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Diabetes mellitus (DM) is a metabolic disorder characterized by hyperglycaemia and high morbidity worldwide. The detrimental
effects of hyperglycaemia include an increase in the oxidative stress (OS) response and an enhanced inflammatory response. DM
compromises the ability of the liver to regenerate and is particularly associated with poor prognosis after ischaemia-reperfusion
(I/R) injury. Considering the growing need for knowledge of the impact of DM on the liver following a surgical procedure, this
review aims to present recent publications addressing the effects of DM (hyperglycaemia) on OS and the inflammatory process,
which play an essential role in I/R injury and impaired hepatic regeneration after liver surgery.

1. Introduction

To extirpate a macroscopic lesion or accomplish a transplant,
the blood flow to the liver must be interrupted to avoid the
haemorrhagic process. Despite the safety of surgical proce-
dures that involve the interruption of blood flow to the liver
(ischaemia), this interruption contributes to tissue damage,
which is potentiated by the restoration of blood flow (reper-
fusion). This phenomenon, known as ischaemia-reperfusion
(I/R) injury [1, 2], is associated with inflammation and oxida-
tive stress (OS) [3].

Diabetes mellitus (DM) is a metabolic disorder resulting
from deficient insulin secretion and/or insulin action, leading
to hyperglycaemia (high blood glucose) [4], which causes
oxidative damage and activates inflammatory signalling
cascades [5], in addition to acting as a damaging agent
exacerbating the pathological conditions of DM [6, 7].
Considering the growing need for knowledge about the
impact of DM on livers undergoing a surgical procedure,
the present review aims to present recent data concerning
the effects of DM (hyperglycaemia) on OS and the
inflammatory process.

2. Oxidative Stress

Under normal conditions, the hepatic production of prooxi-
dants, such as reactive oxygen species (ROS), is counterba-
lanced by antioxidants. An imbalance in favour of
prooxidants corresponds to OS, and the direct action of
ROS on cell viability and function is directly related to the
occurrence of several pathological processes in the liver [8].
OS plays an essential role in liver surgery [9], and diabetes
is generally followed by increased free radical production
[10–13] or reduced antioxidant protection [14, 15]. To better
understand the effect of DM (hyperglycaemia) on OS, this
section will describe research findings that help clarify the
association of DM with liver surgery.

2.1. Diabetes Mellitus and Ischaemia-Reperfusion Injury.
Hydrogen peroxide (H2O2), a mild and relatively stable
oxidant that is formed in tissues exposed to I/R, has been
considered a representative ROS for evaluating the
response of cells to OS [16]. Although H2O2 is not a free
radical, its accumulation may promote the formation of
more toxic species, such as hydroxyl radicals (•OH), through
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the Fenton reaction [17]. H2O2 can cause permanent growth
arrest [18, 19] and apoptosis [20–22] in a number of cell
types. Nuclear (8-hydroxy-2′-deoxyguanosine) 8-OHdG for-
mation indicates the presence of OS in nuclei [23]. The liver
is a major organ affected by ROS [24] and is susceptible to the
effects of OS induced by hyperglycaemia, causing liver injury
[25–27]. Zhang et al. [28] found that serum H2O2 and
nuclear 8-OHdG levels were higher in streptozotocin-
(STZ-) induced diabetic rats subjected to I/R compared with
the diabetic control group. ROS induce lipid peroxidation,
which causes membrane injury, in addition to changes in
ion permeability, enzyme activity, and, ultimately, cell
death. Malondialdehyde (MDA), an indicator of oxidative
injury produced via lipid peroxidation [29], is significantly
enhanced in STZ-induced diabetic rats compared with
normal rats and increases after I/R [28, 30] (Figure 1).

Apoptosis and necrosis can occur after I/R. An intense
injury leads to initial necrotic killing, whereas late apoptosis
may follow moderate injury [31]. STZ-induced diabetic rats
exposed to an ischaemic period present significantly
increased hepatocyte degeneration, sinusoidal dilatation,
nuclear pyknosis, and cellular necrosis compared with the
diabetes sham group [30]. In spite of this experimental differ-
ence, Behrends et al. [32] reported that necrosis is the prefer-
ential form of cell death in the liver of hyperglycemic rats
(due to intraperitoneal injection of 25% glucose) subjected
to I/R. The authors [32] noted that this increased injury
may be associated with the inhibition of heat shock proteins
(HSPs), which is only possible through the association of
hyperglycaemia and I/R. The hyperglycaemia alone was not
enough for HSP32 and HSP70 downregulation. HSPs are
considered to be an indispensable protective agent against
I/R injury because they are able to protect the liver from OS
[33] (Figure 1).

Cell adaptation to OS is a consequence of the upregula-
tion of distinct cytoprotective genes responsible for buffering
the antioxidant capacity of the cell [34]. Under physiological
conditions, an antioxidant defence system protects the body
against the harmful effects of free radicals [35]. Diabetic livers
are vulnerable to attack by oxygen free radicals because they
present overall antioxidant depression [14]. Release of ROS
and the concurrent consumption of endogenous antioxidants
and cell death (apoptosis or necrosis) occur during hepatic I/
R [36]. After I/R, nuclear factor (erythroid-derived 2)-like-2
factor (Nrf2), a transcription factor that mediates the expres-
sion of many endogenous antioxidants plays an important
role in opposing hepatic injury [37]. Zhang et al. [28]
reported that, after I/R injury, hepatocytes pretreated with
high glucose (25mM) exhibited a reduction in the antiox-
idative ability of the Nrf2 pathway and a substantial
increase in nuclear factor kappa B (NF-κB) translocation;
however, NF-κB activation was already enhanced in these
hepatocytes before I/R injury. Interestingly, NF-κB, a tran-
scription factor that reacts to redox signals, may directly
repress Nrf2 signalling at the transcriptional level [38, 39].
Zhang et al. [28] postulated that high glucose-induced
ROS overproduction could initiate the inhibitory interac-
tion between NF-κB and Nrf2 (Figure 1). However, the
precise mechanisms involved in the NF-κB and Nrf2

interaction under hyperglycaemic conditions require
further elucidation.

Under normal conditions, the body presents a potent
antioxidant system that is responsible for protecting it from
the harmful effects of ROS [40]. Endogenous antioxidant
enzymes attenuate I/R injury in the liver [36]. In both type
1 and type 2 DM, antioxidant defence enzymes are deficient,
and there is an increase in oxidative damage [41]. High levels
of ROS such as superoxide (O2

−) are found in diabetes and
especially during I/R injury [42]. Cem Sezen et al. [30]
showed that there is an increase in glutathione s-transferase
(GST) in STZ-induced diabetic mice post-I/R with respect
to diabetic rats. Between these two groups, there was no dif-
ference in the level of superoxide dismutase (SOD); however,
compared with the sham group (nondiabetic), there was a
marked decrease in SOD levels. The orchestrated actions of
several antioxidants in mammalian cells are essential for effi-
ciently detoxifying free radicals. Therefore, any impairment
in this pathway will influence the activities of other enzymes
[43, 44]. Reduction in the activity of SOD will result in an
increased level of O2

− [45]. GST is known to be an early
and sensitive marker of liver injury and has been shown
to increase after liver ischaemia/reperfusion [46]. This
increased activity of GST could be explained as a compen-
satory mechanism to protect the organism against injury
[47]. These findings are not only in accord with the
diverse signalling pathways related to postoperative liver
injury associated with DM (Figure 1) but also indicate
the importance of the determination of increased ROS
production and its characteristic consequences in post-
ischaemic tissues, permitting the identification of interven-
tions that stimulates ROS detoxification, and consequently
protect against reperfusion injury [16], mainly in a dia-
betic context (Figure 1).

2.2. Diabetes Mellitus and Liver Regeneration. An increase in
lipid peroxidation was found to be important for a normal
proliferative process to occur in the liver remnant after par-
tial hepatectomy (PH) [48, 49]. Francés et al. [50] reported
that OS is increased by hyperglycaemia and is juxtaposed
with the effect of PH in STZ-induced diabetic rats. Postoper-
ative recovery depends on the regenerative capacity of the
residual liver. The liver presents altered intracellular signal-
ling pathways in type 1 DM specimens [51–53] and a conse-
quent deficient regenerative response [54]. STZ-induced
diabetic rats were found to present an increase in •OH
production, which could result in DNA damage [55, 56]
(Figure 1). Hyperglycaemia in STZ-induced diabetic rats
leads to an increase in hepatic ROS production and is further
enhanced after PH. STZ-induced diabetic rats subjected to
PH present a decrease in the level of proliferating cell nuclear
antigen (PCNA) and a significant decrease in cyclin D1
levels, suggesting that few hepatocytes are capable of entering
the cell cycle [50].

Hyperglycaemia enhances •OH radical levels and con-
sequent Bax protein induction. After PH, STZ-induced
diabetic rats were found to present an increase in proa-
poptotic events (Bax/Bcl-xL ratio, caspase-3 activity, and
cytosolic cytochrome c) compared with the diabetic group
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[50] (Figure 1). The diversity of the results of different studies
[30, 32, 50, 55] shows that the association of hyperglycaemia
with different surgical modalities leads to differences in the
type of cell death. It is imperative to identify the effects of dia-
betes on cell death after more complex surgical procedures
leading to pronounced liver injury, such as liver transplanta-
tion and PH under I/R.

3. Inflammation

Hepatic inflammation is a complex process that is initiated in
response to stressful conditions to protect hepatocytes from
injury. However, overly intense inflammatory responses are
followed by massive hepatocyte loss, causing irreversible
parenchymal damage [57]. Liver damage is a serious compli-
cation in DM [58]. Surgical procedures induce acute inflam-
mation, which is characterized by the production and release
of various chemical mediators, including cytokines [59]. In
the next section, the effects of DM (hyperglycaemia) on the
hepatic inflammatory process after a surgical procedure will
be discussed.

3.1. Diabetes Mellitus and Ischaemia-Reperfusion Injury. The
pathophysiology of hepatic I/R injury is not only related to

the direct cell impairment caused by ischaemic insult but also
results from the restoration of blood flow, which triggers the
proinflammatory environment. Diabetic patients present a
variety of deficient immune cell functions [60, 61], and dia-
betic animals exhibit abnormalities in the course of the
inflammatory response, with a consequent decrease in the
number of leukocytes in inflammatory injuries [62, 63], the
airway inflammatory response to antigen challenge [64, 65],
mast cell degranulation [66, 67], superoxide generation, and
tumour necrosis factor- (TNF-) α release by leukocytes upon
exposure to lipopolysaccharides [68]. The difficulty in arriv-
ing at any consistent conclusion is due to the conflicting
views regarding the impact of hyperglycaemia on inflam-
matory responses between different reports. Since clinical
observations have revealed that the association between
hyperglycaemia and immune alterations could increase the
risk for rejection in transplantation, the substantial inflam-
matory response associated with I/R injury appears to be
mediated by an exaggerated adhesion of leukocytes to the
endothelium [69, 70].

The hyperinflammatory phenotype associated with DM
may induce a liver immune response against I/R, which could
favour an increase in parenchymal damage [71]. In the initial
phase of liver injury, different events trigger a complex
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Figure 1: Mechanisms of OS in the promotion of liver damage and impaired regeneration after liver surgery in association with DM. The
illustration shows the molecular events subsequent to the surgical procedure performed on the diabetic liver, which leads to a significant
increase of ROS, inducing liver injury and regeneration. PH, partial hepatectomy; I/R, ischaemia-reperfusion; O2

-, superoxide anion; HSP,
heat shock protein; NF-κB, nuclear factor kappa B; Nrf2, nuclear factor (erythroid-derived 2)-like-2 factor; H2O2, hydrogen peroxide;
•OH, hydroxyl radical.
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inflammatory pathway that leads to hepatic accumulation of
neutrophils [72]. Through the release of oxidants and prote-
ases, hepatocytes are directly damaged by recruited neutro-
phils, which are involved in by the later phase of liver
injury induced by I/R [73]. In the livers of hyperglycaemic
rats subjected to I/R, Behrends et al. [32] observed an
increase in neutrophil infiltration (Figure 2). Interestingly,
in association with microvascular dysfunction in response
to I/R, neutrophil infiltration is exacerbated in DM, sug-
gesting that DM predisposes tissues to the detrimental
consequences of I/R, which is a deleterious process that
is broadly mediated by neutrophils [69].

The immune system responds to liver injury and/or stress
through the activation of resident Kupffer cells (KCs), which
release proinflammatory cytokines and other factors [74]. A
prominent feature of liver injury is an increase in the hepatic
macrophage population [75]. Considering cellular and
molecular mechanisms, Yue et al. [71] showed that I/R stim-
ulates the release of advanced glycation end products (AGE)
into the blood of STZ-induced diabetic mice and that KCs
express higher levels of the receptor for AGE (RAGE). The
authors [71] proposed that RAGEmay exhibit different func-
tions in a cell type-specific manner. In normal mice, RAGE
regulates hepatocyte proliferation during the restoration
phase of I/R, whereas in diabetic mice, RAGE activates the
hepatic immune system. These findings support the hypoth-
esis that DM may be a factor involved in the course and evo-
lution of I/R injury after liver surgery.

Activated KCs respond with a classic inflammatory
reaction and consequent production of proinflammatory
cytokines [76–80]. At 6 hours after reperfusion, TNF-α
and interleukin- (IL-) 6 levels were found to be increased,
while the IL-10 level was decreased on STZ-induced dia-
betic mice [71, 81] (Figure 2), whereas in control mice,
KCs not only presented increases in TNF-α and IL-6 but
also an increase in IL-10 [81]. The activation of IL-10 dur-
ing a proinflammatory response may represent an impor-
tant agent in the regulation of intensive inflammation in
a stressful situation. These findings not only illustrate the
defensive role of KCs during liver I/R injury in opposing
the hyperinflammatory response through IL-10 expression
but also show that hyperglycemic mice subjected to I/R
present a significant decrease in IL-10 secretion, by KCs,
which is related to uncontrolled inflammation and robust
hepatic I/R injury [81].

Several studies suggest that endoplasmic reticulum
stress and CHOP signalling could be upregulated by RAGE
signalling [82–85]. After 6 hours of reperfusion, C/EBP
homologous protein (CHOP) levels in KCs were found to
be stimulated by I/R and were further increased in STZ-
induced hyperglycemic mice. In hyperglycemic KCs, overac-
tivation of CHOP is related to the inhibition of STAT3 and
STAT6 activation. The signal transducers and activators of
transcription (STATs) regulate the polarization of macro-
phages [86], and diabetic mice present M2 KC phenotype
inhibition, which results in increased inflammation under
hepatic I/R when the rodents exhibit interruption of IL-10-
secreting M2 differentiation [81]. Additionally, mice that
are only subjected to ischaemia show development of M2-

type macrophages, which protect livers from I/R via an IL-
10-dependent mechanism [87] (Figure 2).

In the pathogenesis of DM, activated innate immunity
and inflammation are important factors. Type 2 DM involves
inflammatory elements [88, 89], and type 1 DM is regarded
as an inflammatory process [90]. NF-κB is a transcription
factor that is activated in the diabetic liver [91–93] and is
involved in events that lead to inflammation [94]. NF-κB reg-
ulates the expression of many inflammatory cytokines,
including monocyte chemotactic protein- (MCP-) 1, IL-6,
and TNF-α [95, 96], which are proinflammatory cytokines
that may activate neutrophils and KCs [97]. Zhang et al.
[28] showed that after 6 hours of reperfusion, the levels of
these hepatic cytokines were significantly higher in STZ-
induced diabetic rats and further increased after the ischae-
mic period. These results suggested that NF-κB might also
be involved in hepatic I/R in diabetic rats (Figure 2). The
investigation of NF-κB activation in diabetic livers subjected
to surgical procedures should be extended to cell death.
Between NF-κB and TNF-α, there is an autocrine-
reinforcing loop [98, 99]. The hepatic increase of TNF-α in
STZ-induced diabetic rats leads to pronounced upregulation
of the NF-κB pathway [100], and NF-κB activation induced
by hyperglycaemia mediates cell apoptosis [101, 102].

Several inflammatory cytokines (e.g., TNF-α) and arachi-
donic acid metabolites (prostaglandins and thromboxanes)
are involved in liver injury induced by I/R. Cyclooxygenase
(COX) regulates the production of prostanoids [103], and
inhibition of COX-2 protects against hepatic I/R injury
[104, 105], which suggests that COX-2 is associated with
organ injury and contributes to hepatic microvascular and
hepatocellular injuries through TNF-α production [103].
Hepatocyte apoptosis stimulated by TNF is associated with
c-Jun N-terminal kinase (JNK) activation [106]. Conversely,
Francés et al. [107] showed that STZ-induced diabetic
COX-2 transgenic mice presented a substantial decrease
in apoptosis and that COX-2 overexpression could prevent
the increase in JNK activity stimulated by high glucose.
The authors [107] also showed that the increased expres-
sion of COX-2 in diabetic COX-2 transgenic mice induces
an increase of phosphoinositide 3-kinase (PI3K) activity
compared with diabetic wild-type mice, in addition to
favouring the activation of Akt and producing an antiapopto-
tic signal [107]. These studies call attention not only to the
contradictory roles of diabetes in orchestrating hepatocyte
activity but also to the necessity of clearly understanding
the consequences of diabetes for cell death after liver
surgery (Figure 2).

3.2. Diabetes Mellitus and Liver Regeneration. In a model of
type 2 DM (ob/ob murine), liver regeneration was found to
be impaired after 70% PH, which resulted in 90% mortality
[108]. The regenerative ability of the liver is compromised
in type 1 diabetic rats subjected to PH [51, 52, 109]. In
patients subjected to a major hepatectomy, DM tends to
induce postoperative liver failure [110]. Considering the
mechanisms of regeneration failure, diabetic and obese
KK-Ay mice exhibit abnormal responses after PH [111]
and present excessive induction of hepatic TNF-α
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expression. Although TNF-α is important for the initiation of
normal hepatic regeneration [112, 113], excess induction of
TNF-α in KCs might interfere with the regenerative process
[111] (Figure 2).

Adipose tissue is involved in a number of biological func-
tions, including inflammation, and acts as an endocrine
organ through the secretion of several biologically active sub-
stances known as “adipokines” [114]. During liver regenera-
tion, systemic adipose stores are required as a source of
various adipokines, such as adiponectin, which is an essential
signal for liver regeneration [115]. Aoyama et al. [111]
showed that the serum adiponectin level was significantly
reduced in KK-Ay mice before PH and tended to decrease
gradually after PH. Adiponectin has been found to inhibit
the lipopolysaccharide-dependent activation of macrophages
[116, 117]. The significant hypoadiponectinemia presented
by KK-Ay mice could be related to the fact that the KCs of
these animals are more susceptible to certain stimuli; more-
over, the hypoadiponectinemia caused by this susceptibility
could be further associated with the increased production
of TNF-α by KCs, which may interfere with regenerative

responses [111] (Figure 2). Adiponectin mediates anti-
inflammatory effects. However, since this role for adiponec-
tin was found to depend on surgical conditions, the function
of adiponectin in the inflammatory process is a controversial
issue [118]. While injurious effects of adiponectin on steato-
tic livers subjected to warm ischaemia (60minutes) were
identified by Massip-Salcedo et al. [119], the beneficial
(anti-inflammatory) effects of adiponectin on small fatty
grafts subjected to cold ischaemia (40minutes) were
observed by Man et al. [120]. Although these findings were
obtained in steatotic livers, these results suggest opportuni-
ties for investigation of the effect of adiponectin on diabetic
livers subjected to different surgical procedures.

IL-6 is a protein synthesized by fibroblasts, monocytes,
macrophages, T cells, and endothelial cells [121] that plays
an important role in hepatic regeneration [122, 123]. Adipo-
kines exhibit proinflammatory or anti-inflammatory activi-
ties [124], and leptin presents proinflammatory properties
[125, 126]. IL-6 and leptin function in the Janus kinase-
(JAK-) STAT3 signalling pathway [111]. KK-Ay mice pres-
ent a substantial increase in the levels of IL-6 and leptin
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Figure 2: Inflammatory mechanisms underlying the promotion of liver damage and impaired regeneration after liver surgery in association
with DM. The illustration shows the molecular events subsequent to the surgical procedure performed on the diabetic liver, inducing the
participation of inflammatory cells and consequent cytokine production, leading to liver injury and regeneration. TA, adipose tissue; AGE,
advanced glycation end products; RAGE, receptor for AGE; IL-6, interleukin-6; IL-10, interleukin-10; TNF-α, tumour necrosis factor-α;
MCP-1, monocyte chemoattractant protein-1; JAK, Janus kinase; STAT3, signal transducer and activator of transcription 3; CHOP,
C/EBP homologous protein; NF-κB, nuclear factor kappa B; COX-2, cyclooxygenase-2; PH, partial hepatectomy; I/R, ischaemia-reperfusion.
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following PH [111]. Despite the important role of the JAK-
STAT pathway in hepatic protection against different hepatic
injuries [127, 128] and the evidence that IL-6, leptin, and the
JAK-STAT signalling pathway are essential to liver regenera-
tion [129–132], Aoyama et al. [111] showed that the role of
the JAK-STAT pathway in hepatic regeneration seems to be
complex and dependent on the intensity of the stimulus,
showing that hyperphosphorylation of STAT3 favours poor
hepatic regeneration as a result of direct downregulation of
cyclin D1 expression (Figure 2).

4. Diabetes Mellitus in Clinical Situations

There is an absence of clinical studies elucidating signalling
pathways related to liver damage and impaired regeneration
in diabetic patients undergoing surgery. Nevertheless, it is
indispensable to discuss and generate hypotheses about this
issue, which is quite controversial because some studies have
shown that DM patients present a poorer prognosis after
hepatic surgery in comparison with non-DM patients,
whereas others show no difference [133].

Focusing on the issues addressed in this review (OS and
inflammation), Li et al. [133] and Shields et al. [134]
described the typical change in microcirculation that occurs
in diabetic patients after liver surgery. The ischaemic period
and liver perfusion recovery are important factors related to
hepatocellular damage because microcirculatory collapse is
followed by a pronounced reduction of tissue oxygenation
[135], which might result in degeneration and necrosis of
hepatocytes and consequent liver dysfunction [136]. Experi-
mental models of I/R injury have offered evidence that insuf-
ficient hepatic microcirculatory perfusion, inflammatory cell
activation, and consequent generation of ROS, cytokines, and
chemokines can be considered essential in I/R syndrome
[137]. Although the authors [133, 134] did not report the
relationship between diabetic liver failure after liver surgery
and microcirculation collapse, we take this opportunity to
raise this question for the development of future studies.

The alterations of hepatic haemodynamics are also
related to hepatic steatosis, and a decrease in portal vein hae-
modynamics is observed in patients with a fatty liver disease
[138, 139]. Moreover, experimental animals with steatosis
present decreased parenchymal microcirculation [140].
Hepatic steatosis has long been reported in type 1 [141]
and type 2 DM [142]. Steatosis is common in diabetic
patients (36% incidence) [143], and increased steatosis raises
the sensibility of the liver parenchyma to I/R injury [144]. In
steatotic livers, the parenchymal regeneration ability is
impaired, particularly after a surgical procedure [115], which
may partially explain the incapacity of some diabetic patients
to resist liver surgery. The high mortality observed in diabetic
patients is absent in nondiabetic patients with steatosis [143].
In hepatocytes, increased accumulation of fatty acids induces
OS arising from mitochondria, peroxisomes, or microsomes.
ROS and lipid peroxidation products can influence KCs
and stimulate NF-κB activation, which in turn stimulates
the production of TNF-α and several proinflammatory
cytokines, such as IL-6 [143], which are presented in this

review as factors involved in decreased regeneration and
increased liver damage.

5. Conclusion

The purpose of this review was to discuss the literature
addressing the damaging effect of DM on liver recovery after
a surgical procedure and, especially, to highlight the need to
expand knowledge of this issue to benefit patients with DM
subjected to surgical procedures, which are increasing in clin-
ical practice. Extensive work is still necessary to assess the dif-
ferences between the diabetic and nondiabetic liver after a
surgical procedure. Exploring this subject will enable the
development of new treatments that will improve the success
of diabetic liver recovery after surgery.
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