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Abstract

Background: Supervised machine learning methods when applied to the problem of automated protein-function
prediction (AFP) require the availability of both positive examples (i.e., proteins which are known to possess a given
protein function) and negative examples (corresponding to proteins not associated with that function). Unfortunately,
publicly available proteome and genome data sources such as the Gene Ontology rarely store the functions not possessed
by a protein. Thus the negative selection, consisting in identifying informative negative examples, is currently a central
and challenging problem in AFP. Several heuristics have been proposed through the years to solve this problem;
nevertheless, despite their effectiveness, to the best of our knowledge no previous existing work studied which protein
features are more relevant to this task, that is, which protein features help more in discriminating reliable and unreliable
negatives.

Results: The present work analyses the impact of several features on the selection of negative proteins for the Gene
Ontology (GO) terms. The analysis is network-based: it exploits the fact that proteins can be naturally structured in a
network, considering the pairwise relationships coming from several sources of data, such as protein-protein and
genetic interactions. Overall, the proposed protein features, including local and global graph centrality measures and
protein multifunctionality, can be term-aware (i.e., depending on the GO term) and term-unaware (i.e., invariant across
the GO terms). We validated the informativeness of each feature utilizing a temporal holdout in three different experiments
on yeast, mouse and human proteomes: (i) feature selection to detect which protein features are more helpful for the
negative selection; (ii) protein function prediction to verify whether the features considered are also useful to predict
GO terms; (iii) negative selection by applying two different negative selection algorithms on proteins represented
through the proposed features.

Conclusions: Term-aware features (with some exceptions) resulted more informative for problem (i), together with
node betweenness, which is the most relevant among term-unaware features. The node positive neighborhood instead
is the most predictive feature for the AFP problem, while experiment (iii) showed that the proposed features allow
negative selection algorithms to select effectively negative instances in the temporal holdout setting, with better
results when nonlinear combinations of features are also exploited.
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Background
The publicly available databases devoted to record protein
functions (for instance, the Functional Catalogue [1] and
the Gene Ontology [2]) typically contain entries associat-
ing a protein with the biological functions the protein is
known to possess. On the other hand, these repositories
rarely consider not possessed functions. Thus, if a protein
is not associated with a function, this could be simply due
to a lack of information. Indeed, in such cases it is not
possible to exclude that future studies could in principle
associate that protein with that function.

Among the available protein function taxonomies, this
work considers the Gene Ontology (GO), a hierarchy
composed of three branches, biological process (BP),
molecular function (MF), and cellular component (CC),
each structured as a direct acyclic graph [2]. The func-
tions described in this ontology (referred to as GO terms)
are often (positively) annotated solely to a small number
of proteins. Therefore, remaining proteins either do not
possess the function, or correspond to not yet discovered
positive annotations.

This observation leads to a central and critical issue
in the problem of automated protein-function predic-
tion (AFP), consisting in discovering novel associations
of proteins with biological functions through computa-
tional methodologies. Indeed, the automated prediction
process is typically based on supervised/semi-supervised
machine learning techniques, requiring both positive and
negative associations of proteins with functions (tech-
nically referred to as positive and negative examples,
respectively) in order to infer accurate predictors. In
this context, selecting the negative examples is a central
issue for AFP [3–5]. The methods proposed in the lit-
erature to tackle the negative selection problem typically
rely on bagging (bootstrap aggregating) techniques, based
on the repeated inference of binary classifiers discrim-
inating positive examples from reliable subsets of non-
positive examples. These subsets are obtained through
random subsampling on non-positive examples [6], either
being guided by specific positive-negative similarity mea-
sures [7–9], or simply subsampling the items under the
assumption that the probability to get a false positive
be sufficiently small [10]. In addition, some heuristics
have been proposed specifically for the AFP context,
negatively associating a term with all proteins positive
for sibling and/or ancestral GO terms [11], or com-
puting the empirical conditional probability of a term
given the annotations for other terms in the three GO
branches, considering all nodes [4] or only the hierarchy
leaves [12].

To our knowledge no researches have tried to investigate
the possible relations between suitable ‘protein features’
and the fact that a protein can be considered as a reliable
negative example. That is, before applying any algorithm

to learn negative examples, it is of paramount impor-
tance studying which ‘protein representation’ is more
informative for the problem itself. In this context, most
information sources about the relationships between pro-
teins are naturally represented through protein networks,
where each node represents a protein and an edge the
relationship between two proteins [13]; additionally, most
approaches proposed for AFP are network-based [14–20].
Thus, the purpose here is twofold: extracting meaning-
ful protein features from protein networks, and assessing
their ability to improve the identification of good negative
examples.

By extending the study presented in [21], this paper
proposes a set of 14 features, ranging from protein mul-
tifunctional properties, to local and global graph central-
ity measures, including weighted degree, betweenness,
and clustering centrality. Such features have been divided
in the term-aware and term-unaware subsets, referring
respectively to features varying with the GO term under
study and to features independent of GO terms. With a
dedicated experiment, the significance of each feature for
selecting negatives has been assessed by adopting a state-
of-the-art feature selection algorithm, along with a tem-
poral holdout setting, necessary to determine the category
of proteins not reliable as negative examples (that is, those
that received a novel annotation in the holdout period).
Through the paper this category is denoted by Cnp (the
category of negative proteins that become positive). As
further validation, in another experiment the proposed
features have been provided as input to two procedures
for learning negatives, evaluating their ability in detect-
ing proteins not in Cnp. In the above mentioned analy-
ses we also tested 3 probabilistic features computed by
3Prop, a state-of-the-art method to extract features from
biological networks; the results of 3Prop have already
been tested against the AFP problem [22], but their use
within the negative selection has not been investigated
yet. Finally, another experiment has been set up to pre-
dict the GO protein functions, to get more insight about
the information encoded in the 14 proposed features.
Overall, our paper extends the research done in [21] by
adding 8 novel features, by performing feature selection
on temporal holdout data, by applying linear and nonlin-
ear state-of-the-art methods to learn negative examples,
and by constructing extended and updated datasets for
three organisms (yeast, mouse, and human).

Our studies showed that the set of features infor-
mative for identifying negative examples depends on
both the organism and the GO branch considered. As
a trend common to different settings, term-aware fea-
tures tend to be selected more frequently, especially Pos-
itive neighborhood and Mean of positive neighborhood.
Term-unaware features, however, play an important role,
with some differences among organisms: Neighborhood
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mean and Weighted clustering coefficient are more fre-
quently selected in yeast, whereas Betweenness is largely
more informative in mouse and human. The most pre-
dictive feature for the AFP problem is Positive neighbor-
hood: indeed, when representing proteins by eliminating
just this feature, the highest decrease in performance is
observed. When providing the proposed protein repre-
sentation as input to negative selection algorithms, our 14
features allow linear methods to achieve the lowest num-
ber of false negatives (that is, proteins in Cnp classified as
reliable negatives), which on the contrary increases when
adding 3Prop features to the representation, or when rep-
resenting proteins just using 3Prop. Finally, when using
nonlinear methods to learn negatives, the number of false
negatives largely decreases, and it is nearly the same
when adopting the proposed features and 3Prop; this phe-
nomenon is likely due to novel information coming from
nonlinear interactions of the 3Prop features that linear
methods are not able to exploit.

The paper is organized as follows: a first section
describes the adopted methodology, including data
description, the proposed features, and the setting of the
different experiments carried out. The second section
reports the obtained results and the related discussion,
while some concluding remarks close the paper.

Methods
This section aims at describing the data sources lever-
aged in order to construct protein networks and protein
functional annotations, the protein features extracted,
and their experimental validation. Three different exper-
iments have been performed to validate the adopted
features:

- assessing feature relevance,
- predicting protein functions,
- selecting reliable negative proteins.

Each of the above mentioned steps is described in detail
in the following sections.

Data
The input networks have been retrieved from the STRING
database, version 10.0 [23], for the following organisms:
S.cerevisiae (yeast), Mus musculus (mouse) and Homo

sapiens (human). The STRING network already merges
several sources of data, including protein homology rela-
tionships from different species, thus resulting in a highly
informative network. Connections in such a network
are endowed with a “combined score” that represents
how reliable that relation should be considered; as sug-
gested by STRING curators, connections with a com-
bined score lower than 700 (combined scores range from
1 to 999) were filtered out. The network topological
characteristics are reported in Table 1. All input net-
works have one large and some smaller connected com-
ponents. The total number of nodes does not include
nodes that became isolated after edge thresholding. Net-
works have been normalized as described in the next
section.

Functional annotations for STRING proteins have been
downloaded from the Gene Ontology, by considering two
different temporal releases: the UniProt GOA releases
69 (9 May 2017) and 40 (25 November 2014) for yeast,
releases 155 (6 June 2017) and 125 (25 November 2014)
for mouse, and releases 168 (9 May 2017) and 139 (25
November 2014) for human. The two releases form a
‘temporal holdout’: the older release is used for the train-
ing phase, and the later release allows to evaluate the
quality of predictions. In both releases, solely experimen-
tally validated annotations have been considered. The
relevance assessment of node/protein features to detect
reliable negatives was focused on proteins which received
at least a new annotation during the temporal holdout
period (for a given GO term); we denote by Cnp this cat-
egory of proteins. Then we selected the GO terms with
at least 20 proteins in Cnp, obtaining the terms summa-
rized in Table 2. The proposed features were also tested
in terms of their capability in predicting the protein func-
tions, by selecting GO terms with 20–200 annotations in
the later release, in order to have a minimum of infor-
mation to train a classifier, and to exclude terms with a
large number of annotations, because they are too generic
[13, 24, 25]. The total number of obtained GO terms is
shown in Table 3.

Preliminaries
Protein networks are represented as an undirected graph
G〈V , W 〉, with V = {1, . . . , n} denoting the set of
nodes/proteins and W being a n × n matrix whose entries

Table 1 Description of data networks

Organism Nodes Average degree Components Component size Diameter Weighted diameter

Yeast 5586 38.4740 41 5483, 2–7 12 3.0481

Mouse 13921 59.9990 190 13417, 2–10 13 3.1857

Human 15154 47.5572 89 14951, 2–10 11 3.1552

Column Components denotes the number of connected components in the network, whereas Component size denotes the corresponding number of nodes.
Diameter is the number of edges on the longest path between two nodes, without considering edge weights
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Table 2 Number of GO terms in the three GO branches for which
|Cnp| ≥ 20. |Cnp| denotes the cardinality of Cnp (i.e., the number of
negative proteins that become positive in the temporal period)

Organism CC MF BP

Yeast 5 9 29

Mouse 62 75 512

Human 71 105 363

Wij ∈[ 0, 1] encode some notion of intra-protein func-
tional similarity (with Wij = 0 when the corresponding
nodes are not connected). The matrix W is obtained from
the STRING connections Ŵ after the following normal-
ization, which preserves the connection symmetry:

W = D−1/2Ŵ D−1/2

where D is a diagonal matrix with non-null elements dii =∑
j Ŵij. The temporal holdout validation scheme relies on

two additional matrices Y , Y ∈ {0, 1}n×m containing the
annotations of proteins to m GO terms {1, . . . m}: each
matrix refers to a different temporal release of the ontol-
ogy (assuming Y as the older one). If we denote the r-th
column and the i-th row of a matrix X by X .r and X i.
respectively, then Y .k and Y .k describe the annotations for
the GO term k to the proteins in V at the beginning and
at the end of the houldout period. Moreover, Ni := {j ∈
V |Wij �= 0} denotes the neighborhood of node i ∈ V , and
for a given GO term k, N+

i := {j ∈ Ni|Yjk = 1} denotes
its positive neighborhood, that is the subset of the neigh-
borhood composed only of nodes positively annotated for
k (Here, as in many of the following notations, the index k
of the GO term is left implicit).

We recall that fixed a term k, Cnp ⊆ V is the set of pro-
teins that received a new annotation in the holdout period,
that is, Cnp = {i ∈ V |Yik = 0 ∧ Y ik = 1}.

As mentioned in the previous section, the main aim of
this paper is extracting features from nodes in G which
effectively discriminate proteins belonging to Cnp from
proteins negatively annotated in both releases, as shown
in the next section.

Extracting proteins features
The protein features studied in this work are selected
in order to consider on the one hand information about
the network topology, including both local and global
‘standard’ node centrality measures, on the other hand

Table 3 Number GO terms with 20–200 annotated proteins in
the more recent release

Organism CC MF BP

Yeast 9 18 41

Mouse 18 32 178

Human 41 64 153

information about protein annotations. The resulting set
of protein features is shown in Table 4.

A first group of features depends only on the structure of
the network G: some of them are purely local, in the sense
that they exploit a limited local neighborhood around the
protein of interest (f 1–f 4); other features are more global
in nature (f 6–f 9), and correspond broadly to some of the
most common parameter-free centrality measures in net-
work analysis. A second group of features, besides using
the network structure, takes also into consideration the
annotations (f 5) or refers to the term-aware variant of
some of the features of the first two groups (f 10–f 14).
The considered features are summarized in Table 4 and
described here below.

Table 4 The considered features for node i ∈ V and GO term k

Symbol Name Definition

f 1 Neighborhood
mean

1
|Ni |

∑

j∈Ni

Wij

f 2 Neighborhood
variance

1
|Ni |−1

∑

j∈Ni

(Wij − f 1(i))2

f 3 Weighted degree
∑

j∈Ni

Wij

f 4 Weighted
clustering
coefficient

∑

j,j′∈Ni ,j′∈Nj

Wij+Wij′ +Wjj′
3

/
∑

j,j′∈Ni

Wij+Wij′
2

f 5 Number of
annotations

m∑

h=1
Yih

f 6 Closeness
centrality [33]

1∑
j∈Ci

dij

f 7 Lin’s index [34] |Ci |2∑
j∈Ci

dij

f 8 Harmonic
centrality [32]

∑

j∈Ci

1
dij

f 9 Betweenness
[35, 36]

∑

s,t∈Ci ,s �=i,t �=i,s �=t

σst(i)
σst

f 10 Positive
neighborhood

∑

j∈N+
i

Wij

f 11 Mean of positive
neighborhood

1
|N+

i |
∑

j∈N+
i

Wij

f 12 Positive closeness
centrality

1∑
j∈C+

i
dij

f 13 Positive Lin’s
index

∣
∣C+

i

∣
∣2

∑
j∈C+

i
dij

f 14 Positive harmonic
centrality

∑

j∈C+
i

1
dij

f 15 1-step Random
Walk

Pi. y

f 16 2-step Random
Walk

P2
i. y

f 17 3-step Random
Walk

P3
i. y

Ci denotes the connected component of i, C+
i the positive nodes in Ci , dst the

shortest-path distance from s to t (using W as weight matrix), σst the number of
shortest paths from s to t, and σst(u) the number of such paths that include u as
internal node. P and y are defined in (1) and (2)
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f 1 Neighborhood mean: mean of connection weights in
the protein neighborhood.

f 2 Neighborhood variance: variance of connection
weights in the protein neighborhood.

f 3 Weighted degree: sum of connection weights in the
protein neighborhood.

f 4 Weighted clustering coefficient: weighted proportion
of triplets centered in the protein of interest that turn
out to be closed (i.e. triangles).

f 5 Number of annotations: number of GO terms for
which the protein is annotated in the older release.

f 6 Closeness centrality: reciprocal of the sum of
shortest-path distances from the protein to all the
other proteins in the same connected component.

f 7 Lin’s index: an adjusted version of closeness,
obtained multiplying it by the square of the size of
the component.

f 8 Harmonic centrality: sum of the reciprocal of all the
shortest-path distances from the protein to all the
other reachable proteins.

f 9 Betweenness: sum of the fractions of shortest paths
that pass through the given protein.

f 10 Positive neighborhood: sum of connection weights in
the protein positive neighborhood.

f 11 Mean of positive neighborhood: mean of connection
weights in the protein positive neighborhood.

f 12 Positive closeness centrality: reciprocal of the sum of
shortest-path distances from the protein to all the
positive proteins in the same connected component.

f 13 Positive Lin’s index: an adjusted version of positive
closeness, obtained multiplying it by the square of
the number of positive proteins in the same con-
nected component.

f 14 Positive harmonic centrality: sum of the reciprocal of
all the shortest-path distances from the protein to all
the positive reachable proteins.

The first two features refer to the first moments of
the distribution of connection weights in the neighbor-
hood of a node. The third feature provides information
about the node connectivity, and moreover has been
suggested in the literature as a proxy for gene multi-
functionality [26, 27]. Jointly considering the first and
third feature conveys information about the number of
connections, one of the main measures for the con-
nectivity of nodes in graphs along with the weighted
degree [28].

Measure f 4 is the weighted-aware version of the local
clustering coefficient [29] of the node under consider-
ation: for each triplet centered in the node, we com-
pute its average weight (the average weight of the
two or three edges involved). The ratio between the
total weight of closed triples and total weight of all
triples gives the local clustering coefficient; this quantity

coincides with the standard (local) clustering coeffi-
cient when all the weights coincide. It is a variant
of the weighted version proposed in [30] that takes
into full account all the three weights appearing in the
closed triples.

Feature f 5 is related to the ability of a protein to
play different roles: in its computation, the current
GO term has been excluded in order to not introduce
bias.

Features f 6–f 8 are among the most classical geomet-
ric centrality measures. As many authors observe [31, 32],
closeness centrality f 6 [33] (essentially, up to a constant,
the reciprocal of the average distance between the node
under consideration and the other nodes in its compo-
nent) provides biased results in presence of disconnected
components with largely different sizes; Lin’s index f 7
[34] and harmonic centrality f 8 [32] both try to mit-
igate this big-in-Japan effect in different ways (one by
explicitly taking the size of the connected component
into account, and the other by looking implicitly at the
distance from all nodes, using harmonic average instead
of arithmetic average—where infinite distances give a
null contribution). Another quite classical centrality mea-
sure is betweenness f 8, originally defined by Anthonisse
for edges [35] and then adapted by Freeman to nodes
[36]; this index measures robustness rather than centrality
(it is related to the probability that shortest-path routing
fails when the node is deleted).

Feature f 10 instead exploits both the number of positive
neighbours and the corresponding weight magnitudes,
and it plays the role of a guilt-by-association score [16].
Together with f 10, feature f 11 describes the number of
connections toward positive nodes. Overall, features f 1–
f 9 are term-unaware, in the sense that they do not need
the annotation vector Y .k to be computed (for a given
term k). A special case is represented by the feature f 5,
which uses an information not directly related to the
annotations for the current GO term, but encompass-
ing GO terms; hence, we did not include it in the group
of term-aware features. Conversely, features f 10 and f 11
are the term-aware versions of f 1 and f 3, respectively,
and similarly f 12–f 14 are the term-aware equivalent
of f 6–f 8.

In order to have comparable ranges, features have been
normalized so as to sum up to one across proteins, that is∑n

i=1 fk(i) = 1, for each k ∈ {1, 2, . . . 14}.
It is worth pointing out that the centrality mea-

sures considered here do not cover all the indices
examined in the literature [32], and in particular they
do not include any spectral index: measures such as
PageRank or Katz’s index were avoided in order to
exclude the proliferation of parameters whose tuning
would increase the chance of overfitting. Other spec-
tral indices (such as Seeley’s index) do not apply to
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disconnected networks. For similar reasons, the consid-
eration of scale-aware measures [37] was left as future
work.

To further enrich our analysis, the state-of-the-art
3Prop features have also been considered: originally pro-
posed to extract features from biological networks, this
algorithm describes a protein i ∈ V with three features pj

i,
j = 1, 2, 3, each representing the probability that a random
walk (respectively of length 1, 2 and 3) which starts from
a positive (annotated) node ends in i [22]. Namely, fixed
a GO term k, recalling the previously introduced diagonal
matrix D, and setting

P = D−1W , y = (y1, . . . , yn), (1)

with components

yi =
{

1∑
h Yhk

if i is annotated for k,
0 otherwise,

(2)

it holds that pj
i = Pj

i.y for j ∈ {1, 2, 3} (where of course
P2 = PP, and P3 = P2P). Features p1

i , p2
i and p3

i (f 15–
f 17 in Table 4) are thereby included in the group of term-
aware features.

Assessing feature relevance
To evaluate the efficacy of node features f 1–f 17 described
in Table 4 in detecting reliable negative proteins (i.e.,
those neither annotated in the first release nor in the
second one), a binary classification problem was estab-
lished. In this problem, proteins are represented through
the extracted features, and their label is provided by the
class Cnp for GO terms in Table 2. The aim is select-
ing the features which mostly improve the classification
performance. As classifier we adopted the CART algo-
rithm [38], combined with the Sequential floating for-
ward Search (SFFS) method [39] to determine the optimal
subset of features. We employed the SFFS algorithm to
capture the combined effect of multiple features; due to
the potentially large number of add/remove steps until
convergence, SFFS requires an efficient classifier, such as
CART, which in addition is able to exploit feature interac-
tions. To prevent selection bias and overfitting, data were
partitioned into three non-overlapping subsets (following
the setting proposed in [25]). On each subset a triple-
loop of 3-fold cross-validation (CV) has been executed,
using training data to select the classifier model (through
the inner CV loop). Such model has been used on the
corresponding test fold to validate the current subset of
features.

In order to deal with the scarcity of positive instances,
the F1 measure was selected as performance criterion
to be maximized both in the inner and the outer CV
loops. Finally, we ranked features through the proportion

of times they have been selected in all the experiments
over the three data subsets.

Predicting protein functions
The proposed features have also been tested in classify-
ing node/proteins to the Gene Ontology terms, to assess
their capability in capturing network structures useful for
the automated protein-function prediction. For each term
previously described and summarized in Table 3, a binary
classification problem was set up, with proteins repre-
sented in turn through features f 1–f 14, f 15–f 17, and
f 1–f 17. In order not to have any bias toward a specific
classifier, two state-of-the-art methods were used to solve
the binary classification problems where instances were
represented through feature vectors: linear support vec-
tor machines (SVM) with class weights [40] and Random
Forests (RF) [41]. The performance has been evaluated
using a 3-fold outer loop CV, and a 3-fold inner loop CV
to select the parameters C and mtry, respectively for SVM
and RF models. To counterbalance the large presence of
negative examples and to avoid learning trivial models,
the class weights of the SVM for term k have been set to
1 and n−∑n

i=1 Yik∑n
i=1 Yik

for the negative and the positive class,
respectively, as suggested in [42]. The F1 measure has been
adopted both to select the model and to measure the clas-
sification performance (averaged across folds), since this
measure is more informative when positive instances are
rare. Furthermore, results are also reported in terms of
Precision (proportion of annotated proteins among those
classified as positive) and Recall (proportion of annotated
proteins that were positively classified).

Selecting reliable negative proteins
In order to study further the subsets of features that
help detecting reliable negatives, the features described
in Table 4 were supplied as input to negative selection
algorithms, to investigate the relevance of the following
different combinations of features:

• f 15–f 17,
• f 1–f 14 - top q,
• f 1–f 14 - mean,
• f 1–f 14,
• f 1–f 17 - top q,
• f 1–f 17 - mean,
• f 1–f 17,

where ‘top q’ denotes the selection of the top q =
5 features in the corresponding ranking in Fig. 1 and
Additional file 1, and ‘mean’ denotes the selection of the
features having a frequence larger than the mean fre-
quency value (black dashed horizontal line in the figures).
The choice q = 5 derives from the observation of fre-
quency distributions: in some cases just three features
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Fig. 1 Proportion of times features are selected by the SFFS algorithm on yeast (first two rows) and human (last two rows) data. Grey and black bars
are for term-unaware and term-aware protein features. The black horizontal dashed line corresponds to the mean value of the bars. For each
organism, the two rows refer to the use of features f 1–f 14 and f 1–f 17, respectively. a, d, g, l correspond to CC terms, b, e, h, m to MF terms, and c, f,
i, n to BP terms

are above the mean, while in other ones the distribution
has a lower variance with seven features overcoming the
mean frequency value. The value of q has been tuned as a
compromise between these two different conditions.

The selection of reliable negatives was performed
through protein ranking, both exploiting the decision
function values for SVMs and leveraging the proba-
bility to belong to a given class in RFs. The negative
proteins selected as reliable are those bottom-ranked
by the models. Following the temporal holdout set-
ting, the models were trained on the older annotation
release, by fixing a budget of negatives to be selected,
subsequently computing the number of false nega-
tives averaged across terms (those reported in Table 3)
using the annotations in the newer release. The bud-
get was set as the x% of the total number of proteins,
with x ∈ {1, 5, 10, 15, 20, 25, 30}.

Results and discussion
Assessing feature relevance
To better evaluate the informativeness of graph centrality
measures in classifying proteins in Cnp, feature selection
has been performed by representing proteins both using
solely centrality features f 1–f 14 and using all features f 1–
f 17. Figure 1 depicts the obtained frequencies for yeast
and human organism (the results for mouse are shown
in Additional file 1). In most experiments Positive neigh-
borhood is the most informative feature, in both settings
adopted. Also Mean of positive neighborhood and 1-step
Random Walk are frequently selected, being the top fea-
ture respectively on MF branch for yeast data (Fig. 1b, 1e),
and on CC branch for yeast and mouse data (Fig. 1d, Addi-
tional file 1(d)). Term-aware features (black bars) tend to
be predominant over those that are term-unaware, with
an exception represented by the Betweenness centrality,
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often more informative than some term-aware centrali-
ties, and nearly the top selected one in mouse (Additional
file 1(d-f )). Overall, results for human and mouse show
more similar trends than yeast: this fact is probably due to
more similar topological structures of the corresponding
protein networks (see Table 1), and to the fact that human
and mouse are phylogenetically closer to each other than
yeast.

Notably, betweenness appears to be much more infor-
mative than other geometric centrality measures (e.g.,
closeness); this outcome is in line with the general obser-
vation that betweenness is scarcely correlated with most
of the remaining centrality indices, and it may be asso-
ciated to the fact that the considered networks have a
relatively small diameter.

Number of annotations seems to carry a significant sig-
nal on mouse, mainly for CC and BP branches (Additional
file 1(d, f )), whereas non negligible frequence enhancing
are seen for Weighted clustering coefficient (yeast – CC),
and for Neighborhood mean (yeast – MF).

The two settings f 1–f 14 and f 1–f 17 provide to some
extent analogous results, with some differences that how-
ever seem not to be related to an underlying physical
topology: for instance, Neighborhood mean has a signif-
icantly higher frequency when discarding 3Prop features
on yeast CC data (Fig. 1a, d), but on yeast BP (Fig. 1c, f) and
mouse MF (Additional file 1(b, e)) the opposite happens.

In summary, among term-unaware centralities only the
Betweenness centrality is significantly enhanced in the
majority of experiments, thus helping in discriminating
reliable and unreliable negative examples. On the other
hand, Positive closeness, Positive Lin’s and Positive har-
monic centralities are likely to be useless for this task.
Finally, the relevance of 3Prop features in detecting reli-
able negatives is decreasing with the number of steps of
the random walk.

Protein function prediction
The classification performances in terms of F1 measure
are summarized in Fig. 2, whereas Precision and Recall
results are shown in Additional file 2(a-b) and (c-d),
respectively. Interestingly, concerning yeast data, central-
ity measures allow both classifiers to achieve the best
results, even better than those obtained when the 3Prop
features are added to the protein representation (f 1–f 17).
Such results are confirmed also in terms of Recall. On
mouse and human data, f 1–f 14 representation is still
more informative than f 1–f 17 when employing RFs, per-
forming similarly to 3Prop representation. Conversely,
SVMs achieve the best results when using all features,
and this is likely due to the ability of RFs in capturing the
combined effect of features, thus making some of them
redundant; on the other hand, SVMs need a more com-
plex protein representation to achieve nearly the same

results. SVMs also tend to have a higher Recall, while
RFs are more precise. This is probably due to the adop-
tion of cost-sensitive SVM learning, which, by attributing
a larger misclassification weight to positive instances,
tends to increase both the number of true and false
positives.

In addition, to give an insight about the impact of each
feature on the automated protein-function prediction,
each classification experiment was repeated removing in
turn one feature and using all the remaining features to
represent proteins. The results in terms of F1 are summa-
rized in Fig. 3: 3Prop features have been excluded from
this experiment because their effectiveness in predicting
GO functions has already been assessed in [22]. Due to
its complexity, we ran this procedure solely on yeast data.
Analogous results based on precision and recall are shown
in Additional files 3 and 4, respectively.

Clearly, the most informative measure is Positive neigh-
borhood (f 10), whose removal causes the largest decrease
in F1 values. The removal of Number of annotations (f 5)
leads to a significant decay for both classifiers, whereas
when singularly eliminating the other features just negligi-
ble differences can be observed. These results clearly show
that some features are redundant for this task, and the
application of feature selection methodologies may lead to
better results than those depicted in Fig. 2.

Selecting Negatives
Figure 4 reports the results of the negative selection for
yeast and human organisms, whereas the corresponding
results for mouse are shown in Additional file 5. A first
interesting insight is that when adopting the RF selec-
tion method, the number of false negatives significantly
decreases compared to the results obtained by the linear
SVM selection, suggesting the need of using algorithms
able to exploit interactions among features. Considering
specific experiments, according to the results of SVM on
CC terms and yeast data, the subset of features f 1–f 17
mean is slightly the most informative, whereas f 15–f 17
(3Prop) achieve the (largely) worst performance. On BP
terms most feature sets perform similarly, whereas on
MF data the f 1–f 14 set has the top performance. On
human data, again f 1–f 14 and f 1–f 14 mean achieve the
top performance, with close results, while on mouse data
the combination including all features (f 1–f 17) is the top
performing one.

Different behaviors are observed when RF model is
adopted as negative selection procedure: in all the exper-
iments, f 1–f 14 and f 1–f 17 feature sets are the top per-
forming ones, likely due to the fact that eliminating even
the features with low absolute frequencies wastes some
useful combined effects that the RF model, for its non-
linear nature, is able to exploit. Indeed, the top 5 and
mean feature sets have been selected on the basis of
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Fig. 2 Performance in terms on F1 measure averaged across GO branches for linear SVM (a) and RF (b) classifiers

the absolute individual frequencies reported in Fig. 1
and Additional file 1, computed to provide a general
trend of feature informativeness; nevertheless, for specific
tasks also coupled frequencies, or more in general fea-
ture set frequencies, could help in selecting the optimal
combination of features. Another interesting behaviour
is related to the 3Prop features: along with the above
mentioned set of features, it represents the top per-
forming set, as opposed to SVM results. Thus these
three features, appropriately combined, may also pro-
vide information similar to that encoded in the features
f 1–f 17. On the other side, this requires more complex
selection algorithms, thus features f 1–f 14 are preferable
when, for complexity reasons, simpler models must be
adopted.

In summary, features f 1–f 14 seem to be more infor-
mative for selection algorithms not able to capture non-
linear combined effects among feature subsets, whereas
they perform similarly to the 3Prop feature set when
selection methods with higher classification capabili-
ties are adopted. Nevertheless, by excluding features
f 12–f 14, since they are rarely selected by the feature
selection algorithm, the computation of the remain-
ing features can nicely scale when input size increases,
since features f 1–f 9 can be computed offline, being not
term-specific, and features f 10 and f 11 can be com-
puted efficiently. Conversely, the 3Prop features need
to simulate 6 random walks on the whole network,
which also should be row-normalized, affecting thereby
scalability.

Fig. 3 Average F1 across GO branch terms on yeast data when removing the corresponding feature
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Fig. 4 Number of false negatives averaged across GO terms. Results in the first two rows are obtained on yeast data, whereas the last two rows refer
to human data. First (resp. second) and third (resp. fourth) rows show the results of the SVM (resp. RF) selection algorithm. a, d, g correspond to CC
terms, b, e, h to MF terms, and c, f, i to BP terms

Conclusions
Seventeen protein features in biological networks have
been studied in this work to assess their ‘usefulness’ for
selecting relevant negatives in the AFP context. State-of-
the-art graph centrality measures, GO term-aware mea-
sures, and protein multifunctionality have been consid-
ered. Term-aware features resulted more informative for
selecting reliable negative proteins through a state-of-
the-art feature selection method in a temporal holdout
setting, where the validation is carried out on the proteins

that received novel annotations in the temporal holdout
period. Among the remaining features, the node (protein)
betweenness showed an interesting pattern, in particular
on mouse data, where it is close to being the most relevant
feature. The protein positive neighborhood instead is the
most predictive feature for the AFP problem (that is, when
the task to be predicted is the GO term itself ). Finally,
by supplying the proposed features as input to linear and
nonlinear negative selection algorithms, we discovered
that there is little or no redundancy among the features
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when their linear combination is adopted, whereas their
nonlinear interaction also provides novel discriminative
abilities to negative selection algorithms.

Overall, apart for those mentioned above, a clear and
regular trend did not arise, thus suggesting further anal-
yses under different settings and/or adding (discarding)
some features as future investigations.

Additional files

Additional file 1: Figure S1. Proportion of times each feature is selected
by the SFFS algorithm on mouse data and CC (a-d), MF (b-e) and BP (c-f)
terms. Same notations as in Fig. 1. (PNG 79 kb)

Additional file 2: Figure S2. Performance in terms on Precision (a-b) and
Recall (c-d) measures averaged across GO branch terms when proteins are
represented through f 1–f 14, 3Prop (f 15–f 17), and f 1–f 17 features. Left and
right columns correspond to SVM and RF results, respectively. (PNG 130 kb)

Additional file 3: Figure S3. Evaluation of the impact of features f 1–f 14
on the classification performance. Bars correspond to the Precision results
averaged cross GO branch terms on yeast data when removing the related
feature. (PNG 47 kb)

Additional file 4: Figure S4. Evaluation of the impact of features f 1–f 14
on the classification performance. Bars correspond to the Recall results
averaged cross GO branch terms on yeast data when removing the related
feature. (PNG 54 kb)

Additional file 5: Figure S5. Number of false negative averaged across
GO terms on the mouse data. First (resp. second) row shows the results of
the SVM (resp. RF) selection algorithm. (PNG 203 kb)
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