F0

e;RjbmjF0
e;R

E
(20)

DU 0
eðxc;bÞ ¼

hfHe

0
i
P;P

�
hfHe

0
i
R;R

(21)

and the R, P electronic coupling term He;R;P ¼ ½fHe �R;P
He;R;Pðxc;b;EÞy

hfHe

0
i
R;P

þ ~IqTV
D
F0

e;R

���F0
e;P

E
�E$

D
F0

e;Rjbm jF0
e;P

E (22)

with clearly hF0
e,R|F

0
e,Pi and ½fHe

0�R;P always zero except for the
special case F0

e,R ¼ F0
e,P (i.e. the diabatic vibronic states involve

the same diabatic electronic state and hence hF0
e,R|F

0
e,Pi ¼ 1 and

DU e ¼ 0). Such a peculiar condition which is uncommon and
requires a specic treatment will not be further discussed and
in the following of this paper we will consider only the typical
case of diabatic vibronic states involving different (non-
degenerate in the unperturbed condition) diabatic electronic
states.

Eqn (20)–(22) can be used for evaluating the complete tran-
sition energy (i.e. the diabatic vibronic energy change) DU and,
within the Landau–Zener approach, the fraction of adiabatic
transitions (c) in a R/ P event involving a given f0

v,R,l(xc, b) /
f0
v,P,l0(xc, b) vibrational state transition where f0

v,R,l, f
0
v,P,l0 are,

respectively, harmonic-like vibrational states of the diabatic
This journal is © The Royal Society of Chemistry 2018
electronic states F0
e,R and F0

e,P as obtained within the R and P
electronic energy minima relevant for the R / P process (note
that the vibrational states are functions of the internal coordi-
nates b and only parametrically functions of the conformational
coordinates xc). Therefore, for a given possible reaction event
(i.e. diabatic energy surfaces crossing) the corresponding
complete transition energy and diabatic fraction 1 � c are

DU ðxc;EÞy
D
f0
v;P;l0

���K̂v þ �fHe

�
P;P
ðxc;b;EÞ

���f0
v;P;l0

E
�
D
f0
v;R;l

���K̂v þ
�fHe

�
R;R

ðxc;b;EÞ
���f0

v;R;l

E
y
�fHe

�
P;P
ðxc;bP;EÞ �

�fHe

�
R;R

ðxc;bR;EÞ

þU 0
v;P;l0 ðxcÞ �U 0

v;R;lðxcÞ (23)

and

1� cðxc;EÞy exp

 
� 2p

��HR;Pðxc;EÞ
��2

ħvcr

!
(24)

HR;Pðxc;EÞy
D
f0
v;R;l

��He;R;Pðxc;b;EÞ
��f0

v;P;l0

E
y
D
f0
v;R;l

���f0
v;P;l0

E
He;R;Pðxc;EÞ

(25)

He;R;Pðxc;EÞ ¼ He;R;Pðxc;bR;EÞ
2

þHe;R;Pðxc;bP;EÞ
2

(26)

with K̂v the kinetic energy operator for the nuclear quantum
vibrational coordinates, U 0

v,R,l, U
0
v,P,l0 the unperturbed quantum

vibrational energies corresponding to f0v,R,l and f0v,P,l0, respectively
(i.e. we disregard the perturbing electric eld effects on the vibra-
tional energy difference), bR(xc) and bP(xc) the xc-dependent
minimum energy positions of the quantum vibrational coordi-
nates b for the R and P diabatic states and in eqn (24) the crossing
velocity vcr (i.e. the absolute value of the transition energy time
derivative) as well as the conformational coordinates and the
perturbing eld are all to be evaluated at the crossing (i.e. when
DU ¼ 0) thus providing the constant coupling term for the
Landau–Zener formula. Note that typically
|hf0v,R,l|f0v,P,l0ihF0

e,R|m̂|F
0
e,Pi|�|hF0

e,P|m̂|F
0
e,Pi � hF0

e,R|m̂|F
0
e,Ri| thus

allowing, within the whole TR, to consider the variation of �HR,P as
approximately negligible compared to the nearly linear variation of
DU . Finally, eqn (25) can be really accurate when the bR and bP

minima are close enough to allow considering He,R,P virtually
constant within the relevant b range, with He,R,P(xc, bR, E) y
He,R,P(xc, bP, E) signicantly different from zero (i.e. really negli-
gible non-adiabatic coupling).

2.3.2 ISC reactions. In ISC reactions the R / P transition
virtually coincides with a QC spin eigenstate transition and
hence, introducing the (electrons) spin eigenstates sRsP (with
sR s sP), the perturbed electronic-spin eigenstates Fe,RsR and
Fe,PsP as obtained neglecting any magnetic interaction and
provided within PMM by diagonalizing the perturbed electronic
Hamiltonian matrix given by eqn (18) and (19) for the R and P
RSC Adv., 2018, 8, 27900–27918 | 27905



Fig. 6 Schematic picture of the diabatic state energy surfaces involved
in the reaction.
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spin eigenstate respectively, can be used as proper diabatic
electronic-spin states. Therefore, the electronic transition
energy can be simply obtained by DU e ¼ U e,P � U e,R where
U e,R,U e,P are eigenvalues of the electronic Hamiltonian matrix
corresponding to the R and P magnetic state, respectively, and
the electronic coupling term corresponding to the R, P element
of the perturbed electronic Hamiltonian matrix (including the
magnetic interactions) expressed within the diabatic electronic-
spin basis set, is given by

He,R,P y hFe,RsR|Ĥso|Fe,PsPi ¼ h†
R
~HsohP (27)

where Ĥso is the spin–orbit Hamiltonian operator, ~Hso is the
corresponding matrix and hRhP the unit vectors representing
Fe,RsR and Fe,PsP within the same basis set used to express the
spin–orbit matrix (i.e. the unperturbed basis set). Note that
typically hFe,RsR|Ĥso|Fe,PsPi is only slightly dependent on the
perturbation and hence virtually constant within the TR.

Therefore, using as diabatic vibronic-spin states the R and P
perturbed vibronic-spin BO eigenstates (each, typically, almost
identical to a specic unperturbed eigenstate), in ISC reaction
events the complete transition energy and the diabatic fraction are

DU ðxc;EÞy
D
f0
v;P;l0
��K̂v þU e;Pðxc;b;EÞ

��f0
v;P;l0

E

�
D
f0
v;R;l

��K̂v þU e;Rðxc;b;EÞ
��f0

v;R;l

E

yU e;Pðxc;bP;EÞ �U e;Rðxc;bR;EÞ

þU 0
v;P;l0 ðxcÞ �U 0

v;R;lðxcÞ (28)

and

1� cðxc;EÞy exp

 
� 2p

��HR;Pðxc;EÞ
��2

ħvcr

!
(29)

HR;Pðxc;EÞy
D
f0
v;R;l

��He;R;Pðxc;b;EÞ
��f0

v;P;l0

E
y
D
f0
v;R;l

���f0
v;P;l0

E
He;R;Pðxc;EÞ

(30)

He;R;Pðxc;EÞ ¼ He;R;Pðxc;bR;EÞ
2

þHe;R;Pðxc;bP;EÞ
2

(31)

where we used the same notation employed for CT reactions and
disregarded the typically small effects of perturbation on
quantum vibrational modes, thus utilizing the unperturbed
vibrational states of the unperturbed electronic states best cor-
responding to the pertubed electronic-spin R and P eigenstates.

2.4 The general model for the reaction kinetics

From the previous considerations and approximations we can
outline the general reaction scheme by considering a single R
diabatic vibronic state (typically the vibronic state involving the
27906 | RSC Adv., 2018, 8, 27900–27918
vibrational ground state) possibly crossing with several P dia-
batic vibronic states involving the vibrational states providing
a non-negligible chemical ux for the R / P reaction (typically
vibrational states within the energy range dened by the
vibrational ground state as lower bound and the vibrational
state corresponding to the R / P vertical transition as upper
bound). In Fig. 6 and 7 we show a schematic picture of such
diabatic state energy surfaces and the corresponding reaction
scheme with rate constants for each reaction step obtained
according to eqn (12)–(14). Note that we disregard in the reac-
tion scheme any P / R back reaction as we assume a basically
irreversible R / P process, possibly involving a fast products
quantum and/or semiclassical vibrational relaxation. Moreover,
we can safely consider in the reaction scheme that for each ith
reaction step the corresponding ai (the mean adiabatic fraction
as obtained averaging over all the crossings involved in the ith
reaction step, see eqn (16)) is invariant for Ri / Ri+1 and Ri+1 /

Ri as it only depends on the properties at the diabatic surfaces
crossings of the ith reaction step, being necessarily unrelevant
for the ½Riþ1�eq=½Ri�eq ¼ K Ri=K

*
Riþ1

equilibrium constant (i.e. the
equilibrium constant must be independent of the diabatic-
adiabatic TR traversing behavior).

In order to obtain general, simple analytic expressions for
the kinetics dened by Fig. 6 and 7, we need to introduce
approximations suited to accurately describe typical CT and ISC
reactions. A simplied condition can be obtained by using the
irreversible reaction step approximation described below.

2.4.1 The irreversible reaction step approximation. The
irreversible reaction step approximation is based on assuming
that for each reactive trajectory involved in the R1 / Rn or
equivalently in the Rn / R1 transition, no inversion of the
chemical ux is possible for all the relevant reaction steps (i.e.
we assume completely irreversible reaction steps from R1 to Rn

or equivalently from Rn to R1, for the R1 / Rn or the Rn / R1

process respectively, see Fig. 5 and 6). Such an ideal condition,
implying that the intermediates R2, R3,., Rn�1 are character-
ized by different ensembles in the R1 / Rn and Rn / R1

transitions, is a proper approximation of the actual reaction
only when the mean residence time of the intermediates region
is not larger than the R1 / P1 (or Rn / Pn�1) transition energy
time derivative (i.e. the intermediates traversing velocity) auto-
correlation mean time, as typically occurring in many CT and
ISC reactions (note that R1 and Rn differently from the inter-
mediates are assumed to have inner equilibrium during the
reaction). Therefore, within the irreversible reaction step
This journal is © The Royal Society of Chemistry 2018



Fig. 7 Reaction scheme according to Fig. 6.
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approximation the rate equations for the R1 / Rn process can
be obtained considering in Fig. 6 K *

Ri
y 0, providing

[ _R1] y �K R1
[R1] (32)

[ _R2] y (1 � a1)K R1
[R1] � K R2

[R2] (33)

/ y / (34)

[ _Ri] y (1 � ai�1)K Ri�1
[Ri�1] � K Ri

[Ri] (35)

/ y / (36)

[ _Rn] y (1 � an�1)K Rn�1
[Rn�1] (37)

while for the Rn / R1 process the rate equations are obtained
considering K Ri

y 0 and hence

½R
�

n�y � K *
Rn�1

½Rn� (38)

½R
�

n�1�y ð1� an�1ÞK *
Rn
½Rn� � K *

Rn�1
½Rn�1� (39)

/ y / (40)

½R
�

i�y ð1� aiÞK *
Riþ1

½Riþ1� � K *
Ri
½Ri� (41)

/ y / (42)

½R
�

1�y ð1� a1ÞK *
R2
½R2� (43)

We can proceed further by considering that the irreversible
reaction step approximation necessarily implies much faster
transitions between neighboring intermediates than the R1 /

R2 and Rn / Rn�1 rates, thus allowing to assume the stationary
condition for all the intermediates (i.e. [ _R2] y [ _R3] y / y
[ _Rn�1] y 0). Therefore, the rate equations for the R1 / Rn

process provide

½R2�y ð1� a1ÞK R1

K R2

½R1� (44)

/ y / (45)

½Ri�y ð1� ai�1ÞK Ri�1

K Ri

½Ri�1� (46)

/ y / (47)
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½Rn�1�y ð1� an�2ÞK Rn�2

K Rn�1

½Rn�2� (48)

and hence using eqn (44)–(48) into eqn (37), we can write

[ _R1] y �K R1
[R1] (49)

½R
�

n�y
Yn�1

i¼1

ð1� aiÞK R1
½R1� (50)

½P
�

�y � ð½R
�

n� þ ½R
�

1�Þy
"
1�

Yn�1

i¼1

ð1� aiÞ
#
K R1

½R1� (51)

where ½P� ¼ Pn�1

i¼1
ð½Pi� þ ½P*

i �Þ. Similarly, for the Rn / R1 process
we have

½R
�

n�y � K *
Rn
½Rn� (52)

½R
�

1�y
Yn�1

i¼1

ð1� aiÞK *
Rn
½R1� (53)

½P
�

�y � ð½R
�

n� þ ½R
�

1�Þ y

"
1�

Yn�1

i¼1

ð1� aiÞ
#
K *

Rn
½Rn� (54)

clearly showing that we can obtain the kinetics of the Rn / R1

transition from that of the R1 / Rn transition simply
exchanging R1 with Rn and K R1

with K *
Rn
. These last equations

can be further simplied considering that from eqn (24), (25),
(29) and (30) for each ith reaction step, assuming the R diabatic
vibronic state involving the l vibrational state, we have

1� ai y
D
ð1� ceÞjgi j

2
E
i

(55)

1� ce ¼ exp

 
� 2p

��He;R;P

��2
ħvcr

!
(56)

gi ¼ hf0
v,R,l|f

0
v,P,ii (57)

with gi depending only on the conformational coordinates xc, 1
� ce a function of the conformational coordinates and the
perturbing eld, independent of the reaction step, and the
angle brackets with the i subscript in eqn (55) indicating aver-
aging over the ith reaction step ensemble (i.e. the average is
obtained over all the crossings of the ith reaction step). Real-
izing that for each reaction step gi is close to zero and can be
considered as virtually constant and 0# 1� ce# 1, we can write

1� ai y ð1� aeÞz
2
i (58)

1 � ae y h(1 � ce)ii (59)

z2i ¼ h|gi|
2ii (60)

where ae is invariant for all the reaction steps

and
Pn�1

i¼1
z2i ¼

Pn�1

i¼1
hjgij2ii ¼ U with 0 # U # 1. The use of eqn (58)

into eqn (49)–(54) then provides for the R1 / Rn kinetics
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[ _R1] y �K R1
[R1] (61)

[ _Rn] y (1 � aG)K R1
[R1] (62)

½P
�

�y � ð½R
�

n� þ ½R
�

1�ÞyaGK R1
½R1� (63)

and for the Rn / R1 kinetics

½R
�

n�y � K *
Rn
½Rn� (64)

½R
�

1�y ð1� aGÞK *
Rn
½Rn� (65)

½P
�

�y � ð½R
�

1� þ ½R
�

n�ÞyaGK *
Rn
½Rn� (66)

where 1 � aG ¼ (1 � ae)
U and so the global adiabatic fraction is

aG ¼ 1 � (1 � ae)
U.

From eqn (61)–(66) it follows that within the irreversible
reaction step approximation the complete reaction kinetics
(involving the R1, Rn interconversion) can be obtained by using
the scheme shown in Fig. 8, providing

½R
�

1�y � K R1
½R1� þ ð1� aGÞK *

Rn
½Rn� (67)

½R
�

n�y ð1� aGÞK R1
½R1� � K *

Rn
½Rn� (68)

½P
�

�y � ð½R
�

n� þ ½R
�

1�ÞyaGK R1
½R1� þ aGK *

Rn
½Rn� (69)

Eqn (67) and (68) can be easily solved by diagonalizing the
kinetic matrix of the rate constants, furnishing a biexponential
time behavior as general solution for both R1 and Rn. However,
it is of particular interest to consider the two typical approxi-
mate solutions as obtained assuming the stationary condition
either for Rn or for R1. In the former case (i.e. [ _Rn]y 0 and hence
½Rn�y ð1� aGÞK R1½R1�=K *

Rn
) we have

[ _R1] y �aG(2 � aG)K R1
[R1] (70)

[ _P] y �[ _R1] y aG(2 � aG)K R1
[R1] (71)
Fig. 8 Simplified reaction scheme according to the irreversible
reaction step approximation (see text) when assuming stationary state
conditions for all the intermediates.
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providing, with [R1]0 the initial R1 species concentration (i.e. at
the beginning of the Rn stationary state condition) and
neglecting the Rn concentration (i.e. [P] y [R1]0 � [R1]),

½R1�y ½R1�0 e�aGð2�aGÞK R1
t (72)

½P�y ½R1�0
�
1� e�aGð2�aGÞK R1

t
�

(73)

For the latter case (i.e. [ _R1] y 0 and hence
½R1�y ð1� aGÞK *

Rn
½Rn�=K R1) we can write

½R
�

n�y � aGð2� aGÞK *
Rn
½Rn� (74)

½P
�

�y � ½R
�

n�yaGð2� aGÞK *
Rn
½Rn� (75)

providing, with [Rn]0 the initial Rn species concentration (i.e. at
the beginning of the R1 stationary state condition) and
neglecting the R1 concentration (i.e. [P] y [Rn]0 � [Rn]),

½Rn�y ½Rn�0 e�aGð2�aGÞK *
Rn

t (76)

½P�y ½Rn�0
h
1� e�aGð2�aGÞK *

Rn
t
i

(77)

These last approximations furnish a very simple model of the
reaction kinetics with a trivial exponential decay for R1 and Rn,
respectively, as typically observed experimentally (note that eqn
(70)–(73) implies K *

Rn
[K R1 and eqn (74)–(77) implies

K R1[K *
Rn
). Remarkably, eqn (70)–(77) clearly show that within

the irreversible reaction step approximation when U y 1 and
thus 1 � aG y 1 � ae and aG y ae, no explicit vibrational effect
is present in the complete reaction kinetics and hence for such
a condition in the limit ae / 1 eqn (70)–(77) reduce essentially
to the expressions we derived and used in previous papers (ref),
based on assuming fully adiabatic ET reactions when neglecting
any explicit vibrational effect. Such a result well explains the
accuracy of the simpler purely electronic approach utilized
previously, indicating that in most typical ET reactions U z 1
and ae z 1 thus providing a kinetic behavior equivalent to
adiabatic reactions involving purely electronic diabatic states.

Interestingly, eqn (70)–(77) can be also combined to treat the
special case where an intermediate Rr plays at the same time the
role of R1 in eqn (70)–(73) and of Rn in eqn (74)–(77), being
hence involved in two reactive paths resulting in two products
chemical states (P+ and P�), as described by the reaction scheme
of Fig. 9. In fact, for such a condition, involving the stationary
state for both R1 and Rn, we clearly have (dening now [P] ¼ [P+]
+ [P�])

½R
�

r�y � aGþð2� aGþÞK Rr
½Rr� � aG�ð2� aG�ÞK *

Rr
½Rr� (78)

½P
�

�y � �R� r

�
yaGþð2� aGþÞK Rr

½Rr� þ aG�ð2� aG�ÞK *
Rr
½Rr�
(79)

providing, with [Rr]0 the initial Rr species concentration (i.e. at
the beginning of the R1, Rn stationary state condition) and
neglecting the R1 and Rn concentrations (i.e. [P] y [Rr]0 � [Rr]),
This journal is © The Royal Society of Chemistry 2018



Fig. 9 Simplified reaction scheme according to the irreversible reac-
tion step approximation (see text) when considering the Rr interme-
diate as a non-stationary reactants state.
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½Rr�
½Rr�0

y e�½aGþð2�aGþÞK RrþaG� ð2�aG� ÞK *
Rr
�t (80)

½P�
½Rr�0

y 1� e�½aGþð2�aGþÞK RrþaG� ð2�aG� ÞK *
Rr
�t (81)

Finally, in case the accessible conformational space is too
extended for accurately using eqn (58) and neglecting the effects
of conformational transitions (e.g. the relevant change of the
unperturbed eigenstate electronic distribution, possibly
requiring the change of the MD force eld and/or the diabatic
states to be used), the presented model should be employed to
describe the reaction kinetics within different conformational
states, each dened by a proper xc subspace, thus allowing to
reconstruct the whole reaction kinetics in terms of single
subspace kinetics and conformational interconversions. More-
over, when more than a single R diabatic vibronic state is
signicantly present in the reactive ensemble (i.e. not only the
vibrational ground state of the R diabatic electronic state
involved in the reaction is thermally accessible or we deal with
a vibrationally non-equilibrium R ensemble), the general model
described applies in principle to the kinetics due to each R dia-
batic vibronic state with the whole kinetics given by their
combination. However, when realizing that usually for the reac-
tions of interest the R ensemble can be considered at thermal
equilibrium with most of the accessible excited vibrational states
(i.e. vibrational states with energies relatively close to the ground
state energy) providing a kinetics similar to the vibrational
ground state one, we can typically assume that the whole kinetics
can be approximately given by the kinetics due only to the R
vibronic state corresponding to the vibrational ground state, thus
allowing to neglect the explicit evaluation of the kinetics due to
the excited vibrational states. In order to signicantly simplify the
application of the model we will make use in general of such an
approximation and in the present work we always consider only
the R vibrational ground state to model the reaction kinetics.
3 Computational details
3.1 Computational strategy

Before entering into the details of the computational proce-
dures utilized in this study, we provide a brief outline of the
underlying strategy. First of all it is important to further remark
that the whole study, based on the MD-PMM procedure,
This journal is © The Royal Society of Chemistry 2018
requires the production of MD simulations and quantum-
chemical calculations (QCC) carried out on the pre-selected
isolated (gas-phase) QC which can be treated either as
a rigid54,55 or exible moiety.72 In both the investigated cases the
experimental measurements, we are referring to, were carried
out starting from photo-generated species, i.e. the electronically
excited DMN for the CT reaction and singlet FL for the ISC
reaction, at a well-dened wavelength. For this reason the rst
step of the work is the theoretical-computational modeling of
the equilibrium spectra in solution of the solvated precursors,
namely: DMN in THF for the CT reaction and FL-N2 in ACN for
ISC reaction. At this purpose we utilized the widely documented
MD-PMM procedure for modeling the equilibrium absorption
spectra in solution73,74 where the chromophore represents the
QC perturbed by the electric eld produced by the solvent
molecules along an equilibrium MD simulation, hereaer
termed as EqMD. From the obtained spectra we then extracted
a number of MD congurations, falling in the experimental
excitation range with an accuracy of �0.5 nm, providing the
whole set of initial conditions (position and associated
momentum of all the atoms) to be used for studying the relax-
ation processes by means of relatively short non-equilibrium
MD simulations, hereaer termed as NonEqMD (see for
example ref. 72). Specically, in each trajectory we have evalu-
ated the time requested for entering the TR (see Theory section)
and, nally, such a swarm of time-values has been utilized in
conjunction with the specic model (see Theory section) for
reconstructing the whole kinetics. Note that the NonEqMD
simulations, again propagated in the NVT ensemble, were
initiated using the coordinates and associated momenta of the
perturbing environment as obtained by the extracted congu-
rations while changing the QC force-eld, i.e. atomic charges
and bond lengths and angles. This last procedure reects the
basic approximation of the model, i.e. we have disregarded the
ultrafast radiationless events (e.g. internal vibrational redistri-
bution), known to take place essentially within the chromo-
phore, upon the vertical excitation. For a general discussion on
these last approximations we invite the reader to refer to the
cited literature.72
3.2 Molecular Dynamics simulations

All the simulations were carried out using the Gromacs
package,75 version 5.0.2 For the QCs we adopted the Lennard-
Jones terms from the Gromos force-eld76 while the atomic
point charges,77 bond lengths, bond angles and torsion angles
were obtained by standard QM calculations in vacuum (see the
next subsection) both for the ground (in the EqMD simulations)
and for the involved excited states (in the NonEqMD). The
parameters for the solvents, i.e. acetonitrile78 and tetrahy-
drofurane83 were taken from the literature. For the EqMD
simulations, aer an initial energy minimization, the whole
system was gradually heated from 50 K to the desired temper-
ature using short (20 ps) MD simulations. The temperature was
kept constant using the velocity rescaling algorithm.79 The
LINCS algorithm80 was employed to constrain all bond lengths.
Long range electrostatic interactions were computed by the
RSC Adv., 2018, 8, 27900–27918 | 27909
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particle mesh Ewald method81 with 34 wave vectors in each
dimension and a 4th order cubic interpolation and a cut-off of
1.1 nmwas used. For the NonEqMD simulations we adopted the
same protocol previously described for EqMD but, obviously,
not including the equilibration procedure. All the simulations
were carried out in the NVT ensemble with the box adjusted to
reproduce the correct solvent bulk density at the experimental
temperature and pressure. This latter condition has been ach-
ieved by adjusting the solute–solvent box in order to reach the
same calculated pressure of a box of pure solvent, simulated at
the same temperature and at the corresponding experimental
density.82 For the CT reaction we utilized a cubic box of 4.6 nm
length lled with THF83 and one molecule of DMN. For the ISC
reaction we utilized a cubic box of 3.5 nm length lled with ACN
and onemolecule of FL (or FL-N2 for the initial evaluation of the
spectrum for preparing the initial conditions). Essential
dynamics analysis84 was used for characterizing the QC
conformational uctuations of the FL-N2 and FL moieties only
as DMN can be considered a rigid or semirigid molecule with
hence either no structural uctuations or only local semi-
classical vibrations neglected within our QCC calculations.

Additional details of the utilized force-eld (i.e. Gromos-
format topologies) are reported in the ESI.†
Fig. 10 Calculated absorption spectrum for DMN in THF. Molar
extinction coefficient is reported in M�1 cm�1.
3.3 Unperturbed quantum states and properties

All the gas-phase QCC necessary for evaluating both the force-
eld of the systems and the unperturbed basis set and proper-
ties for constructing the quantum Hamiltonian to be used, were
carried out in the framework of the Density Functional Theory
(DFT)85 using the hybrid B3LYP functional86,87 in conjunction
with 6-311G** basis set. Time-Dependent Density Functional
Theory (TD-DFT)88 was used with the same functional and basis
set for evaluating the optimized geometries and the related
properties of the involved excited states. We wish to remark
that, in spite of the well known limitations of this level of
theory, our choice was driven by the documented good perfor-
mances of these calculations at a limited computational cost.
Any attempt of studying the sensitivity of our results on the level
of theory of the gas-phase QCC was out of the scope of the
present study. The energy minimizations, vibrational frequency
calculations and atomic-charge evaluations were carried out
with the Gaussian09 package.89 The calculations of the unper-
turbed eigenstates and corresponding operator matrix elements
were carried out in the framework of the linear90 and quadratic91

response theory using the Dalton package.92 The same package
and the same level of theory was also utilized for the calculation
of the spin–orbit coupling matrix element. Note that for this
latter calculation the restricted-open formalism was adopted for
the description of the triplet state. The use of different packages
was due to practical reasons, i.e. efficiency of Gaussian09
package in the optimization of geometries in electronically
excited states, and to the peculiar features of the packages
themselves, e.g. complete evaluation of transition dipole matrix
only possible in the Dalton package. Note that in order to avoid
inconsistency of our unperturbed data, we used the B3LYP-
Gauss version implemented in the Dalton suite. Additional
27910 | RSC Adv., 2018, 8, 27900–27918
details on QCC (i.e. optimized geometries) are reported in the
ESI.†

4 Applications
4.1 Photoinduced CT reaction

As discussed in the Theory section the perturbed electronic
eigenstates outside the transition regions are usually almost
identical to the unperturbed ones, allowing the use of the
proper unperturbed eigenstate properties to construct the MD
force eld to be used (in particular for the ground state which is
virtually unaffected by the perturbation). In Fig. 10 we show the
DMN absorption spectrum as obtained via the PMM/MD
approach (within the vertical transition approximation73)
using the EqMD simulation performed in the ground state
ensemble (i.e. the MD force eld was constructed utilizing the
DMN unperturbed ground state properties). From the gure it is
evident that in correspondence of the excitation wavelength
(308 nm) experimentally used to start the reaction process,64–66

most of the electronic transitions involves the third excited state
which was then used to dene the reactive ensemble (i.e. the
excited-DMN simulation was propagated using the geometry
and the atomic charges as obtained in the unperturbed third
excited state, see below).

As a preliminary step, necessary for the construction of the
force eld for the NonEqMD simulations involving the per-
turbed S3 state, we need to check if, and how much, the third
perturbed electronic excited state resembles the unperturbed S3
electronic state. At this purpose we have collected from the
EqMD trajectory a number of 40 congurations found to absorb
between 307.5 and 308.5 nm. In correspondence of each of
them we have projected the perturbed (instantaneous at time
zero of the reaction) S3 electronic state onto the unperturbed S3
one. The results, shown in Fig. 11, clearly conrm that in the
initial reactive ensemble the perturbed S3 electronic state is
almost identical, as expected, to the unperturbed S3 electronic
state, allowing the use of the latter for constructing the MD
force eld generating the NonEqMD trajectories (the same
analysis conrms also a similar correspondence for the other
This journal is © The Royal Society of Chemistry 2018



Fig. 12 Schematic view of the optimized (in vacuo) DMN in the ground
and first three (singlet) excited states.
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perturbed electronic eigenstates). On the basis of such
a resemblance between perturbed and unperturbed electronic
states, it is interesting to focus our attention on the QCC
providing the DMNminimum energy structures and the related
properties in the ground (S0) and rst three excited (S1, S2 and
S3) unperturbed electronic (singlet) eigenstates.

The results schematically reported in Fig. 12 indicate that
the S0 / S1 excitation should be followed by the variation of
the angle between the C(CN)2 plane and the aliphatic bicyclo
moiety. On the other hand the S2 and S3 equilibrium geome-
tries should be rather similar to the S0 geometry. Moreover,
from the analysis of the dipole moments, reported in the
Fig. 13, we can also observe that while the unperturbed S3 state
has an electronic distribution similar to the ground state, both
the unperturbed S1 and S2 states show a drastic modication of
the electronic density, i.e. a sharp CT-state. It follows that the
experimentally observed photoinduced CT events presumably
involves the unperturbed S3 and S2 excited states as the R and P
diabatic electronic states of the reaction.

In order to verify that the unperturbed S2 and S3 electronic
eigenstates are fully consistent with the proper diabatic elec-
tronic states to be used, we analyzed the 40 NonEqMD trajec-
tories monitoring, for each of them, the energies corresponding
to the unperturbed S3 and S2 eigenstates (i.e. the diabatic
electronic energies corresponding to diagonal elements of the
perturbed electronic Hamiltonian matrix) and the perturbed S3
and S2 eigenstates (i.e. the adiabatic electronic states) squared
projections along the S3 and S2 unperturbed eigenstates
providing the fractional amount of these unperturbed eigen-
states in the denition of each adiabatic state (i.e. the diabatic
state probabilities). In Fig. 14 we show, for one trajectory, such
properties close to the energy crossing. From the gure it is
evident that the perturbed electronic S3 eigenstate, virtually
identical to the unperturbed S3 eigenstate just before the
crossing, sharply becomes almost identical to the unperturbed
S2 eigenstate while an almost specular behavior is occurring for
the perturbed S2 eigenstate (the slight deviations from the ideal
Fig. 11 Projections of the perturbed S3 electronic eigenstate onto the
unperturbed S3 electronic eigenstate for the 40 initial configurations
of the NonEqMD trajectories.

This journal is © The Royal Society of Chemistry 2018
behaviour are due to the weak coupling of the other unper-
turbed eigenstates, disregarded in the model). Such results
demonstrate that the S3 / S2 unperturbed eigenstate transi-
tion is an accurate approximation of the CT reaction, conrm-
ing that these unperturbed electronic eigenstates furnish the
proper R and P diabatic electronic state, respectively, thus
allowing the use of the corresponding reduced two-dimensional
subspace to model the reactive events. Note that in the analysis
of the NonEqMD trajectories the electronic energies and
eigenstates (i.e. the electronic Hamiltonian matrix) are obtained
at the R chemical state structure and hence the diabatic elec-
tronic energy crossings are approximately equivalent to the
diabatic vibronic energy crossings involving the P diabatic
vibronic state corresponding to the vertical transition. There-
fore, the negative electronic transition energy always found
before the rst crossing, implies that the Rn / R1 reaction
scheme is to be used.

The distribution of the time lengths to reach the rst dia-
batic energy crossing (the rst S3 / S2 unperturbed eigenstate
energy crossing) provides the rate constant K *

Rn
to be used in

eqn (74)–(77), corresponding to the purely adiabatic kinetics53

(see Fig. 15) and hence for the complete reaction kinetics model
we also need to evaluate the diabatic fraction 1� aG¼ (1� ae)

U.
For the present CT reaction, similarly to most of the typical CT
reactions, the initial relevant vibronic crossing involves the P
vibronic diabatic state corresponding to the vertical transition,
with hence the largest vibrational state overlap, associated to
a highly excited and strongly anharmonic P vibrational state.
Such a condition avoids the use of any computationally explicit
evaluation of the vibrational effects, necessarily based on the
Fig. 13 Schematic view of the S0, S1, S2 and S3 dipole moments.

RSC Adv., 2018, 8, 27900–27918 | 27911



Fig. 14 Diabatic perturbed electronic energies (upper panel),
including the S3 and S2 electronic Hamiltonian eigenvalues (dashed
lines), and the perturbed S3 diabatic state probabilities (lower panel)
close to the crossing.
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assumption of either the harmonic or slightly anharmonic
behaviour of the P vibrational states of interest (note that for the
R chemical state we consider only the diabatic vibronic state
corresponding to the ground vibrational state). Therefore, for
the present CT reaction in order to obtain an achievable effi-
cient computational model and on the basis of the high density
in energy of the relevant P vibronic states involved in the rst
reaction steps and corresponding large vibrational state over-
laps, we assume U z 1 and hence aG z ae thus reducing the
evaluation of the diabatic fraction to the purely electronic
Landau–Zener factor, see eqn (55)–(60). As discussed in the
Theory section such an assumption can be considered
a reasonable approximation in typical CT reactions, at least
when the initial reaction step involves the P vibronic state cor-
responding to the R / P vertical transition. From Fig. 15 we
obtained K *

Rn
z 0:00136 fs�1 (corresponding to the purely

adiabatic mean lifetime of z735 fs) and from the rst diabatic
energy crossing ensemble aG z ae ¼ 0.675 � 0.035 providing,
within our model, the complete rate constant for the reaction
aGð2� aGÞK *

Rn
z 0:00122� 0:00003 fs�1 corresponding to
Fig. 15 Kinetic trace for the fully adiabatic CT reaction.
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a mean lifetime of z822 � 20 fs (the noise indicated is always
the estimated standard error). The reported theoretical-
computational results reasonably well reproduce the experi-
mental mean lifetime64–66 (z360 fs), indicating that the
employed theoretical-computational model captures the
essential physics of the CT reaction.

For the sake of clarity we have schematized the whole
procedure, employed to obtain the results described in this
subsection, in the ow-chart reported in Fig. 16.

4.2 ISC reaction

The singlet-triplet reaction of carbene-like systems has repre-
sented a long-time benchmark for QM calculations.93 The main
problem is related to the correct evaluation of the singlet–triplet
(S–T) energy gap which is very difficult to accurately obtain with
low-cost calculations such as Hartree–Fock or DFT, even when
using a relatively large atomic basis set. For this reason we
decided to use the unperturbed QC calculations for both the
singlet and triplet magnetic states, scaling the obtained ener-
gies in order to reproduce the experimentally estimated gas-
phase S–T ground state energy gap (i.e. we scaled the T elec-
tronic ground state energy, keeping xed the calculated T
excitation energies).67,68 Differently from DMN, treated as a rigid
or semirigid QC, FL needs to be considered a exible QC.
Specically, we have included in the MD-PMM calculations,
beyond the usual local semiclassical vibrations, the effects of
the FL conformational uctuations basically corresponding to
uctuations within the subspace dened by the low-frequency
out-of-plane vibrational modes. At this purpose we have evalu-
ated the geometry-dependent S and T unperturbed electronic
Fig. 16 Schematic representation of the relevant steps involved in the
computational procedure described in the text.

This journal is © The Royal Society of Chemistry 2018



Paper RSC Advances
eigenstates and properties, as described in detail in our
previous publication,72 using the essential dynamics analysis.84

For the sake of brevity this part of the study has been reported in
the ESI.† Similarly to the CT reaction, also in this case we have
extracted 40 initial FL congurations from the FL-N2 spectrum
(reported in Fig. 17) within the wavelength range 307.5–
308.5 nm (i.e. the excitation range experimentally used).

The obtained MD trajectories of the singlet ground state FL,
providing the NonEqMD ensemble for the S / T reaction (i.e.
the R / P transition), clearly indicate that the S diabatic
vibronic ground state energy is always initially lower than the T
diabatic vibronic ground state energy, thus implying that the
initial relevant vibronic crossing involves the T vibronic diabatic
ground state, with hence in general a limited vibrational state
overlap, and the relevant intermediates are associated to only
the rst excited and virtually harmonic T vibrational states (for
the denition of the diabatic states and energies for ISC reac-
tions see the Theory section). Such a condition requires/allows
the explicit evaluation of the vibrational effects considering all
the T vibrational states involved in the relevant stationary
intermediates (note that for the S chemical state we consider
only the diabatic vibronic ground state). For the present ISC
reaction only the T vibrational ground and rst three excited
states (i.e. the rst two excitations of the z214 cm�1 mode and
the rst excitation of thez428 cm�1 mode) are signicant as no
trajectory can reach diabatic vibronic energy crossings involving
other T vibrational states. The distribution of the time lengths
to reach the rst diabatic energy crossing (the vibronic ground
to ground S / T diabatic energy crossing) provides the rate
constant K R1 to be used in eqn (70)–(73), corresponding to the
purely adiabatic kinetics53 (see Fig. 18). The complete reaction
kinetics model can then be obtained evaluating the diabatic
fraction 1 � aG ¼ (1 � ae)

U where ae is provided by the elec-
tronic Landau–Zener factor, see eqn (55)–(60), and U includes
only the vibrational state overlaps of the S ground state with the
T ground and rst three excited vibrational states. In order to
evaluate the relevant vibrational state overlaps for estimating U,
we made use of the Duschinsky transformation94 providing the
Fig. 17 Calculated absorption spectrum (molar extinction coefficient
in M�1 cm�1) for FL-N2 in ACN.

This journal is © The Royal Society of Chemistry 2018
T normal mode coordinates in terms of the S ones. Such
a procedure applied to a exible QC consists, in principle for
each xed QC conformational coordinates conguration and
environment perturbation, of the following steps:

� The evaluation of the S and T energy minimized structures
and, aer mass-weighted least square tting of the T structure
onto the corresponding S one (i.e. aer removal of the relative
roto-translation), of the corresponding normal mode coordi-
nates and frequencies given by the eigenvectors and eigenvalues
of the (mass-weighted) Hessian matrices.

� Projection of the T energy minimized structure and
Hessian eigenvectors onto the S Hessian eigenvectors taken as
axis of the reference frame in the mass-weighted space with
origin in the S energy minimized structure, thus providing the T
energy minimized structure and normal mode coordinates in
terms of the S ones.

� Such a transformation allows to evaluate the vibrational
state overlaps by integration of the S and T vibrational wave-
function product over the S normal mode coordinates.

It is worth to note that quantum normal modes typically
correspond to only a subset of the Hessian eigenvectors, as most
of the QC congurations do not correspond to a full space
energy minimum and only the high frequency modes can be
truly considered harmonic-like quantum vibrational modes. For
sake of simplicity and considering the limited FL conforma-
tional freedom and the weak perturbation effects on the
quantum vibrational modes and frequencies,95 we only
considered such a transformation as obtained in the full space
energy minimized S and T structures neglecting the perturba-
tion effects (i.e. we disregard the effects due to both the
conformational uctuations and environment perturbation).
Moreover by inspecting the squares of the elements of the
Duschinsky matrix, i.e. the matrix given by the squared inner
products of the S and T Hessian eigenvectors (see Fig. 19), we
can safely conclude that within a good approximation no rele-
vant mixing of the quantum modes is provided by the R / P
transition, allowing to consider each T quantum vibrational
mode as essentially coinciding with the S one of equal frequency
with only a signicant shi of the minimum energy position.
Such evidence results in a considerable reduction of complexity
for the calculation of the vibrational state overlaps, allowing to
Fig. 18 Kinetic trace for the fully adiabatic ISC reaction.
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Fig. 19 Squares of the elements of the Duschinsky matrix for the FL S
and T vibrational states.

Fig. 20 Schematic representation of the relevant steps involved in the
computational procedure described in the text.
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approximate the required multi-coordinates integral into the
simple product of single-coordinate integrals with each integral
corresponding to a single-mode vibrational state overlap.

By using the approximations described we obtained the
estimate of aG (resulting rather close to zero), then providing
the complete rate constant for the reaction aG(2 � aG)K R1

z
2aGK R1

z 0.0032 � 0.0004 ps�1 corresponding to a mean life-
time of z312 � 40 ps (the noise indicated is always the esti-
mated standard error). The reported theoretical-computational
results well reproduce the experimental mean lifetime67,68

(z440 ps), indicating that the employed theoretical-
computational model captures the essential physics of the ISC
reaction. Interestingly, experimental evidences67,68 showed that
in cyclohexane (a virtually apolar and very weakly interacting
27914 | RSC Adv., 2018, 8, 27900–27918
solvent) the FL S / T reaction is strongly accelerated with
a reaction mean lifetime of z88 ps, indicating the relevant
effects of the polar environment perturbation. In order to test
the accuracy of our theoretical-computational methodology we
performed, similarly to the previous case, MD simulations of
the FL QC in vacuo, providing the NonEqMD ensemble for the
gas-phase reaction. In this latter case the S diabatic vibronic
ground state energy is always initially in between the energies of
two T diabatic vibronic states (involving the rst excited vibra-
tional states of the T electronic ground state) as a consequence
of the relevant increase of the S electronic ground state energy,
thus requiring the use of eqn (78)–(81). For the gas-phase
condition our results provide for the complete rate constant
a corresponding mean lifetime of 16 � 4 ps, clearly showing the
dramatic acceleration of the kinetics due to the missing QC-
solvent interaction and therefore possibly well explaining the
experimentally observed rate constant increase in cyclohexane.

For the sake of clarity we have schematized the whole
procedure, employed to obtain the results described in this
subsection, in the ow-chart reported in Fig. 20.
5 Conclusions

The simulation of non-adiabatic phenomena is an extremely
important issue for fundamental and practical reasons but, at
the same time, is an extremely challenging task. Nowadays
a large number of elegant and efficient theoretical-
computational approaches, based on explicit Quantum-
Dynamical (QD) or QM/MM simulations at different levels of
approximation, are available for describing in great detail the
energetics and the dynamics of such events for moderately sized
molecular systems for a limited time-range. Much more prob-
lematic is the description of such processes for complex
molecular systems spanning phase-space regions and relaxa-
tion time-ranges prohibitively large for explicit QD simulations.
In this context we have presented, in this paper, a theoretical-
computational methodology specically designed at this
purpose. The core of our approach is the evaluation of the
diabatic perturbed energy surfaces of a preventively selected
Quantum system in semi-classical interaction with its atomic-
molecular environment, directly from the atomistic simula-
tions of the whole molecular system. Subsequently, the esti-
mation of the coupling between the diabatic surfaces and the
inclusion of the obtained observables within a properly
designed kinetic model allows the reconstruction of the whole
phenomenology directly comparable to the experimental (typi-
cally kinetic) data. This last point together with the specic use
of a diabatic representation and of the PMM framework allow-
ing to sample large phase-space regions and relaxation life-
times, characterize our method compared to similar QM/MM
approaches. Application to two systems has demonstrated the
accuracy and efficiency of the proposed method for the
theoretical-computational investigations of reactive events
within large and complex atomic-molecular systems, hence
showing that it is a valuable tool complementary to the QD-
based approaches.
This journal is © The Royal Society of Chemistry 2018
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PMM calculations; (iii) essential dynamics analysis.

Conflicts of interest

There are no conicts to declare.

Acknowledgements

Authors thank CINECA (Italy) for the Iscra-C grant code IscrC-
CCAE. Mr Renato Di Bartolomeo (University of l'Aquila) is
acknowledged for his help in the preparation of the manuscript.

References

1 S. Mahapatra, Excited Electronic States and Nonadiabatic
Effects in Contemporary Chemical Dynamics, Acc. Chem.
Res., 2009, 42, 1004–1015.

2 D. Yarkony, Nonadiabatic Quantum Chemistry-Past,
Present, and Future, Chem. Rev., 2012, 112, 481–498.

3 B. F. E. Curchod and T. J. Martinez, Ab Initio Nonadiabatic
Quantum Molecular Dynamics, Chem. Rev., 2018, 118,
3305–3336.

4 G. J. Kavarnos, Fundamentals of photoinduced electron
transfer, VCH, New York, 1993.

5 Photoinduced Electron Transfer Parts A–D, ed. M. A. Fox and
M. Chanon, Elsevier, Amsterdam, 1988.

6 Photoinduced Electron Transfer. Parts I–IV, ed. J. Mattay,
Elsevier, Amsterdam, 1988.

7 Heterogenoeus Photoinduced Electron Transfer, ed. M. Gratzel,
CRC Publishers, Boca Raton, 1988.

8 J. R. Norris Jr and D. Meisel, Photochemical Energy
Conversion, Elsevier, New York, 1989.

9 Organic Light Emitting Devices: Synthesis, Properties and
Applications, ed. K. Mullen and U. Scherf, Wiley-VCH,
Weinheim, 2006.

10 Highly Efficient OLEDs with Phosphorescent Materials, ed. H.
Yersin, Wiley-VCH, Weinheim, 2008.

11 G. Scholes and G. R. Fleming, Energy transfer in
photosynthesis, Adv. Chem. Phys., 2005, 132, 57–129.

12 J. C. Tully, in Modern Methods for Multidimensional Dynamics
Computations in Chemistry, ed. D. L. Thompson, World
Scientic, Singapore, 1998.

13 X. Sun and W. H. Miller, Semiclassical initial value
representation for electronically nonadiabatic molecular
dynamics, J. Chem. Phys., 1997, 106, 6346–6353.

14 M. Ben-Nun and T. J. Martinez, Nonadiabatic molecular
dynamics: validation of the multiple spawning method for
a multidimensional problem, J. Chem. Phys., 1998, 108,
7244–7257.

15 I. Horenko, C. Salzmann, B. Schmidt and C. Schutte,
Quantum-classical Liouville approach to molecular
dynamics: surface hopping Gaussian phase-space packets,
J. Chem. Phys., 2002, 117, 11075–11088.
This journal is © The Royal Society of Chemistry 2018
16 M. Barbatti, M. Ruckenbauer, F. Plasser, J. Pittner,
G. Granucci, M. Persico and H. Lischka, NEWTON-X:
a surface-hopping program for nonadiabatic molecular
dynamics., Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2014,
4, 26–33.

17 C. A. Schwerdtfeger, A. V. Soudackov and S. Hammes-
Schiffer, Nonadiabatic dynamics of electron transfer in
solution: explicit and implicit solvent treatments that
include multiple relaxation time scales, J. Chem. Phys.,
2014, 140, 034113.

18 W. C. Pfalzgraff, A. Kelly and T. E. Markland, Nonadiabatic
Dynamics in Atomistic Environments: Harnessing
Quantum-Classical Theory with Generalized Quantum
Master Equations, J. Phys. Chem. Lett., 2015, 6, 4743–4748.

19 P. Huo and D. F. Coker, Partial linearized density matrix
dynamics for dissipative, non-adiabatic quantum
evolution, J. Chem. Phys., 2011, 135, 201101.

20 R. Kapral and G. Ciccotti, Mixed quantum-classical
dynamics, J. Chem. Phys., 1999, 110, 8919–8929.

21 F. F. de Carvalho, M. E. F. Bouduban, B. F. E. Curchod and
I. Tavernelli, Nonadiabatic Molecular Dynamics Based on
Trajectories, Entropy, 2014, 16, 62–85.

22 A. Jain and J. E. Subotnik Surface Hopping, Transition State
Theory, and Decoherence II. Thermal Rate Constants and
Detailed Balance, J. Chem. Phys., 2015, 143, 134107.

23 I. Burghardt, M. Nest and G. A. Worth, Multicongurational
system-bath dynamics using Gaussian wave packets: energy
relaxation and decoherence induced by a nite-dimensional
bath, Chem. Phys., 2003, 119, 5364–5378.

24 B. Lasorne, M. A. Robb and G. A. Worth, Direct quantum
dynamics using variational multi-conguration Gaussian
wavepackets. Implementation details and test case, Phys.
Chem. Chem. Phys., 2007, 9, 3210–3227.

25 H. Wang, Multilayer Multicongurational Time-Dependent
Hartree Theory, J. Phys. Chem. A, 2015, 119, 7951–7956.

26 F. Agostini, A. Abedi, Y. Suzuki and E. K. U. Gross, Mixed
Quantum-Classical Dynamics on the Exact Time-
Dependent Potential Energy Surface: A Fresh Look at Non-
Adiabatic Processes, Mol. Phys., 2013, 111, 3625–3640.

27 F. Di Maiolo, M. Masino and A. Painelli, Terahertz-pulse
driven modulation of electronic spectra: modeling
electron-phonon coupling in charge-transfer crystals, Phys.
Rev. B, 2017, 96, 075106.

28 W. Xie, M. Xu, S. Bai and Q. Shi, Mixed Quantum-Classical
Study of Nonadiabatic Curve Crossing in Condensed
Phases, J. Phys. Chem. A, 2016, 120, 3225–3232.

29 R. A. Marcus, Electron Transfer Past and Future, Adv. Chem.
Phys., 1999, 106, 1–6.

30 A. K. Manna and B. D. Dunietz, Charge-transfer rate
constants in zinc-porphyrin-porphyrin-derived dyads:
a Fermi golden rule rst-principles-based study, J. Chem.
Phys., 2014, 141, 121102.

31 Y. Zhao and W. Z. Liang, Charge transfer in organic
molecules for solar cells: theoretical perspective, Chem.
Soc. Rev., 2012, 41, 1075.

32 A. Soudackov and S. Hammes-Schiffer, Derivation of rate
expressions for nonadiabatic proton-coupled electron
RSC Adv., 2018, 8, 27900–27918 | 27915



RSC Advances Paper
transfer reactions in solution, J. Chem. Phys., 2000, 113,
2385–2396.

33 A. Hazra, A. V. Soudackov and S. Hammes-Schiffer, Role of
solvent dynamics in ultrafast photoinduced proton-
coupled electron transfer reactions in solution, J. Phys.
Chem. B, 2010, 114, 12319–12332.

34 Comparisons of Classical and Quantum Dynamics, in
Volume III of Advances in Classical Trajectory Methods, ed.
W. L. Hase, JAI Press, Inc., Greenwich 1998.

35 A. Warshel, Dynamics of reactions in polar solvents.
semiclassical trajectory studies of electron-transfer and
proton-transfer reactions, J. Phys. Chem., 1982, 86, 2218–
2224.

36 X. Chen and R. J. Silbey, Excitation Energy Transfer in a Non-
Markovian Dynamical Disordered Environment:
Localization, Narrowing, and Transfer Efficiency, J. Phys.
Chem. B, 2011, 115, 5499–5509.

37 F. Sterpone, M. Ceccarelli and M. Marchi, Linear Response
and electron transfer in complex biomolecular systems
and a reaction center protein, J. Phys. Chem. B, 2003, 107,
11208.

38 J. Blumberger and M. L. Klein, Reorganization free energies
for long-range electron transfer in a porphyrin-binding four-
helix bundle protein, J. Am. Chem. Soc., 2006, 128, 13854–
13867.

39 K. Ando, Solvent nuclear quantum effects in electron
transfer reactions II. Molecular dynamics study on
methanol solution, J. Chem. Phys., 2001, 114, 9040.

40 L.-W. Ungar, M. D. Newton and G. A. Voth, Classical and
Quantum Simulation of Electron Transfer Through
a Polypeptide, J. Phys. Chem. B, 1999, 103, 7367–7382.

41 M. Cascella, A. Magistrato, I. Tavernelli, P. Carloni and
U. Rothlisberger, Role of protein frame and solvent for the
redox properties of azurin from Pseudomonas aeruginosa,
Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 19641–19646.

42 W. R. Duncan and O. V. Prezhdo, Theoretical studies of
photoinduced electron transfer in dye-sensitized TiO2,
Annu. Rev. Phys. Chem., 2007, 58, 143–184.

43 T. Kowalczyk, L.-P. Wang and T. Van Voorhis, Simulation of
Solution Phase Electron Transfer in a Compact Donor–
Acceptor Dyad, J. Phys. Chem. B, 2011, 115, 12135–12144.

44 V. Cantatore, G. Granucci and M. Persico, Simulation of the
pi-pi* photodynamics of azobenzene: decoherence and
solvent effects, Comput. Theor. Chem., 2014, 1040, 126–135.

45 J. Cerezo, Y. Liu, N. Lin, X. Zhao, R. Improta and F. Santoro,
Mixed Quantum/Classical Method for Nonadiabatic
Quantum Dynamics in Explicit Solvent Models: The
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