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Abstract

Background: Respiratory sounds have been recognized as a possible indicator of behavior and health. Computer analysis of
these sounds can indicate characteristic sound changes caused by COVID-19 and can be used for diagnostics of this illness.

Objective: The aim of the study is to develop 2 fast, remote computer-assisted diagnostic methods for specific acoustic phenomena
associated with COVID-19 based on analysis of respiratory sounds.

Methods: Fast Fourier transform (FFT) was applied for computer analysis of respiratory sound recordings produced by hospital
doctors near the mouths of 14 patients with COVID-19 (aged 18-80 years) and 17 healthy volunteers (aged 5-48 years). Recordings
for 30 patients and 26 healthy persons (aged 11-67 years, 34, 60%, women), who agreed to be tested at home, were made by the
individuals themselves using a mobile telephone; the records were passed for analysis using WhatsApp. For hospitalized patients,
the illness was diagnosed using a set of medical methods; for outpatients, polymerase chain reaction (PCR) was used. The sampling
rate of the recordings was from 44 to 96 kHz. Unlike usual computer-assisted diagnostic methods for illnesses based on respiratory
sound analysis, we proposed to test the high-frequency part of the FFT spectrum (2000-6000 Hz).

Results: Comparing the FFT spectra of the respiratory sounds of patients and volunteers, we developed 2 computer-assisted
methods of COVID-19 diagnostics and determined numerical healthy-ill criteria. These criteria were independent of gender and
age of the tested person.

Conclusions: The 2 proposed computer-assisted diagnostic methods, based on the analysis of the respiratory sound FFT spectra
of patients and volunteers, allow one to automatically diagnose specific acoustic phenomena associated with COVID-19 with
sufficiently high diagnostic values. These methods can be applied to develop noninvasive screening self-testing kits for COVID-19.
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Introduction

The World Health Organization (WHO) reported that till
October 16, 2021, about 241 million people were infected with
the novel coronavirus (COVID-19) worldwide and about 18
million people currently have the disease [1]. СOVID-19 is a
public health problem in all countries regardless of their level
of development.

It is known that SARS-CoV-2 causes a severe lower respiratory
disease with high mortality and evidence of systemic spread
[2]. The virus is able to actively multiply in the epithelium of
the airways. Intense cough is 1 of the main symptoms of
COVID-19. It is known that the highest density of cough
receptors is in the larynx [3]. Anatomically, a dry cough can be
associated with the effect of the virus on the cough receptors
of the larynx due to infection with COVID-19. SARS-CoV-2
can penetrate into the smallest airways, where it infects cells
and causes bilateral pneumonia, often with respiratory failure
[4-7]. The damage of various airways, caused by SARS-CoV-2,
alters sound formation in the patient and changes the
characteristics of respiratory sounds. Detection of characteristic
respiratory sounds (cough, wheezes, asthma wheezing, shortness
of breath, etc) is a widely used way of diagnostics of pulmonary
diseases, which is applied to develop new computer-assisted
diagnostic methods (eg, [8-12] and references therein).

At present, diagnostics of COVID-19 is based on clinical
symptoms, chest X-ray/computed tomography (CT), and
coronavirus tests (polymerase chain reaction [PCR]), molecular
tests, antigen tests, and specific antibodies to SARS-CoV-2)
[6,7,13]. New and more contagious COVID-19 virus strains are
appearing in the United Kingdom, the Republic of South Africa,
Vietnam, and some other countries; in India, the daily number
of new infected persons was up to 300,000 in May 2021.
Therefore, it is desirable to develop vast, cheap, and widely
available remote methods of COVID-19 diagnostics. One of
these methods can be based on computer-assisted analysis of
respiratory sounds of the patient and on comparison of the sound
characteristics between a patient and a healthy volunteer.

The objectivity of auscultatory diagnostics can be significantly
enhanced by using digitized audio signals and computer
processing of these signals. Automated adventitious sound
detection or classification is a promising solution to overcome
the limitations of conventional auscultation and to assist in the
monitoring of relevant diseases, such as asthma, chronic
obstructive pulmonary disease (COPD), and pneumonia [14].
Olvera-Montes et al [15] used the detection of respiratory
crackle sounds through an Android smartphone–based system
for the diagnostics of pneumonia and monitoring of the patient’s
state.

Reyes et al [16] used a smartphone-based system for automated
bedside detection of crackle sounds in patients with diffuse
interstitial pneumonia. The performance of automated detection
was analyzed using (1) synthetic fine and coarse crackle sounds
randomly inserted into basal respiratory sounds acquired from
healthy subjects with different signal-to-noise ratios and (2)
real bedside-acquired respiratory sounds from patients with
interstitial diffuse pneumonia. In simulated scenarios, for fine

crackles, an accuracy ranging from 84.86% to 89.16%, a
sensitivity ranging from 93.45% to 97.65%, and a specificity
ranging from 99.82% to 99.84% were found. The detection of
coarse crackles was found to be a more challenging task in the
simulated scenarios. In the case of real data, the results show
the feasibility of using the developed mobile health system in
a clinical noncontrolled environment to help the expert in
evaluating the pulmonary state of a subject.

The overview concerns the potential for computer audition
(CA), that is, the use of speech and sound analysis by artificial
intelligence to help in COVID-19 diagnostics [17]. Automatic
recognition and monitoring of breathing, dry and wet coughing
or sneezing sounds, speech under cold, eating behavior,
sleepiness, or pain are used. Schuller et al [17] concluded that
CA appears to be ready for implementation of (pre-) diagnosis
and monitoring tools.

It was considered that the acquired breathing sounds can be
analyzed using advanced signal processing and in tandem with
new deep machine learning and pattern recognition techniques
to separate the breathing phases, estimate the lung volume,
estimate oxygenation, and further classify the breathing data
input into healthy or unhealthy cases [18]. Computer analysis
of breath sounds can be important for identification of specific
changes in these sounds, caused by COVID-19.

Brown et al [19] used the exploring automatic diagnostics of
COVID-19 from crowdsourced respiratory sound data. The
results of early works [16-19] and references therein allow one
to suggest that respiratory sounds can be useful in COVID-19
diagnostics.

The purpose of this study is to 2 develop fast, remote methods
of diagnostics of specific acoustic phenomena associated with
COVID-19 based on computer-assisted analysis of respiratory
sounds. The developed methods are based on analysis of fast
Fourier transform (FFT) spectra of respiratory sounds recorded
near the mouth. We proposed to use a personal computer, a
modern mobile telephone, or a smartphone for registration,
recording of respiratory sounds, and their analysis. The
developed methods can be applied as additional screening
methods of COVID-19 diagnostics and as personalized screening
self-testing kits for COVID-19. Such self-tests would serve as
an early step before further procedures ordered by a doctor (PCR
test, lung CT, X-ray, etc). We restricted our work to
consideration of breathing sounds (and not cough and voice
samples). Lung diseases, such as asthma, COPD, and
pneumonia, cause specific changes in the FFT spectra of
respiratory sounds in the frequency range from 100 to 2500 Hz,
and this range is usually considered during development of
computer-assisted diagnostic methods (eg, [8-12,20-22] and
references therein). We considered the larger frequency range
up to 6000 Hz, and it was shown that for diagnostics of
COVID-19, the frequency range from 2000 to 6000 Hz is
significant. This allows us to diagnose specific acoustic
phenomena associated with COVID-19 for patients with other
lung diseases as well.

JMIR Form Res 2022 | vol. 6 | iss. 7 | e31200 | p. 2https://formative.jmir.org/2022/7/e31200
(page number not for citation purposes)

Furman et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Methods

Patients
In this study, 14 patients with COVID-19 and 17 healthy
volunteers participated. COVID-19 in the patients was diagnosed
using medical methods, such as analysis of clinical symptoms,
chest X-ray and CT, coronavirus tests (PCR test for
SARS-CoV-2 RNA [the main method], specific antibody test
for SARS-CoV-2). The clinical examination of the patients and
the recording of their respiratory sounds were carried out at
Perm Infectious Hospital, and the volunteers’ respiratory sounds
were recorded at Perm State Medical University (Perm, Russia).

Ethical Considerations
This study complied with the Declaration of Helsinki (adopted
in June 1964, Helsinki, Finland), revised in October 2000
(Edinburg, Scotland) and was overseen by the independent
ethics committee of Perm State Medical University (approval
code: 5/21). Written agreements from the patients and volunteers
were obtained.

Methods of Recording Respiratory Sounds
Doctors performed all the recordings, and patients and
volunteers were instructed to remain calm and to breathe easily.
No special measures to reduce ambient noise were applied. The
respiratory sounds of patients were recorded in m4a format
using a Honor dua-1 22 smartphone at a distance of 2 cm from
the mouth for about 20 s; the sampling rate was 48 kHz. The
respiratory sounds of volunteers were recorded near the mouth
using a mobile telephone (the sampling rate was 44.1 kHz, mp3
format) and a computer-based recording system (the sampling
rate was 96 kHz, wav format) [20-25]. Our comparison of the
records carried out with the help of various devices showed that
although the mp3 and m4a formats compress a signal, the FFT
spectra of a sound recorded in the wav, mp3, and m4a formats
are practically the same. To analyze respiratory sounds, we
proposed to consider the normalized FFT spectra that largely
decrease the influence of the recording format.

Simultaneous recordings of respiratory sounds in the same point
of a patient in different formats were made. The normalized
integral characteristics of the FFT spectra used for diagnostics
differed by less than 3% for different formats.

The beginnings and ends of the recordings made using the
smartphone and the mobile telephone contained temporal parts,
in which respiratory sounds are not recorded. In these parts,
there are short impulses, the amplitudes of which can be much
larger than the respiratory sound maximum. The impulses do
not reflect the processes in the airways. The applied preliminary
processing removed these parts.

Diagnostic Methods
The 2 proposed diagnostic methods were based on the fact that
lung diseases cause changes in the airways and these changes
are reflected in the spectra of respiratory sounds. This approach
has been applied in the development of computer-assisted
methods of diagnostics of various lung diseases [8-12,20-26].
These developed methods were based on the analysis of the

FFT spectra of respiratory sounds in the frequency range from
100 to 2500 Hz and the comparison of the spectra of patients
and healthy volunteers.

We proposed to compare different parts of the FFT spectrum
of a patient with COVID-19 in a higher frequency range from
2000 to 6000 Hz. Examples of the amplitude-frequency
dependences (spectra) of FFT for a patient with COVID-19 and
a healthy volunteer are presented in Figure 1. In many cases,
the FFT spectra of volunteers do not possess well-defined
maximums and minimums, as shown in Figure 1a. One can see
several differences (Table 1) in the spectra for a volunteer and
a patient: the maxima and minima of their spectra are located
in various frequency ranges; these differences could be used to
formulate potential healthy-ill criteria, which are presented in
Table 2. Similar locations of the maxima and minima were
observed, for example, in the spectra for the first, third, and
ninth patients. The clearly seen amplitude increase in the
frequency range from 1000 to 1500 Hz in the spectrum for the
first patient (Figure 1b) can be a result of concomitant disease
(upper respiratory tract infection).

In Table 2:

where fa is the frequency of the extremum, A(f) is the harmonic
amplitude at frequency f, and Δf is the half of the frequency
range, chosen equal to 300 Hz. In the program, the integral is
replaced by a sum of harmonic amplitudes with a frequency in
the range from (fa – Δf) to (fa + Δf).

The criteria under test were formulated as ratios of the integrals
of the harmonic amplitudes over various frequency ranges
(Table 2 and Equation 1). So, the criteria values were
independent of the breathing intensity.

Adventitious sounds caused by an illness change not only the
amplitude-frequency dependence of the respiratory sound FFT
spectrum but also the frequency-amplitude dependence. The
second proposed method is based on analysis of differences
between the frequency-amplitude dependences of FFT spectra
for patients and volunteers.

The moments of the frequency (MF) distribution can be
considered as potential healthy-ill criteria:

and

where imin and imax are the harmonic numbers corresponding to
the minimal (fmin=2000 Hz) and maximal (fmax=5900 Hz)
frequencies, respectively, and fi is the frequency of the i-th
harmonic.

The MF distribution was also independent of the breathing
intensity.
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Figure 1. Amplitudes of FFT harmonics for the first healthy volunteer (a) and the first patient with COVID-19 (b). The amplitudes are given in arbitrary
units. FFT: fast Fourier transform.

Table 1. Comparison of the FFTa spectra of a volunteer and a patient with COVID-19.

PatientVolunteer

No extremum in the frequency rangeMinimum at about 2300 Hz

Minimum at 3300 HzMaximum at 3100 Hz

Maximum at 3900 HzMinimum at 4100 Hz

Minimum at 5000 HzMaximum at 4900 Hz

Maximum at 5600 HzNo extremum at a frequency above 5300 Hz

aFFT: fast Fourier transform.

Table 2. Healthy-ill criteria.

IllHealthyCriteria

k1>1k1<1k1 = I(2300)/I(3200)

k2<1k2>1k2 = I(3200)/I(4000)

k3>1k3<1k3 = I(4000)/I(5000)

k4<1k4>1k4 = I(5000)/I(5600)

Results

The First Method
The results of the calculation of potential healthy-ill criteria k1,
k2, k3, and k4 are presented in Tables 3 and 4.

For the reader’s convenience, Figure 2 presents the distribution
of the criteria through patients with COVID-19 and volunteers.
Comparing the results presented in Tables 3 and 4 and Figure
2, one can see that the most reliable result is given by the
high-frequency criterion k4.

For healthy volunteers, the criterion should be >1; this was
correct in TN=15 (88.2%) of 17 cases and incorrect in FN=2
(11.8%) cases. For patients with COVID-19, the criterion should
be <1; this was observed in TP=11 (78.6%) of 14 cases.
COVID-19 was not diagnosed in FP=3 (21.4%) cases.

The criterion for the 12th patient was close to the boundary value
of 1. The second proposed method also had the healthy-ill
criterion close to the boundary value (Figure 3). Analysis of the
recording for the patient showed that the outside noise was high,
and this can cause incorrect diagnostics.

Additionally, we applied the proposed method for diagnostics
of COVID-19 using the respiratory sound recordings of 30
patients and 26 healthy persons (ages 11-67 years, 34, 60%,
women). None of them reported that they had other lung
diseases. These recordings were made by the persons
themselves, who agreed to be tested at home, using a mobile
telephone. The sound recordings were passed to us through
WhatsApp. The cases of COVID-19 illness were confirmed by
PCR tests, and in all cases, the illness was asymptomatic or
mild. The proposed method gave the correct diagnosis for 26
(86.7%) of 30 patients and 22 (84.6%) of 26 healthy ones. The
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PCR tests for persons who were incorrectly diagnosed as ill
gave negative results.

Several patients made a few recordings during the process of
the disease. Development of a spectrum of a patient is presented
in Figure 3. Though the spectrum varied noticeably, the k4

criterion was less than 1 during the illness. The pathological
process was characterized by a clearly seen increase in harmonic
amplitudes in a wide frequency range. The third-day spectrum
corresponded to the most severe condition of the person
(according to their message).

Table 3. Criteria k1, k2, k3, and k4 for patients with COVID-19.

k4k3k2k1DiagnosisAge (years), gender (F=female, M=male)Patient number

<1>1<1>1COVID-19, upper respiratory tract infection18, F1

<1>1>1>1COVID-19, unilateral pneumonia80, F2

<1>1<1>1COVID-19, bilateral pneumonia47, F3

<1>1>1>1COVID-19, bilateral pneumonia58, F4

<1>1>1>1COVID-19, pneumonia62, M5

>1<1<1<1COVID-19, pneumonia65, F6

<1>1>1<1COVID-19, unilateral pneumonia with hydrothorax, HIV
infection

28, F7

<1>1>1<1COVID-19, upper respiratory tract infection75, M8

<1>1<1>1COVID-19, upper respiratory tract infection, exacerbation

of COPDa
38, F9

>1>1>1>1COVID-19, pneumonia36, F10

<1>1>1>1COVID-19, pneumonia20, M11

~1>1>1>1COVID-19, pneumonia56, M12

<1>1>1>1COVID-19, pneumonia20, M13

<1>1>1>1COVID-19, pneumonia32, M14

aCOPD: chronic obstructive pulmonary disease.

Table 4. Criteria k1, k2, k3, and k4 for volunteers.

k4k3k2k1Age (years), gender (F=female, M=male)Volunteer number

>1<1>1<122, F1

>1>1>1>147, M2

>1<1<1>148, F3

<1<1>1>117, M4

>1>1<1>18, M5

>1>1<1>15, F6

>1>1>1>15, F7

>1>1>1>111, M8

>1>1>1>15, M9

>1>1<1>114, M10

>1>1>1>15, F11

>1>1>1>112, F12

>1>1>1<19, M13

>1>1<1<110, F14

>1>1<1<110, F15

>1>1<1>18, M16

<1>1<1>114, M17
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Figure 2. Healthy-ill criteria according to Tables 3 and 4: blue circles for volunteers and red squares for patients.
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Figure 3. Change in the respiratory sound FFT spectrum of a patient with COVID-19 in the disease process. On the first day, the illness was diagnosed
using the PCR test; on the last (11th) day, the person was diagnosed as healthy. The amplitudes are given in arbitrary units. FFT: fast Fourier transform;
PCR: polymerase chain reaction.

The Second Method
We compared the values of MF and MFn (n=2, 3, and 4) as well
as MFn/MF and MFn/MF2. The best result was obtained for
MF4/MF (Figure 4). In this figure, the blue line corresponds to
the boundary value, which was selected by us as equal to 0.8:

If (MF4/MF)×10−9 is >0.8, the examined person is ill; if it is
<0.8, the person is healthy. The second method, like the first
one, gave incorrect diagnostics for the sixth patient and
overdiagnosis for the fourth volunteer. The respiratory sound
recording for this volunteer was characterized by a relatively
low level of a signal and high noise. The overdiagnosis for the
fourth volunteer could be the result of low quality of the
recorded signal.

The second method correctly diagnosed patients as sick in TP=13
(92.8%) of 14 cases and volunteers as healthy in TN=14 (82.3%)
of 17 cases. The method misdiagnosed patients as healthy only
once, FP=1 (7.2%), and healthy volunteers as sick in FN=3
(17.7%) cases.

The second method applied to the respiratory sounds recorded
by persons at home demonstrated a diagnostics effectivity that
was close to that of the first method.

The results allow us to assess the main characteristics of the 2
proposed methods. Here, for characterization of the proposed
methods, we used sensitivity, specificity, and the Youden index.
The sensitivity of a method is determined by the formula [27]

and its specificity as

The sensitivity and specificity of the first method from Tables
1 and 2 were estimated as Se=0.786 and Sp=0.882, respectively,
and for the second method as (Figure 2) as Se=0.93 and
Sp=0.824. Here, we considered the results obtained only for
people who were tested at the hospital.

The Youden index is calculated using the following formula:

The Youden index for the first method was about 0.67 and for
the second was 0.754.
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For the reader’s convenience, these results and the sensitivity,
specificity, and Youden index for both methods are presented

in Table 5.

Figure 4. Healthy-ill criterion (MF4/MF)×10−9: blue circles for volunteers and red squares for patients. Each number on the horizontal axis indicates
the number of a patient or a volunteer according to Tables 3 and 4, respectively. The blue line corresponds to the boundary value of 0.8. MF: moments
of the frequency.

Table 5. Comparison of the 2 proposed methods.

JSpSeFNTNFPTPMethod

0.670.8820.786215311First

0.7540.8240.93314113Second

Discussion

Principal Findings
The proposed computer-assisted diagnostic methods for
COVID-19, which are based on analysis of respiratory sounds
recorded near the mouth, demonstrated high diagnostic accuracy.
For people tested at the hospital, the second method
demonstrated better characteristics (sensitivity of 0.93,
specificity of 0.824, and Youden index of 0.754) than the first
one.

Both methods demonstrated close diagnostic characteristics
when analyzing respiratory sound recordings made by persons
themselves using a mobile telephone at home and submitted to
us through WhatsApp. The proposed methods correctly
diagnosed 86.7% of patients and 84.6% of healthy ones. These
results demonstrate the possible application of the proposed
methods for remote diagnostics.

Although a relatively low number (due to pandemic limitations)
of the examined patients with COVID-19 and healthy volunteers
did not allow estimating the method characteristics with high
accuracy, the proposed methods correctly diagnose patients
with COVID-19 in a wide age range, and the proposed criteria
of healthy/ill are independent of the patient’s age, sex, etc, as
well as concomitant diseases, such as upper respiratory tract
infection, pneumonia, exacerbation of COPD, and bilateral
pneumonia (Table 3).

The patient and volunteer groups contained members of various
genders and ages (from 5 to 80 years).

High diagnostic characteristics of the proposed methods
independent of age were achieved due to comparison of various
parts of the respiratory sound FFT spectrum. For example, in
the first method, the ratio k4 of integrals over various frequency
ranges was determined and compared with the boundary value:
If k4>1, the examined person is healthy, and if k4<1, the person
is ill. The ratio is independent of the recording devices and
sampling rate, and as our results showed, the boundary value
does not depend on the individual patient characteristics and
even on concomitant diseases (Table 3).

Comparison With Prior Work
Each lung disease is characterized by specific changes in the
airways or lungs. These changes cause abnormal (adventitious)
sounds, which can be separated into several types (wheezing,
stridor, crackles, etc). These abnormal sounds are characterized
by their durations and specific frequency ranges being below
2500 Hz [8,10,12]. For example, bronchial asthma is
characterized by airway obstruction and inflammatory process,
which covers all airways, from the central to the peripheral parts
of the tracheobronchial tree (small bronchi) [21]. Asthmatic
changes in the lungs cause typical respiratory sounds, with the
main frequency in low-frequency ranges between 100 and 1000
Hz [12,28,29] and between 400 and 1600 Hz [12,30] (Figure
5). For analysis of respiratory sounds of patients with pulmonary
diseases (asthma, pneumonia, HIV infection, etc) and
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development of computer-assisted diagnostic methods, the frequency range from 100 to 2500 Hz is usually considered.

Figure 5. FFT spectra of sound signals for an asthmatic patient. The amplitudes are given in arbitrary units. FFT: fast Fourier transform.

For diagnostics of specific acoustic phenomena associated with
COVID-19, we proposed to consider the high-frequency range
of respiratory sound FFT spectra. It can be assumed that аn
upper respiratory tract injury leads to the appearance of changes
in a higher-frequency part of the spectrum; it can be associated
with COVID-19 [31]. Severe forms of tracheobronchitis were
consistently present in 88% of COVID-19 cases [32-34]. This
assumption is confirmed by our results: the most reliable
criterion is the k4 criterion, which is determined for the
high-frequency range of the FFT spectrum, from 4700 to 5900
Hz (the first proposed method).

A decrease in the diagnostic value of the k1, k2, and k3 criteria
can be the result of concomitant diseases, which cause changes
in the respiratory sounds in the lower-frequency range [8,10,12].
Another reason of the low accuracy of diagnostics based on the
k1, k2, and k3 criteria can be a higher sensitivity of the
parameters fa and Δf at low frequencies to individual
characteristics of patients (age, sex, weight, etc) and also to
fatigue and anxiety.

The second proposed method of computer-assisted diagnostics
of COVID-19 is also based on the consideration of the
high-frequency range of the FFT spectrum, from 2000 to 6000
Hz.

The high diagnostic accuracy is achieved in both methods due
to our offer to compare various parts of the FFT spectrum of a
patient (volunteer). This allows us to minimize the influence of
the breathing intensity as well as the gender and age
dependences of the FFT spectrum.

One of the ways to increase the diagnostic values of the
proposed computer-assisted methods is to create a big database
and determine the parameters (fa and Δf for the first method and
fmin and fmax for the second one) using machine learning.

The proposed methods for COVID-19 diagnostics are based on
the consideration of the high-frequency ranges of FFT spectra.
The most reliable result is given by the high-frequency criterion
k4 for the frequency range above 4700 Hz. Other lung illnesses
do not cause abnormal respiratory sounds (adventitious sounds)
in the considered frequency range; changes caused by them are
between 50 and 2500 Hz (see Figure 5 and [8,10,12,28,35]).
This fact and the independence of the proposed criteria of the
concomitant diseases allow us to assume that the criteria can
be used for diagnostics of COVID-19. We analyzed FFT spectra
for several patients with other lung diseases (without
COVID-19), such as asthma (Figure 5), bilateral pneumonia,
pneumonia, and upper respiratory tract infection, and did not
find these specific changes in the high-frequency range above
4700 Hz.

Limitations
The proposed screening self-tests would serve as a preliminary
step before further procedures are ordered by a doctor. The
results of the screening self-tests should be confirmed by other
diagnostic methods (chest X-ray/CT and coronavirus tests, such
as PCR test, antigen test, and specific SARS-CoV-2 antibody
test).

Conclusion
The high-frequency range of the respiratory sound FFT spectrum
contains information about the health state of the examined
person. The proposed computer-assisted methods based on
analysis of this spectrum part can be applied as fast, remote
additional screening methods (telemedicine) for specific acoustic
phenomena associated with COVID-19. The methods
demonstrate sufficiently high diagnostic values. The methods
can be a basis for the development of noninvasive screening
self-testing kits for COVID-19. To increase the accuracy and
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reliability of the methods, a big database of respiratory sounds of patients with COVID-19 and volunteers should be created.
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