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A B S T R A C T   

Betaine-homocysteine methyltransferase (BHMT) catalyzes the transfer of methyl groups from 
betaine to homocysteine (Hcy), producing methionine and dimethylglycine. In this work, we 
characterize Bhmt wild type (Bhmt-WT) and knockout (Bhmt-KO) mice that were fully backcrossed 
to a C57Bl6/J background. Consistent with our previous findings, Bhmt-KO mice had decreased 
body weight, fat mass, and adipose tissue weight compared to WT. Histological analyses and gene 
expression profiling indicate that adipose browning was activated in KO mice and contributed to 
the adipose atrophy observed. BHMT is not expressed in adipose tissue but is abundant in liver; 
thus, a signal must originate from the liver that modulates adipose tissue. We found that, in Bhmt- 
KO mice, homocysteine-induced endoplasmic reticulum (ER) stress is associated with activation 
of the hepatic transcription factor cyclic AMP response element binding protein (CREBH), and an 
increase in hepatic and plasma concentrations of fibroblast growth factor 21 (FGF21), which is 
known to induce adipose browning. Our data indicate that the deletion of a single gene in one- 
carbon metabolism modifies adipose biology and energy metabolism. Future studies could 
focus on identifying if functional polymorphisms in BHMT result in a similar adipose atrophy 
phenotype.   

1. Introduction 

Betaine-homocysteine S-methyltransferase (BHMT) is an important Zn-dependent thiol-methyltransferase that catalyzes the for-
mation of methionine from homocysteine using betaine as its methyl donor [1,2]. Methionine is subsequently converted to S-ade-
nosylmethionine (SAM) and is used for various methylation reactions [3]. BHMT is one of the most abundant proteins in the liver, 
amounting to 0.6–1% of total protein [4], and it is also found in kidney, the eye lens, and at lower activities in other tissues, but not in 
adipose [5,6]. Mice in which Bhmt was deleted (whole body; Bhmt-KO) have increased hepatic concentrations of the enzymatic 
substrates betaine and homocysteine (Hcy) [5,7]. Moreover, at 5 weeks of age, hepatic and plasma concentrations of triacylglycerol 
(TAG) are higher in Bhmt-KO compared to wild type [5]. These KO mice have better glucose uptake and insulin tolerance than wild 
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types at 7 weeks of age. Additionally, KO mice develop increased energy expenditure, lipodystrophy and fatty liver compared to their 
wild type (WT) littermates [5,7]. At 1 year of age, 64% of Bhmt-KO mice develop hepatic tumors [5,7]. 

Though the mechanisms underlying the hepatocarcinogenesis in the Bhmt-KO mice have been explored [3], those involved in 
adipose wasting have not been addressed. We do so in this paper. 

The capacity of white adipose tissue (WAT) to elevate its metabolic rate, by increased expression of UCP1 mRNA, and subsequently 
become brown adipose tissue (BAT) [8,9], gained attention due to the potential benefits to promote weight loss. Several factors are 
known to induce browning, including foods, environmental stimuli, and hormones like FGF21, by interacting with FGF receptor 
[10–12]. Sustained energy expenditure from WAT to BAT conversion is responsible for muscle and fat atrophy [13]. This is the major 

Nomenclature 

Abbreviations 
ATF3 Activating Transcription Factor 3 
BAT Brown adipose tissue 
BHMT Betaine Homocysteine-S-Methyltransferase 
CAC Cachexia 
CHOP c/EPB homologous protein 
CIDEA Cell death-inducing DFFA-like effector A 
CREBH Cyclic AMP response element binding protein H 
ER Endoplasmic Reticulum Stress 
FGF21 Fibroblast Growth Factor 21 
Hcy Homocysteine 
KLB β-Klotho 
PCG-α Peroxisome Proliferator-activated receptor gamma coactivator 1-alpha 
SAM S-adenosylmethionine 
UCP1 Uncoupling Protein 1 
WAT White adipose tissue  

Fig. 1. Lack of the Bhmt gene induces adipose atrophy in mice. (A) Body weight loss of Bhmt knockout (Bhmt-KO) compared to Bhmt wild type 
(Bhmt-WT). (B) Adipose weight normalized over body weight. n = 25 Bhmt-KO; n = 24 Bhmt-WT. Results are presented as mean ± SEM. P values 
were calculated by unpaired t-test. (C) and (D). Representative stainings of sections from inguinal white adipose tissue (iWAT) from Bhmt-WT (C) 
and Bhmt-KO (D) Scale bar = 50 μm. (E) Adipocyte area quantification of iWAT from Bhmt-WT vs Bhmt-KO. Results are presented as mean ± SEM. n 
= 3 Bhmt-KO and n = 3 Bhmt-WT, at least 50 cells were quantified per mouse. P value was calculated by Kolmogorov-Smirnov test. 
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cause of cancer associated cachexia (CAC), a major cause of lean body in cancer patients that cannot be reversed by nutritional ap-
proaches, where energy wasting and hypermetabolism is observed [8,14]. In this study, we show that deletion of Bhmt in mice results 
in increased Hcy concentrations in tissues, and this is associated with the initiation of a signaling cascade involving endoplasmic 
reticulum stress (ER stress) and leading to expression of genes including fibroblast growth factor 21 (Fgf21). Previously, we reported 
increased Fgf21 concentrations produced by the liver in Bhmt-KO mice [7]. Fgf21 stimulates adipose browning and energy expenditure 
by upregulating the expression of the transcriptional co-activator peroxisome proliferator-activated receptor gamma coactivator 
-1-alpha (Pgc-1α), as well as uncoupling protein 1 (Ucp1). This culminates in adipose wasting in Bhmt-KO mice. 

2. Results 

2.1. Deletion of Bhmt promotes adipose atrophy in fully backcrossed mice 

We previously reported that Bhmt knockout mice on a mixed 129/SV x C57BL/6J background (generations F3–F5), between 7 and 
12 weeks of age, had reduced adipose mass and smaller-sized adipocytes [7]. Since genetic background of mice can have a profound 
influence on the metabolic phenotype of mice [15], we sought to re-examine this lipodystrophy phenotype after backcrossing Bhmt-KO 
mice to C57Bl/6 to generate a near congenic (99.74%) line. In this near congenic line, we confirmed that, in the Bhmt-KO compared to 
wild type (WT), there was a significant reduction in total body weight (Fig. 1A) and adipose weight (Fig. 1B) in mice (7–8 weeks of 
age). Histological analysis of adipose tissue taken from Bhmt-KO mice showed reduced adipocyte cell area in inguinal white adipose 
tissue (iWAT) as compared to WT (Fig. 1C–E). Adipose atrophy is characterized by reduced fat/lean mass and the ‘slimming of adi-
pocytes’ in both size and volume [16], and our data show that this process is dependent on Bhmt status. 

2.2. Adipose atrophy in Bhmt-KO mice is associated with adipose browning in inguinal adipose depots 

Since smaller adipocytes and increased whole body energy expenditure and heat production are classical features of browning of 
WAT [17], and since adipose browning is known to promote adipose atrophy in several mouse models [8,17–20], we sought to 
determine if the WAT atrophy observed in Bhmt-KO mice is due to WAT browning. We first measured molecular markers that are 
frequently associated with adipose browning [21–23]. Uncoupling Protein 1 (Ucp1) mRNA (Fig. 2A) along with mRNA for other 
thermogenic genes such as Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (Pgc-1α) and the 
lipid-droplet-associated protein cell death-inducing DFFA-like effector A (Cidea) (Fig. 2B and C) were all significantly upregulated in 
iWAT collected from Bhmt-KO mice compared to WT. Together, these results indicate that lack of Bhmt is sufficient to induce the 
expression of adipose browning markers. 

2.3. Bhmt-KO livers have increased homocysteine concentrations 

Plasma total Hcy concentrations were significantly increased in Bhmt-KO mice on a mixed 129/SV x C57BL/6J background 
(generations F3–F5), as we previously reported [7]. We now show that, in the fully backcrossed Bhmt-KO mice, both plasma Hcy 
concentrations (~11 fold) and liver Hcy concentrations (~2 fold) were increased in KO compared to WT mice (Fig. 3A and B). Thus, 
loss of Bhmt results in the accumulation of plasma and liver Hcy. 

2.4. Bhmt-KO livers have increased ER stress and have more activated CREBH 

Because high tissue Hcy is a known cause of ER stress, which in turn regulates several transcription factors residing in the ER [24, 
25], we investigated if Bhmt-KO mice have increased ER stress compared to WT. We measured gene expression of Activating 

Fig. 2. Lack of the Bhmt gene induces the expression of beige remodeling markers that induce browning. mRNA levels of beige remodeling markers 
Ucp1 (A), Pgc1a (B), and Cidea (C) in inguinal adipose tissue (iWAT) of Bhmt-WT and Bhmt-KO mice. Relative quantitative values (normalized to 
36B4) are reported as fold change. Results are presented as mean ± SEM. P values were calculated by Mann-Whitney test (A and C) and by unpaired 
t-test (B). n = 5 mice per group; per genotype. 
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Transcription Factor 3 (ATF3), and DNA damage-inducible transcript 3, also known as C/EBP homologous protein (CHOP), as in-
dicators of ER stress [26–36]. We found that expression of these genes was increased 3-fold and a tendency of1.5-fold, respectively, in 
Bhmt-KO compared to WT mouse livers (Fig. 4A and B). Since changes in CHOP mRNA expression where modest, we evaluated CHOP 
protein levels and found an increase of ~30-fold in KO compares to WT (Fig. 4C and D; uncropped western blot Supplementary Fig. 
S1A). Thus, Bhmt-KO mice have increased ER stress compared to their WT counterparts. 

Next we identified transcription factors that reside in the ER, and are produced in response to ER stress, and regulate FGF21. We 
found that the hepatic transcription factor known as Cyclic AMP Responsive Element Binding Protein – H (CREBH) fulfilled the above 
criteria [25,37,38]. We measured full length and activated CREBH in the liver lysates prepared from both Bhmt-WT and KO mice by 
Western blot analysis and found that the cleaved, activated form of CREBH was significantly increased, ~3-fold, in Bhmt-KO compared 
to WT liver (Fig. 4E and F; uncropped western blot Supplementary Fig. S1B). 

2.5. Bhmt-KO livers have increased FGF21 concentrations 

Since activated CREBH binds to the Fgf21 promoter and results in its transcription [39], this could explain our earlier finding where 
Bhmt-KO mice, on a mixed 129/SV x C57BL/6J background (generations F3–F5), had increased FGF21 concentrations [7]. However, 
we now show that in fully backcrossed Bhmt-KO mice, compared to WT, plasma and hepatic FGF21 concentrations were increased 
more than 2-fold (Fig. 5A and B). 

3. Discussion 

The deletion of Bhmt in mice results in less fat storage in adipose tissue even though, to our knowledge BHMT is not expressed in 
adipose tissue, [7]. This adipose atrophy is the result of reduced triglyceride storage within iWAT associated with increased energy 
expenditure and heat production as measured by indirect calorimetry without a matching increase in food consumption [7]. We now 
report that elevated Hcy concentrations in Bhmt-KO correlate with the increase of ER stress signaling; resulting in the generation of 
activated CREBH, and increased expression of hepatic FGF21. Presumably, FGF21 is transported via circulation to adipocytes where it 
promotes the browning of white adipose tissue, increases expression of PGC-1α thus increasing mitochondrial number and expression 
of UCP-1, which uncouples mitochondrial respiration from ATP synthesis, thereby increasing energy expenditure and heat production 
(Fig. 6). 

As noted earlier, BHMT catalyzes the formation of methionine from Hcy using betaine as a methyl donor [1,2]. Deletion of Bhmt 
increases concentrations of both substrates (betaine and Hcy) used by this enzyme. Increased concentrations of Hcy cause ER stress 
both in vitro and in vivo [26,27,29,32,33,36,40–42] by disrupting disulfide bond formation and thus leading to protein misfolding [27]. 
However, it is also possible that the accumulation of the other precursor, betaine, also contributes to adipocyte browning as feeding 
mice a diet containing 5% betaine increases plasma concentrations of FGF21 [7,43]. 

Since Bhmt deletion results in a reduced methylation potential by increasing S-adenosylhomocysteine concentrations, we had 
previously hypothesized that the FGF21 promoter region was could be hypomethylated in the Bhmt-KO mouse thereby explaining the 
increased expression ofFGF21. However, reduced representation bisulfite sequencing performed on liver DNA from WT and KO mice 
did not reveal any methylation differences in FGF21 promoter [3]. 

ER stress is initiated by numerous metabolic stressors including high concentrations of homocysteine [26,27,29,32] and has been 
associated with hepatic lipid accumulation, obesity, cancer [30,44], and WAT browning [45]. Transcription factors that are regulated 
by ER stress include Sterol Regulatory Element Binding Proteins (SREBP) and CREBH [35], among others. CREBH can bind and 
activate FGF21 promoter at position − 60 to − 40 bp and has been shown to control the expression and plasma levels of FGF21 [39,46]. 
Additionally, FGF21 mediates many of CREBH’s effects on fatty acid metabolism and ketogenesis [47]. Consistent with this, we did 

Fig. 3. Increase in plasma and liver homocysteine (Hcy) levels in Bhmt-KO mice. (A) Plasma levels of Hcy are increased in Bhmt-KO mice ~50 fold 
when compared with Bhmt-WT mice. n = 5 per group. (B) Liver Hcy levels were also increased ~20 fold in Bhmt-KO mice when compared with 
Bhmt-WT. n = 7 Bhmt-KO; n = 5 Bhmt-WT. Results are presented as mean ± SEM. P values were calculated by Mann-Whitney test. 
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observe an increase in activated CREBH in Bhmt-KO mice. This study did not further investigate this association via deletion of CREBH, 
and cannot rule out the involvement of other pathways by which ER stress could alter FGF21 expression. Interestingly, in a Fgf21-null 
mouse model fed a methionine-choline deficient diet for one week, ER stress was enhanced identified by increased CHOP mRNA levels 
in liver. These results show the important role of FGF21 as a hepatoprotectant [48]. 

Many endocrine and autocrine signals stimulate adipose browning, including FGF21 [49]. FGF21 binds to its receptor (FGFR) and 
coreceptor β-Klotho (KLB) to activate a downstream signaling cascade that leads to the expression of its target genes [50]. FGF21 
stimulates adipose browning and energy expenditure by upregulating the expression of transcriptional co-activator PGC-1α in adipose 
tissue [23,50,51]. Browning of white adipose tissue is characterized by the appearance of brown-like or beige adipocytes within WAT 
[52,53]. These inducible beige adipocytes are morphologically similar to brown adipocytes due to their expression of uncoupling 
protein 1 and contribution to thermogenesis [45,53]. 

In humans, serum FGF21 levels are associated with alcohol consumption, smoking [54] and prolonged fasting [55]. Other factors 
linked to the increase of serum FGF21 levels, in mice, are non-alcoholic steatohepatitis, improved glucose tolerance, and adverse lipid 

Fig. 4. Endoplasmic reticulum (ER) stress is increased in Bhmt-KO livers and exhibit activation of CREBH. (A) mRNA levels of ER stress markers Atf3 
are increased in liver Bhmt-KO mice compared to Bhmt-WT. n = 7 Bhmt-KO; n = 8 Bhmt-WT. P values were calculated by Mann-Whitney test. (B). 
Chop mRNA showed a tendency to be increased. P values were calculated by Kolmogorov-Smirnov. Relative quantitative values (normalized to 
36B4) are reported as fold change. Results are presented as mean ± SEM. (C, D) Liver samples were examined by Western blot, were increased Chop 
protein levels were observed in Bhmt-KO vs Bhmt-WT. Actin was used as a loading control. Data are presented ad mean ± SEM. P values were 
calculated by Mann-Whitney test. n = 5 mice per group; per genotype. (E) Liver samples were examined by Western blot, to assess full-length CREBH 
and cleaved CREBH from Bhmt-WT and Bhmt-KO. Actin was used as a loading control. (F) The ratio of cleaved CREBH to full-length CREBH. n = 4 
mice per group; per genotype. P values were calculated by unpaired t-test. 
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profiles [56,57]. Deletion of FGF21 in the liver drastically reduces circulating FGF21. At the same time, overexpression of FGF21 in 
adipocytes does not increase its circulating levels [58]. This suggests that the levels of serum FGF21 in the Bhmt-KO are a direct 
consequence of liver metabolism. It would be interesting to explore changes in FGF21 serum levels overtime in the Bhmt-KO model and 
study its association with other physiological responses. As noted, adipose atrophy is characterized by reduced fat/lean mass and the 
excessive ‘slimming of adipocytes’ in both size and volume [16]. Increased metabolic rate and adipose browning has been proposed as 
causes for adipose atrophy [8,16,18–20,59–63]. Even though browning of WAT is considered beneficial in obesity (reducing body 
weight and increasing energy expenditure), some evidence suggests that it also is associated with adverse outcomes such as hepatic 
steatosis, CAC, and burn-related cachexia [8,18,60,61]. 

The present study shows a novel phenotype of Bhmt-KO in adipose tissue. However, further research is needed to understand the 
phenotype. One of the limitations of our study is the lack of a CREBH knockout model to explore if we recapitulate, at least in part, the 
adipocyte phenotype we observed in the Bhmt-WT mice. Future studies are required to explore the potential liver-adipose tissue 
communication, lipolysis, and brown adipose tissue activation. 

Is reduced BHMT expression likely to be a risk factor for people? Several functional BHMT variants have been identified in humans 
and are associated with increased risk for cancer and other diseases [64–67], however, no information is available on the metabolic 
phenotypes of humans carrying those variants. In mice, betaine supplementation delays muscle loss in an aging model [68], and more 
studies are needed to investigate if this happens in humans. In a meta-analysis of randomized controlled trials, betaine 

Fig. 5. FGF21 is increased in Bhmt-KO plasma and liver. (A) FGF21 levels are increased in plasma from Bhmt-KO mice when compared to Bhmt-WT. 
n = 8 per group. Results are represented as mean ± SEM. P values were calculated by t-test. (B) mRNA levels of Fgf21 in the liver are increased ~2 
fold. Relative quantitative values (normalized to 36B4) are reported as fold change. P values were calculated by t-test. N = 5 per group. 

Fig. 6. Schematic representation of the effects of the deletion of Bhmt in liver and iWAT compared to Bhmt-WT. The schema summarizes our new 
findings where deletion of Bhmt in mice increases homocysteine levels leading to endoplasmic reticulum (ER) stress. ER stress led to an increase in 
the cleaved CREBH protein levels, which acts as a transcription factor that binds the FGF21 promoter. FGF21 high levels exert their effects in iWAT. 
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supplementation is associated with reduced body fat mass and body fat percentage; however, no changes on BMI were reported [69]. It 
would be interesting to explore whether people with functional BHMT variants have a metabolic phenotype similar to that which we 
describe in mice. This would help us to understand how genetic variants in one carbon metabolism affect obesity and our under-
standing of how adipose atrophy develops in diseases such as cancer. 

4. Materials and methods 

4.1. Animals 

Mice used in these experiments were bred and maintained at the David H. Murdock Research Institute (DHMRI), Center for 
Laboratory Animal Science facilities. All animal experiments were performed in accordance with the protocols approved by David H. 
Murdock Research Institute, Institutional Animal Care and Use Committee (IACUC). 

Bhmt-KO mice were generated as previously described [5]. Bhmt-KO mice were fully backcrossed to C57B1/6 wild-type mice to 
generate a near congenic (99.73%) mouse line. For these studies our breeding pairs were (Bhmt-WT; Bhmt-WT) and (Bhmt-KO; 
Bhmt-KO). Genotyping of Bhmt animals was confirmed using the following primers: Bhmt-WT_F 5′–GACTTT 
TAAAGAGTGGTGGTACATACCTTG-3′, Bhmt-WT_R-5′ –TCTCTCTGCAGCCACATCTGAACTTGTCTG-3′, Bhmt-KO_F-5′

–TTAACTCAACATCACAACAACAGATTTCAG-3′, Bhmt-KO_R 5′ –TTG TCGACGGATCCATAACTTCGTATAAT-3′. Bhmt-WT and KO mice 
were mated and maintained ad libitum on an AIN 76A diet (Dyets, Bethlehem, PA, USA) and were kept in a temperature-controlled 
environment at 24 ◦C and exposed to a 12 h light and dark cycle. At 7–8 weeks, mice were fasted for 6 h and then euthanized by 
exposure to isoflurane. Tissue collection was performed for males and females, from both Bhmt-WT and Bhmt-KO, researchers were 
aware of the Bhmt genotype while performing experiments, except for the adipose tissue quantification (see details below). 

4.2. Histological analysis 

Tissues were fixed in buffered formalin, dehydrated in ethanol and then transferred to xylene solution for embedding in paraffin. 
Serial sections at 5 mm thickness were made from paraffin-embedded tissue and then stained with hematoxylin and eosin. Images were 
analyzed with light microscopy. Adipocyte area was calculated by measuring the area of cells per condition, using Image J (NIH, 
Bethesda, MD, USA). Researchers were blinded to mouse genotype and at least 50 cells were quantified per mouse, per genotype (n = 3 
per group). Results are presented as mean ± SEM. 

4.3. RT-PCR analysis 

Total RNA was extracted from tissues of Bhmt-WT and Bhmt-KO mice, using RNAeasy mini-Kit (Qiagen, Hilden, Germany). cDNA 
synthesis was performed by using a Script™ cDNA SuperMix (Quanta BioSciences, Gaithrsburg, MD, USA). For quantitative real-time 
assays, amplification was performed by using PerfeCTa qPCR FastMix (Quanta Biosciences). We designed primers (Sigma) as follows: 
Ucp1 forward primer: ACTGCCACAACCTCCAGTCATT, reverse primer CTTTGCCTCACTCAGGATTGG; Pgc1a forward primer 
AGCCGTGACCACTGACAACGAG, reverse primer GCTGCATGGTTCTGAGTGCTAGG; Cidea forward primer: GCAACCAAA-
GAAATGCGGAATAG, reverse primer: CTCGTACATCGTGGCTTTGA; Chop forward primer CAGCGACAGAGCCAGAAT; Atf3 forward 
primer GAGGCGGCGAGAAAGAAA, reverse primer CACACTCTCCAGTTTCTC. Ct values were calculated by SDS 1.2 software (Applied 
Biosystems, Foster City, CA, USA) and normalized to 36B4 Ct values and expressed as 2 –(Ct(gene)- Ct (housekeeping gene)). 

4.4. Western blot 

Liver tissues were collected from Bhmt-WT and Bhmt-KO to evaluate CREBH and CHOP levels. Protein extracts were prepared using 
RIPA lysis buffer (Sigma, ST. Louis, USA) supplemented with protease inhibitor cocktail (Complete, Roche) and sonicated 50 oscil-
lation/sec for 5 min (Tissue Lyser LT, Qiagen). Total protein concentrations for all samples were quantified using BSA standards 
(catalog number A7030, Sigma-Aldrich). Proteins were loaded into SDS-PAGE gels and blotted on nitrocellulose. Membranes were 
immersed in blocking solution (BSA 5%; catalog number 03116956001, Sigma; TBS 1x and 0.1% Tween-20) for 1 h. CREBH antibody 
(catalog number: EWS10. Kerafast; Boston, MA, USA.) was used at 1:1000 dilution, overnight incubation. CHOP (catalog number 
5554. Cell Signaling Technology, US.) was used 1:1000, overnight incubation. Beta actin (catalog number ab8226. Abcam, Boston, 
MA, USA.) was used 1:1000 for 1 h incubation at room temperature. The secondary antibodies were IRDye 800CW goat anti-rabbit IgG 
(catalog number 926-322. Li-Cor Biosciences, Lincoln, NE, US) and goat anti-mouse IgG IRDye 680RD (926-68070. Li-Cor Bio-
sciences). The membranes were imaged in a Li-Cor Odyssey imaging system and protein abundance was quantified using the Image 
Studio Lite (Li-Cor Biosciences, version 5.2.5, 2015). Data are presented by mean ± SEM. 

4.5. FGF21 and Homocysteine measurement 

4.5.1. Serum 
Blood samples from Bhmt-WT and Bhmt-KO mice, were collected and centrifuged at 1000 g for 15 min at 4 ◦C. Liver: Crushed liver 

samples were homogenized in cold phosphate-buffered saline (PBS, Sigma) with protease inhibitors (Roche). Samples were centrifuged 
at 9600 g for 15 min at 4 ◦C. For both plasma and liver, supernatant protein was quantified using BCA protein assay (Bio-Rad, Hercules, 
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CA, USA) and diluted to equal concentrations before performing an enzyme-linked immunosorbent assay (ELISA) using a Mouse/Rat 
FGF21 Quantikine ELISA kit (R&D Systems, Minneapolis, MN) [70]. 

4.5.2. Homocysteine measurement 
Plasma or liver, from Bhmt-WT and Bhmt-KO was homogenized in dithiothreitol (DTT) and processed to dissociate the proteins by 

filtration, thereby extracting protein-bound Hcy. The protein-free filtrate was analyzed for total Hcy by liquid chromatography- 
electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) as previously described [71,72]. 

4.5.3. Statistical analysis 
The number of samples per group are indicated in the figure legends. There were no experimental units or data points excluded. 

Statistical analyses were performed with Prism 7 (GraphPad Software, La Jolla, CA, USA). Data distribution was tested for statistical 
normality. The Brown-Forsythe test (F test) was used to compare group variances. Groups with equal distribution were compared using 
Students’ t-test. Groups with unequal variances were compared using no-n-parametric tests and it is indicated on the figure legend. 
Data are presented as means ± SEM and p values are reported on each graph. 
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