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Abstract

In 1956, Brunswik proposed a definition of what he called intuitive and analytic cognitive processes, not in terms of verbally
specified properties, but operationally based on the observable error distributions. In the decades since, the diagnostic value of
error distributions has generally been overlooked, arguably because of a long tradition to consider the error as exogenous (and
irrelevant) to the process. Based on Brunswik’s ideas, we develop the precise/not precise (PNP) model, using a mixture
distribution to model the proportion of error-perturbed versus error-free executions of an algorithm, to determine if
Brunswik’s claims can be replicated and extended. In Experiment 1, we demonstrate that the PNP model recovers Brunswik’s
distinction between perceptual and conceptual tasks. In Experiment 2, we show that also in symbolic tasks that involve no
perceptual noise, the PNP model identifies both types of processes based on the error distributions. In Experiment 3, we apply the
PNP model to confirm the often-assumed “quasi-rational”” nature of the rule-based processes involved in multiple-cue judgment.
The results demonstrate that the PNP model reliably identifies the two cognitive processes proposed by Brunswik, and often
recovers the parameters of the process more effectively than a standard regression model with homogeneous Gaussian error,
suggesting that the standard Gaussian assumption incorrectly specifies the error distribution in many tasks. We discuss the
untapped potentials of using error distributions to identify cognitive processes and how the PNP model relates to, and can
enlighten, debates on intuition and analysis in dual-systems theories.

Keywords Judgment and decision making - Mathematical models - Error distributions

More than 60 years ago, Egon Brunswik (1956) proposed defi-
nitions of, what he referred to, as intuitive cognitive processes,

operational definition of the concepts, based on empirical and
observable properties of the data. Second, it focused not only on

characteristic of perceptual judgments, and analytic cognitive
processes, often observed in symbolic and conceptual tasks.
Brunswik argued that intuition typically produces a Gaussian
(i.e., normal) error distribution with frequent but modestly sized
errors, whereas analysis produces leptokurtic error distributions
with occasional but sometimes large errors. This proposal was
innovative in at least two respects: First, it provided an

Electronic supplementary material The online version of this article
(https://doi.org/10.3758/s13423-020-01805-9) contains supplementary
material, which is available to authorized users.

>4 Joakim Sundh
joakim.j.sundh@warwick.ac.uk

' Present address: Department of Psychology, University of Warwick,

Coventry, UK

2 Department of Psychology, Uppsala University, Uppsala, Sweden

the central tendencies of the responses (means, medians), but on
the shape of the distribution of judgment errors produced in
different judgment tasks.

These ideas were confirmed by Brunswik (1956) in an ex-
periment with a size constancy task where the participants ei-
ther judged the size of an object perceptually, or were provided
with the numerical information needed to calculate the size of
the object. The participants in the perceptual condition were
approximately correct, with a Gaussian error distribution. The
participants in the conceptual condition were mostly precisely
correct, with occasional large errors due to some participants
relying on the wrong analytic rule. Brunswik’s ideas were later
integrated into cognitive continuum theory (Hammond, Hamm,
Grassia, & Pearson, 1983), although with more emphasis on the
acknowledgment that most real-life tasks involve a mix of these
processes. In the decades since, the notions of “intuition” and
“analysis” have become closely associated with dual-systems
theories (e.g., Evans & Stanovich, 2013; Kahneman &
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Frederick, 2002; Sloman, 1996), and they have therefore taken
on a somewhat different meaning. For the sake of clarity, in the
following we refer to the processes identified by Brunswik as
“Intuition(B)” and “Analysis(B),” honoring the original context
of the ideas, and in the General Discussion, we return to a
discussion of the relationships between these concepts and
dual-systems theories.

The idea of using the distribution of judgment errors to
identify the cognitive process has been largely overlooked in
psychology, and this is certainly true for the specific properties
of the error distribution that were originally proposed by
Brunswik (1956). One reason for this relative lack of interest
is arguably a long-standing tradition to treat errors in judgment
as exogenously added to—and thus essentially irrelevant to
our understanding of—the process, as captured by the routine
default of adding a Gaussian (normally distributed) random
error to statistical and cognitive models, with little attention to
exactly how noise enters into a specific process.

Of course, this is not to say that the importance of judgment
errors has been entirely ignored. Research on psychophysics
and scaling have integrated the role of noise in the measure-
ment (e.g., Green & Swets, 1966; Thurstone, 1927). It has also
been acknowledged that preferences can be distorted by ran-
dom noise (Bhatia & Loomes, 2017), causing preference re-
versals (Birnbaum & Bahra, 2012), and random noise has
been used to explain various biases in probability judgments
(e.g., Costello & Watts, 2014; Dawes & Mulford, 1996; Erev,
Wallsten, & Budescu, 1994; Hilbert, 2012). From a more
applied and methodological perspective, the cost of systematic
vs. random error has also been discussed in clinical versus
statistical approaches to clinical judgment (Einhorn, 1986;
Meehl, 1954), and in the form of a “bias-variance trade-off”
in the comparison between heuristics and optimization proce-
dures (Gigerenzer & Brighton, 2009). The idea of using error
distributions to identify cognitive processes, as opposed to
explaining behavioral effects, appears to be largely neglected
in previous research, however. A very recent exception to this
claim is Albrecht, Hoffmann, Pleskac, Rieskamp, and von
Helversen (in press) that uses the response distributions to
study the cognitive process, although in a very different way
than the one proposed in this article.

The aim of this article is twofold: First, to re-introduce the
highly original, operational definitions of “Intuition(B)” and
“Analysis(B)” that were originally introduced by Brunswik.
Second, to develop these insights into a computational model.
Additionally, it is also our ambition to nurture the legacy that
is implicit in Brunswik’s proposal; that random noise in judg-
ments need not only, or primarily, be considered a nuisance in
the scientific inference, but that it can be a positive means to
better understand the processes. To this end, we introduce the
precise/not precise (PNP) model, using a mixture distribution
to distinguish between precise and nonprecise responses rela-
tive to a predefined cognitive algorithm. We first outline its
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mathematical details and explore its properties through model
recovery. We then apply the PNP model to experimental data,
to determine if Brunswik’s claims regarding Intuition(B) and
Analysis(B) can be replicated and extended. In Experiment 1,
we situate the PNP model in the original context of perceptual
and conceptual processes, validating that the model accurately
identifies the processes emphasized by Brunswik. In
Experiment 2, we apply the PNP model to several conceptual
tasks, showing that both types of processes can be identified
on the basis of the error distributions also in purely symbolic
tasks that do not emphasize sensory encoding. In Experiment
3, we use the PNP model to confirm the quasi-rational nature
often assumed for the rule-based processes in multiple-cue
judgment. Lastly, we discuss the implications of the PNP
model, the merits of operational definitions relative to extant
dual-systems theories, and the diagnostic potential of using
judgment error distributions in cognitive modeling.

Conceptualizations of Analysis(B)
and Intuition(B)

Inspired by Brunswik, we define Analysis(B) to refer to de-
terministic (noise-free) application of explicit integration rules
to exact (noise-free) and symbolic representations of cues.
Due to their systematic and explicit nature, these algorithms
tend to almost always produce the same result. For example,
encoding that the base and the height of a right-angled triangle
are 5 and 4 cm, retrieving that the area of a right-angled trian-
gle is a product of its base and height divided by two, and
retrieving the arithmetic facts that 5 x 4 =20 and 20/ 2 = 10,
will provide the same overt response (10 cm?). The ideal
realm of Analysis(B) is error-free execution of deduction, cal-
culus, or similar algorithms. Even though all these procedures
ultimately originate in the human mind, we expect that people
are, at best, able to mentally execute simple such procedures
with unaided cognition, for example one-step deductions or
“number crunching” of simple algebraic rules (e.g., mentally
computing the area of a triangle). The errors that arise with
Analysis(B) will typically involve systematic misinterpreta-
tion of the symbols, application of the wrong explicit cue
integration rule (as in Brunswik’s original empiric demonstra-
tion), or erroneous execution of the integration rule. To the
extent that the integration required by the algorithm is feasible
to perform within the constraints of working memory, these
errors can be expected to be relatively rare, but often system-
atic and potentially large in magnitude.

Intuition(B) algorithms depart from the generally error-free
procedures of Analysis(B) in one (or both) of two ways. First,
there might be error-perturbed encoding of the cues, for ex-
ample due to neural noise, such as when visually assessing the
distance to a place in front of oneself or when assessing the
similarity between an object and a prototype (i.e., what
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Tversky & Kahneman, 1983, called “natural assessments”).
Second, there might be an inability to consistently and reliably
apply the cue integration rule in the same way on all trials,
leading to different judgments from time to time for the same
stimulus (cf. “lack of cognitive control” or “inconsistency”;
see Brehmer, 1994; Karelaia & Hogarth, 2008). This is often
observed in multiple-cue judgment where participants have
rule-like beliefs about how the cues relate to a criterion (e.g.,
fever is a cue for pneumonia), but the cues are informally
integrated rather than “number-crunched” according to a for-
mula. With Intuition(B), judgment errors are ubiquitous,
but—to the extent that the process is well tuned to the
task—their magnitude is typically small. Because of the non-
symbolic nature and inherent variability of the process, it is
presumably harder to succinctly summarize the process in
verbal terms. Analysis(B) is thus more likely in conceptual
tasks and Intuition(B) is more likely in perceptual tasks. We
aim to show that, given suitable candidate algorithms, appli-
cation of the PNP model, which identifies the contributions by
both Analysis(B) and Intuition(B) processes, is both straight-
forward and reliable.

The precise/not precise (PNP) model

We delineate two potential ways to realize a cognitive process:
(1) error-free application of a cognitive algorithm, and (ii) re-
sponses that are affected by errors in the execution of the
algorithm. In this context, Intuition(B) is defined by ubiqui-
tous deviations from the algorithm, as described by the sam-
pling from a homogeneous Gaussian error distribution, and
Analysis(B) is defined by sampling from a heterogeneous
error distribution, effectively sampling both error-free and
error-perturbed responses. While Brunswik mainly empha-
sized a dichotomy between Intuition(B) and Analysis(B), cog-
nitive continuum theory (Hammond et al., 1983) emphasizes
that most real-life tasks are likely to fall on a continuum that
involves a mix between these processes.

One advantage of the PNP model is that errors can be
assessed in relation to any function rather than specifically in
relation to the central tendency of responses or, as was often
the case in previous research, the correct criterion values
(Brunswik, 1956; Dunwoody, Haarbauer, Mahan, Marino,
& Tang, 2000; Hammond et al., 1983; Peters, Hammond, &
Summers, 1974). Therefore, we refer to responses as precise
and not precise, relative to some specific algorithm, which
may or may not be the “correct” algorithm for the task from
some normative standpoint.

Model definition In standard cognitive modeling, a model
2(x|0) mapping a stimulus vector x and a parameter vector
O into predicted judgments y is fitted to data by least squares
minimization or maximum likelihood estimation. It is

typically assumed that the output of the model is perturbed
by a normally (Gaussian) and independently distributed ran-
dom error N(0, 02) with zero expectation and standard devia-
tion o, so that

y=g(x|8) + N (0,0%). (1)

The objective of the modeling effort is typically to mini-
mize the prediction error in regard to y and to recover the
underlying parameters © of the process as faithfully as
possible.

The precise/not precise (PNP) model is based on the as-
sumption that there is, for each response, a certain probability
A that an error will occur and, conversely, the probability (1 —
) that an error will not occur. If B is a Bernoulli random
variable with probability A, each estimate y given some func-
tion g(x|0) is defined by

=0 = {5 g

For Intuition(B) we have A = 1 and ubiquitous Gaussian
noise perturb the output of the model (in which case the model
coincides with the standard model in Equation 1). In the case
of Analysis(B), A is presumably a small but nonzero number
(no one is perfect, after all).

It is, however, impractical to define precise responses by a
point estimate, because it does not supply a suitable probabil-
ity density function,' and thus preclude maximum likelihood
estimation. Instead, it is prudent to introduce some narrow but
integrable distribution as the definition of a precise response.
Though there are many different distributions that could po-
tentially fulfil this role, we have found that, for the purpose of
the experiments included in this study, precise responses are
best modeled by a very narrow Gaussian distribution, so that

g(x|0) +N(0,0%),b=1

g(x|0) +N(0,7%), b=0" (3)

e =5~ {

This formulation uses the parameter 7, which specifies the
width of the distribution defining a precise response.
Therefore, 7 should not be understood as an estimate of error,
but rather a definition of the range within which the model will
“accept” a precise response; a technical parameter rather than
an empirical one. Because the aim of the PNP model is spe-
cifically to delineate (in theory) error-free responses, 7 should
obviously be bounded to very low values relative to o , or
alternatively set to a specific value that represents the appro-
priate precision for the analysis at hand. Note, however, that
the most appropriate definition of 7, or its associated distribu-
tion, will be dependent on the structure of the task and the

! The Dirac delta function models the probability density over an idealized
point mass as infinity, which renders maximum likelihood estimates
meaningless.
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nature of the cognitive process one aims to capture. Because
we are now dealing with two Gaussian functions (albeit one
which is very narrow), the PNP model in practice constitute a
mixture model of two Gaussian distributions, and it is possible
to define a joint probability density function so that

FOIA g%, 6,0,7) = M (ylg,x,8,0) + (1-)f (g, x, 6,7)

- <_ (rg(x(9) ) L0 (_ (rg(s(o) )

2772
(4)

Comments The PNP model allows for the value of the func-
tion g(x|0) to be sampled from either a precise or a nonprecise
distribution, with sampling parameter A\. Crucially, the esti-
mates of © are conditional on this assumption. When data
involves homogeneous Gaussian error the PNP model reduces
to a conventional Gaussian likelihood function (because A =
1). However, when some configuration of the parameters ©
exists for which a significant proportion of precise responses
is observed in relation to the function g(x|0), the PNP model is
more likely to find these parameter values and is less affected
by biases contingent on the error distribution.

We acknowledge two potential caveats. First, when the
response variable is discrete with few values there is a risk
that participants make precise judgments “by chance,” in
which case an estimate of A may become biased and the error
rate underestimated (see Appendix A for potential
corrections). Second, if the function g(x|0) is incorrectly spec-
ified, and the data derives from precise execution of a different
process, this may lead to the estimate of A becoming biased in
the opposite direction and the error rate overestimated. Theory
dependence is, of course, inherent to all cognitive modeling,
and when we apply the PNP model to data, we mitigate this
issue by also ascertaining that the model accounts for most of
the systematic variance in the data.

lllustrative examples and model recovery

Aside from prediction accuracy, two typical desiderata in cog-
nitive modeling is that the procedure should correctly identify
the cognitive process that best accounts for the data—for ex-
ample, an Intuition(B) or an Analysis(B) process—and that it
should identify the underlying parameters © of the process as
accurately as possible (e.g., the relative weighting of the cues).
In the following section, we illustrate these requirements in
two different ways. First, we provide two examples based on
empirical data from Experiment 2 of the current article, which
illustrate the application of the PNP model. Thereafter, we
report a model recovery analysis that demonstrates the
model’s ability to correctly recover the parameters of
(simulated) data with a known generative model.

@ Springer

Examples These examples illustrate the application of the
PNP model to data from two participants in Experiment 2
(reported below) and contrast this with conventional re-
gression modeling. The two participants both performed
a willingness-to-pay task, where they assessed the amount
they were willing to pay (in Swedish Crowns: SEK) for
each of 32 lotteries on the form .XX probability to win YY
SEK, otherwise nothing (0 SEK). For each of the two
participants, g(x|0) consists of the expected value of the
lottery in question, adjusted by the parameters 0 = [«, (3],
so that g(x|0) = o + B(probability x monetary reward). We
report the maximum likelihood parameter estimates «, [3,
and o, from the PNP model and from a standard regression
model, as well as the maximum likelihood estimate of A
for the PNP model. For both participants, T = 1 x107.

Participant ID = 24 (see Fig. 1) apparently calculated ex-
pected values of the proposed lotteries, resulting in a majority
of values (25 / 32) perfectly in sync with the expected values
of the lotteries and a certain amount of large errors (7 / 32).
Consequently, the PNP model indicates that most responses
are perfect executions of the expected values (i.e., that & = 0,
3 = 1), but that there is a certain probability (A = .219) that
errors with high standard deviation (o = 92.6) occur. Note that
the A parameter represents the proportions of nonprecise re-
sponses relative to the model, because 7 / 32 =.219. As sug-
gested by the low A, the error distribution around the predic-
tions by the PNP model is leptokurtic and the null model of a
homogenous Gaussian error distribution can safely be rejected
(Kolmogorov—Smirnov K-S test, p < .001). 2

The process described by standard regression modeling
indicate that all responses are affected by errors with a lower
(though still substantial) standard deviation (o = 39.3) and that
the expected value is over-estimated (i.e., multiplied by a fac-
tor of approximately 1.61). As suggested by a best fitting
value of A = .219, the PNP model provides better fit to data
than the standard regression model, identifying (correctly, we
believe) the underlying process as an explicit calculation of
the expected value, marred by occasional and large errors.

Participant ID = 84 (see Fig. 2) applies an Intuitive(B)
strategy, preferring to pay less than the lotteries’ expected
value but apparently not using an exact calculation. The
parameters o and 3 represent a negatively biased expected
value, errors are small, and because no response corre-
spond exactly to the estimated function the value of A is
equal to 1. The PNP model here reduces to the same equa-
tion as the standard regression model, and the parameter
estimates for the two models are the same. The errors
around the predictions by the PNP model appear normal

2 The residuals in F ig. 1 suggests not only a spike at 0, but also a skewed
asymmetric error variance. It is therefore interesting that already with the
current error specification, the model is able to correctly identify the processes
parameters (o, (3), implying that 78% of the response are an exact, error-free
calculation of the EV.
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Fig. 1 The responses by participant ID = 24 in a willingness-to-pay task
in Experiment 2 reported below plotted against the expected value, with
estimated parameter values from the PNP model and a conventional re-
gression model. A line representing the predictions of the regression

and there is no evidence that the null model of a homog-
enous Gaussian error should be rejected (K-S test, p =
.463). When adjusted for free parameters, the standard
regression model yields marginally better fit than the
PNP model, but both models provide the same view of
the process: The judgment is an underestimation of the
expected value perturbed by homogenous error.

model (thinner line) and a reference line x = y (thicker line) is included
in the graph. The predictions by the PNP model coincide with the refer-
ence line. Note that some data points overlap

Model recovery The PNP model was also applied to simulated
data intended to be representative of previous applications of
cognitive modeling to multiple cue judgments (see Karlsson,
Juslin, & Olsson, 2007; for similar studies, see, e.g.,
Hoffmann, von Helversen, & Rieskamp, 2014, 2016; Juslin,
Karlsson, & Olsson, 2008; Juslin, Olsson, & Olsson, 2003;
Little & McDaniel, 2015; Pachur & Olsson, 2012; Platzer &
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Fig. 2 The responses by participant ID = 84 in a willingness-to-pay task
in Experiment 2 reported below plotted against the expected value, with
estimated parameter values from the PNP model and a regression model.

A line representing the predictions of both models (thinner line) and a
reference line x = y (thicker line) is included in the graph. Note that some
data points overlap
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Broder, 2013; von Helversen, Mata, & Olsson, 2010; von
Helversen & Rieskamp, 2009). In this task, participants learn
to predict a continuous criterion y from four continuous cues
X1...x4 based on outcome feedback training. It is assumed that
the participants have abstracted the linear weights of each cue,
which are integrated into a judgment 3 of the criterion.® Data
were simulated by sampling cue values x;_4 from a uniform
distribution [0, 10] and computing a response y from the cue
values according to a linear model,

Y=+ Bix1 + Bpxa + B3x3 + Byxa, (5)

with x =50, 31 =4, >, =3, f3=2, and 34 = 1. One hundred
and one simulations were performed, with probabilities of A =
(0, .01, .02, ... 1) that responses were perturbed by noise
generated from a normal distribution with mean p = 0 and
standard deviation o = 10. For each of the simulations, data
from N = 1,000 simulated participants each with a sample
size of n = 50 were generated, corresponding to a (fictive)
situation where the models are applied to data from 1,000
participants each having made 50 multiple cue judgments.
In each simulation, both a conventional regression model
equivalent to Equation 1 (Reg.) and the PNP model were
applied to the data, both of which had access to the correct
model structure (Equation 5), but not to the correct param-
eter values. The PNP model should, in addition to estimat-
ing the parameter values in Equation 5, correctly estimate
A—that is, correctly recover the proportion of responses
that were perturbed by noise. Figure 3 plots the mean
square error (MSE) of the estimated versus the generating
parameters for the two models for each error probability,
with A only being estimated by the PNP model. The esti-
mated value of, and overall means for, each of the param-
eters «, {314, and o are presented in Table 1.

The MSE plotted in Fig. 3 demonstrates that the PNP mod-
el recovers the o and 3,4 parameters with much higher pre-
cision than the regression model, unless error probability is
either very low or very high, in which case the models have
the same precision. The apparently large discrepancy in MSE
for error probabilities in between these values follows from
the fact that, when there are a significant number of precise
values for the PNP model to find, these values are generally
consistent with the parameter values of the generating model,
and thus the exact parameters will be extracted. For the regres-
sion model, by contrast, any error in data will always add error
to the parameter estimates. Importantly, even though both
models correctly identify the o parameter when the error prob-
ability is p = 1, only the PNP model will successfully recover
the o parameter when the error probability is p < 1, while the
Reg. model’s estimate of o will be biased. Additionally, the

*In Experiment 3 (reported below) we apply the PNP model to empirical data
of the same type as simulated in the model recovery.
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PNP model will recover the A parameter with very high pre-
cision (MSE < .006). In sum: When the underlying generative
model is known, as in model recovery, the PNP model very
accurately identifies if the process is an Intuition(B) or an
Analysis(B) process. In the latter case, it will also give much
more accurate parameter estimates than a regular regression
model that assumes a homogenous Gaussian noise
distribution.

Experiment 1: Revisiting conceptual
and perceptual tasks

The purpose of Experiment 1 was to replicate Brunswik’s
claims about error distributions in the original context of
perceptual and conceptual processes and to demonstrate
that the PNP model faithfully identifies and captures
Brunswik’s distinction. The participants made area judg-
ments in three conditions: (i) A conceptual task, where
they used numeric measures of the base and the height of
a triangle to infer its area. (ii) A perceptual task, where the
participants encode the base and the height of right-angled
triangles with unaided visual perception and infer the area.
(iii) A perceptual task, where the participants inferred the
area covered by irregular shapes (or “blobs”) with the
same area as the triangles in the two first conditions (see
Fig. 4 for illustrations of the stimuli).

We expected the majority of our participants (undergradu-
ate students) to know the equation relevant for calculating the
area of a triangle and to make use of this equation in the
conceptual condition in a manner consistent with
Analysis(B) processes. Conversely, the irregular blobs lacked
obvious characteristics on which to base explicit numerical
calculations, so we expected these participants to engage in
Intuition(B) processes. In the visual triangle condition, the
visual encoding of the sides of the triangle were likely to be
perturbed by a sensory noise, but the participants could poten-
tially apply the numerical equation on their noisy estimates.
This would leave the situation open for blends of Analysis(B)
and Intuition(B) processes.

Thus, we expected to replicate Brunswik’s (1956) claim
that Intuition(B) processes in the perceptual tasks produce
a Gaussian error distribution, and that the Analysis(B) pro-
cesses in the conceptual task produce a leptokurtic error
distribution. Moreover, the PNP model should accurately
identify the two processes in a corresponding manner, by
indicating a A close to 1 for Intuition(B) processes and a
low, but usually nonzero, A\ for Analysis(B) processes. For
Analysis(B), the process parameters « and 3 should also
identify that most responses correspond with numerically
exact rather than approximate calculations of the area of
the triangle.
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Fig. 3 Mean squared error for all parameters for the standard regression model (dashed line) and the PNP model (solid line) for each error probability

Method

Participants Forty-six participants (27 females, 18 males, and
1 nonbinary individual) ranging in age from 19 to 74 years (M
=29.13, SD = 9.60) were recruited through public advertise-
ment at various places at Uppsala University. Compensation
was awarded in the form of a cinema voucher or (for students
at the Department of Psychology) course credit.

Design The experiment had a between-subjects design, with
task content (numerically presented triangle, visually presented
triangle, and visually presented blob) as independent between-
subjects variables. The dependent measure was the participants’
judgments of the area (in cm?) of the presented stimulus.

Material The base of the triangle could take five values (4, 5,
6, 7, 8), and the height could take five values (4, 5, 6, 7, 8). A

complete 5 x 5 factorial combination produced a total of 25
items. All visually presented triangles were right-angled trian-
gles, with the right angle in the bottom-left corner. The nu-
merically presented triangle was described as a right-angled
triangle. Blobs were created in MATLAB by sampling irreg-
ular shapes with an area deviating at most 0.1 cm? from each

Table 1 Grand means of parameter estimates after applying
respectively a conventional regression model and the PNP model to
simulated data

« B B2 B33 B4 o

(50) “) 3) 2) 1) (10)
PNP 50.0 4.00 3.00 2.00 1.00 9.78
Reg. 50.0 4.00 3.00 2.00 1.00 6.19

Note. True parameter values are presented in parentheses below the
names of the parameters
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The Height of the
right-angled
triangle is 4 cm
and the base is 4

Fig.4 Examples of stimuli in the condition with a conceptual triangle (a), the condition with a visual triangle (b), and the condition with the blob shape
(¢). In all conditions, the participants were asked to estimate the area covered by the object in square centimeters (cm?)

triangle counterpart (see Fig. 4 for an illustration of the
stimuli, and Appendix B for a detailed account of the
instructions to the participants).

Procedure The participants conducted the experiment in sep-
arate computer booths at the Department of Psychology at
Uppsala University under supervision of an experiment-lead-
er. Participants were randomly assigned to each of the
between-subjects conditions. Each of the 25 items were pre-
sented in a random order, then the same 25 trials were admin-
istered a second time, again in random order, resulting in a
total of 50 trials per participant. Trials were presented one at a
time, and the participants recorded their estimate for each trial
before moving on to the next. No response feedback was
provided.

Application of the PNP model The PNP model was fitted to
individual participant data with a function g(x|0) that capture
both biased and unbiased (i.e., « = 0, 3 = 1) area estimates,

Estimate = g(Area|a, B) = oo + 3 X Area. (6)

The 7 parameter was set to represent a standard deviation
three decimals below the variation of the response variable
(ie. 7=1 x 10*). This means that the value of 7 lies well
below the precision with which participants are likely to report
their responses, especially given that the instructions asked for
estimates with up to one decimal, and only precise responses
are likely to be within the tolerance.*

Model fit Parameters were estimated by maximum likelihood
estimation. In the context of model selection, Bayesian infor-
mation criterion (BIC) was used to identify the best model fit

4 When some participant responses lack error variance, as in the current data
set where people sometimes multiply flawlessly, it is recommended to put a
lower bound on the error variance estimate, just above the value of 7. By using
a lower bound we avoid a divisor of zero in the likelihood function, and by
setting that lower bound above 7, we ensure that such participants are not
mistakenly categorized as intuitive rather than analytic with respect to the
maximum likelihood estimate. This will unavoidably introduce a bias in the
error variance estimate, but because this bias is very small, and because these
particular participants will be easy to distinguish, this is a minor problem.
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(see Raftery, 1995). Because BIC contributes no information
on the absolute fit of a model, we also report the standard
measure of “explained variance,” adjusted R, Furthermore,
if we identify the correct model, all the systematic variance in
data should be accounted for, and all the residual noise should
be random. We therefore also report a Saturation Index (SI),
which we define as

SI = R?/p, (7)

where p is the reliability coefficient, or proportion of true
variance in data, as estimated by the test-retest reliability
when participants perform each judgment twice. SI will ap-
proach 1 if the model accounts for all the true variance in data,
while a low SI suggests that there is nontrivial residual
systematicity in the data that the model fails to explain.
Applying the PNP model thus entails not only finding the best
fit as measured by BIC but also a sufficiently high SI.

To exemplify, if there is 90% systematic variance and the
model accounts for 90% of the total variance, the model “‘sat-
urates” the data in the sense that it accounts for all the system-
atic variance and SI = 1. If a model accounts for only 50% of
the variance in data, but there is 90% systematic variance, then
SI =.56, suggesting that it fails to capture the correct function.

Results and discussion

Descriptive statistics for Experiment 1 in terms of partici-
pant’s area estimates in the experimental task, correlation co-
efficients between response and criterion, RMSD from an
error-free calculation of triangle area, and median response
times can be found in Appendix C.

Distribution of errors Figure 5 illustrates the error distributions
of responses in relation to the criterion in the three conditions
of Experiment 1. As originally claimed by Brunswik, it is clear
that the error distribution for the conceptual task with numer-
ical triangles is strikingly leptokurtic, while the error distribu-
tions in the two perceptual tasks have a Gaussian shape, with a
slightly more pronounced “peak” in the perceptual triangle
condition.
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Fig. 5 Histograms of error distributions defined as deviations from the objective arca

Individual-level modeling The distribution of the best fitting A
parameter for each individual participant indicates that partic-
ipants typically had either low (A < .1) or high (A > .8) values
of \ (see Fig. 6). We take these distributions to suggest that, in
the specific tasks addressed in this experiment, the processes
used by the participants tend to spontaneously cluster into two
fairly distinct categories, consistent with Intuition(B) and
Analysis(B).

Table 2 reports median parameter estimates (A, «, 3, & 0)
and median fit indices (Adj. R?, & S)) for individuals in each
condition. The SI in Table 2 indicate that the model described
in Equation 6 accounts for almost all the true variance in data
for the conceptual and perceptual triangles, and most of the
variance in data for the area estimates of blobs. Due to the
skewed distributions, a Kruskal-Wallis ANOVA was used to
confirm a statistically significant difference in the estimates of
the A parameter between conditions, XZ(Z) =26.5 p <.001,
indicating that participants in the conceptual condition are
better described by an Analysis(B) process while participants

in the perceptual conditions are better described by an
Intuition(B) process. Indeed, the median parameters in
Table 2 confirm that the most frequent responses for the par-
ticipants with low A\ were a perfectly error-free calculation of
the area (x = 0, 3 = 1). As suggested by the distributions in
Fig. 5 and the median estimated )\ in Table 2, the null model of
homogenous Gaussian residuals was rejected beyond an o
level of .05 (K-S tests) for 93% (13/14) of the participants in
the conceptual triangle condition; for 47% (8/17) of the par-
ticipants in the perceptual triangle condition; but only for 20%
(3/15) of the participants in the perceptual blob condition.

Magnitude of errors The error magnitudes, as measured by the
standard deviation o, were correlated with the estimates of the A
parameter to evaluate if errors in Analysis(B) processes are larger
in magnitude than errors in Intuition(B) processes. Because we
are concerned with the relative magnitude of error, participants
who had no error variance (three individuals) were excluded. A
Bayesian Kendall’s tau indicated strong evidence that the error
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Fig. 6 Histograms of estimated A parameter values for each participant in each condition

magnitude is negatively correlated with lambda, »,=—.336 BF,q
= 26.4, thus confirming Brunswik’s claim that Analysis(B) are
associated with larger errors than Intuition(B).

Conclusions The results of Experiment 1 confirm
Brunswik’s claims about the error distributions in percep-
tual versus conceptual tasks. Importantly, the results verify
that the PNP model can successfully use them to identify
the Analysis(B) processes in the conceptual task and recov-
er the expected parameters for correctly calculating the ex-
act area of the triangle (i.e., x =0, 3 = 1), as well as capture
the increasingly important components of Intuition(B) pro-
cesses when the input is nonsymbolic and there is no ap-
plicable rule. In these tasks, the results also confirm
Brunswik’s assertion that Analysis(B) processes often give
rise to larger errors.

The median estimate of A in the perceptual triangle
condition was .86, while the median parameter estimates
of o and 3 were consistent with correctly calculating the
exact area of the triangle. Although many participants in
this condition estimate the exact area of the triangle, most
responses deviate from this prediction. Apparently, partic-
ipants in the perceptual triangle condition tried to calcu-
late the exact area of the triangle by using the analytical
rule for area calculation (which they should be familiar
with), but due to neural noise in the visual process, most
of their area calculations are nonprecise. Presumably,
many participants rounded their length estimations to in-
tegers. Because the stimulus lengths were indeed integers,
this would result in occasional estimates being consistent
with the exact lengths, and thereby increasing the rate of
error-free area estimations, despite neural noise in the
visual process. This conclusion is validated by both the
error distributions presented in Fig. 5, showing a slight
“spike” in the perceptual triangle condition, as well as the
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testing of the residuals from the model predictions pro-
viding evidence against the null hypothesis of homoge-
nous Gaussian error for 47% of the participants in the
condition.

Experiment 2: Application to a range
of conceptual tasks

In Brunswik’s (1956) original experiment, he compared a
strictly perceptual task to a strictly conceptual one, but as
noted by Hammond (1988), Intuition(B) need not be associ-
ated only with perceptual tasks: “Numbers can produce hasty,
intuitive judgments based on a minimum of analysis, and pic-
tures can become the subject of endless analysis” (p. 4). The
purpose of Experiment 2 was to apply the PNP model to a
wider range of tasks, validating that both Analysis(B) and
Intuition(B) are also present in conceptual tasks that do not
emphasize sensory encoding and involve symbolic
(numerical) cues. In Experiment 2, participants therefore

Table2 Compilation of median parameter estimates for each condition
in Experiment 1

Parameter Model fit

estimates

Condition

*

A ap o R ST

Area of triangle (conceptual) n =14 0.05 0 1 636 0.954 0.994
Area of triangle (perceptual) n =17 0.86 0 1 4.15 0.728 0.942

Area of blob (perceptual) n = 15 092 2 0.5 2.67 0.578 0.875

*Note that o is calculated only on errors that actually occurred, and thus
individuals with zero error variance is excluded from the median estima-
tion, SI = saturation index
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made judgments in one of six different domains, for which
there existed an identical multiplicative algorithm by which
the judgments could be made. The domains ranged from those
where a fairly self-evident analytic algorithm exists (e.g., in an
abstract math problem or a version of the area task used in
Experiment 1) to those where the multiplicative integration is
less obvious (e.g., the performance-assessments and the will-
ingness to pay for lotteries).

In contrast to Experiment 1, we compared two alternative
algorithms. We assumed that the participants either relied on
the multiplicative reference function suggested by the content,
or that they fell back on the default of linear additive integra-
tion often observed in cue integration tasks (Brehmer, 1994;
Karelaia & Hogarth, 2008; Juslin, Nilsson, & Winman, 2009).
The purpose was therefore to use the PNP model not only to
ascertain if the cognitive process could be identified as
Analysis(B) or Intuition(B), but also to identify the integration
rule used.

Our hypothesis was that multiplicative cue integration
should primarily draw on Analysis(B) processes, because the
multiplicative integration should primarily occur when the
participants can draw on mental calculation according to de-
claratively known rules (as predicted by research on numerical
cognition; e.g., Dehaene, 2011). In the absence of guidance of
such declaratively known rules (in the performance and po-
tentially WTP conditions), we expected the participants to
either default to additive integration by Intuition(B) processes,
as often observed in multiple-cue judgments (e.g., Brehmer,
1994; see also Experiment 3 below) or to uphold multiplica-
tive integration, but in an approximate manner consistent with
Intuition(B), given the absence of an exact integration rule (as
suggested by Anderson, 1996, 2008). Thus, to the extent that
participants solved the task by explicit numeric calculation of
the multiplicative reference function, the PNP model should
identify this as an Analysis(B) process with process parame-
ters identifying that the typical response is indeed an error-free
computation of the reference function (e =0, 3 = 1). In addi-
tion, we aimed to explore if judgment errors in the
Analysis(B) process are larger in magnitude, as observed by
Brunswik and replicated in Experiment 1.

Method

Participants Ninety participants (55 females, 34 males, and 1
nonbinary individual) ranging in age from 19 to 53 years (M =
23.93, SD = 4.86) were recruited through public advertise-
ment at various places at Uppsala University. Compensation

> The response variable was varied within subjects for the purposes of another
project (focused on investigating directional sensitivity in task performance
and the potential effects of automatized reasoning schemes) and will not be
further analyzed and systematically addressed in this article.

was awarded in the form of a cinema voucher or (for students
at the Department of Psychology) course credit.

Design The experiment was an 6 X 3 mixed factorial design,
with task content as an independent between-subjects variable
(abstract mathematics, area, performance, speed, expected
value, and willingness to pay) and response variable® as a
within-subjects variable (product, multiplicand 1 [M;], and
multiplicand 2 [M,]). These contents either have an obvious
strong normative rationale for multiplicative integration
(i.e., abstract mathematics, area, speed, and expected val-
ue) or have been empirically shown to involve multiplica-
tive integration in previous research (i.e., motivation and
willingness to pay; for a review, see Anderson, 1996,
2008). We therefore compare the judgments in all six do-
mains to a common multiplicative reference function, al-
though obviously the normative rationale for multiplica-
tive integration is considerably stronger with some of the
contents than with others. The dependent measure was the
participants’ judgments of the criterion.

Material M, consisted of four values (.2, .4, .6, & .8), and M,
consisted of four other values (20, 40, 60, & 80). A complete 4
x 4 factorial combination produced a total of 16 items. The
multiplicative reference functions that we assumed for infer-
ring M, M,, or the product were:

_ Product, ~ Product

M, = M, =
M, M,

Product = M| x M. (8)

Below, we provide task instruction for the area task, the
performance task, and the speed task for each direction of
inference (M;, M,, Product; see Appendix D for the
instructions for the Willingness to Pay, Expected Value, and
Mathematics).

Area of a plank. Your task is to estimate the following
lengths and areas correctly as fast as possible. The num-
bers involved may involve either proportions (e.g., .50) or
integers (e.g., 50).

The width of a plank is .20 meters and its length is 20
meters. What area in m? is covered by the plank?

The area covered by a plank is 4 m?. The length of the
plank is 20 meters. What is the width of the plank?

The area covered by a plank is 4 m?. The width of the plank
is .20 meters. What is the length of the plank?

Motivation, ability, and grade. Your task is to estimate
the likely motivation, ability, and grade on a test for the
following students as fast as possible. The motivation of a
student is measured as a proportion of the student’s full
motivation (e.g., .50 is 50% of full—100%—

@ Springer



362

Psychon Bull Rev (2021) 28:351-373

motivation). The ability is measured by a score between 0
and 100, and the grade received by each student on the
test is a number between 0 and 64.

The motivation of a student is .20, and the ability score of
the student is 20: What is your best guess for the likely grade
of this student?

The grade obtained by the student in the test was 4. The
ability score of the student is 20. What is your best guess for
the likely motivation of this student?

The grade obtained by the student in the test was 4. The
motivation of the student is .20. What is your best guess for
the ability score of this student?

Speed, distance, and time. Your task is to estimate the
following speeds, distances, and times as correctly and
as fast as possible.

Something moves at a speed of .20 meters per hour. What
distance in meters will have been covered after 20 hours?

Something moves a distance of 4 meters. This movement
takes 20 hours. What is the speed of the movement in terms of
meters per hour?

The speed of the movement of something is .20 meters per
hour. How long will it take it to go a distance of 4 meters?

Procedure The experiment was performed at Uppsala
University, and participants conducted the experiment in sep-
arate computer booths. The online survey software Lime-
Survey was used to collect the data. Participants were random-
ly assigned to each of the between-subjects conditions. Each
of the 16 items were administered once for each response
variable in random order, for a total of 48 trials, then those
48 trials were administered a second time, again in random
order, resulting in a total of 96 trials per participant. Trials
were presented one at a time, and the participants recorded
their estimate for each trial before moving on to the next. No
response feedback was provided.

Application of the PNP model The PNP model was fitted to
individual participant data with two functions g(x|0) that capture
multiplicative and additive cue integration rules, respectively.
The multiplicative function was the linearly adjusted product
(or dividend). When M;, M, or the product were estimated the
multiplicative function was defined respectively as

Product
M = g(Product, M»|a, 3) = a+ﬁ< V;[uc )7
2
P
M, = g(Product, M|, ) = o+ B( r;juct> (9)
1

Product = g(M,M>|a, 3) = o+ (M x M»),
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which allowed us to model both biased and unbiased use of
multiplication and division.

The additive function consisted of a linear combination of
the data values, defined as

y:g(xlax2‘avﬁlaﬂ2):a+/61x1+52x27 (10)

in which y denotes one of the three response variables (M,
M, or the product) and x; and x, denotes the two other vari-
ables. Model parameters were estimated separately for each
response variable.

Because the variation in criterion values differed across
response variable (see Material), the value of 7 for each re-
sponse variable was set to represent a standard deviation three
decimals below this variation (i.e., 7= 1 x10™ for My, 7= 1
%107 for M,, and 7= 1 x107 for the product). In other re-
spects, the models were fitted in the same manner as in
Experiment 1.

Results and discussion

Ehe descriptive statistics for the judgments made with each of
the six contents in terms of the median judgments, the median
correlation with the multiplicative reference function, the me-
dian root mean square deviation (RMSD) from the multipli-
cative reference function, and the median response times are
summarized in Appendix E. Generally, the judgments were
well described by the multiplicative reference function for the
contents Math, Area, Speed, and Expected Value (EV), but
less so for Performance and Willingness to Pay (WTP).

Individual-level modeling The PNP model was applied to the
individual participant data using both the multiplicative and
additive functions, and each participant was categorized as
either multiplicative or additive based on which algorithm
received the lowest BIC. The A estimates for the best fitting
models are presented in Fig. 7. To reiterate, if participants
approach a task with Analysis(B) type processes we expect
errors to be few (i.c., low \) and therefore the error distribution
to be leptokurtic, while Intuition(B) type processes are asso-
ciated with ubiquitous errors (i.e., A = 1) and an error distri-
bution that is Gaussian in shape. The overall bimodal pattern
observed in Experiment 1 was observed also across the six
tasks used in Experiment 2, but, as with the perceptual triangle
condition in Experiment 1, the right-most peaks of the distri-
butions are somewhat less close to the edge of the scale as one
might expect if participants were relying strictly on
Intuition(B) processes. To some extent, this appears to be a
side effect of the small number (4) of even values used as
criterion for M; and M,, in combination with the within-
subjects design. By rounding the responses to even values,
the participants will sometimes produce exactly correct re-
sponses, and this tendency is reinforced by the within-
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Fig. 7 Histograms of estimated A parameter values for the dominant PNP-process model for each participant and for each condition

subjects design, where they may have experienced these four ~ PNP models generally explain more variance when applied
values in a previous condition (e.g., if they assess the product  to the Math, Area, and Speed contents (most R > .9), whereas
before they assess the M; and M,).

the variance explained is lower for Performance, EV, and

Table 3 report median fit indices (Adj. Rz, & S]) for the best WTP (all R’ < .9). Second, the lower R? for EV does not

fitting models, which support three conclusions. First, the  derive from a failure to capture the true variance in the data
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Table3  Median adjusted R* and SI (saturation index) for the best fitting
model (determined by BIC) for each of the conditions in Experiment 2

Content M, M, Product
R SI R SI R SI

Math 955 995 .929 986 998 1.00
Area 937 994 722 952 922 988
Performance .021 .508 .655 .883 798 902
Speed .861 989 919 982 .960 .988
EV 615 994 736 .999 553 970
WTP .627 907 .644 832 740 .873

(ST>.9), but from more noise in data (e.g., when assessing the
product for EV, the median R?is only .553, but the median SI
15 .970, suggesting that almost all the true variance is captured
by the model). Third, there is a direction sensitivity for
Performance. SI is high in all directions for all conditions
except for Performance, where SI is lower when participants
infer M; than when they infer M, and the product. Thus,
although the SI indicates that our algorithms capture the pro-
cess well in most of the conditions, it also clearly signals that
we fail to capture the process behind Performance judgments
regarding M .°

Median A estimates, the number of individuals best fitted
by the multiplicative versus the additive model, and median
parameter values for each best fitting model in each condition
are summarized in Table 4. We clearly see that, for the Math,
Area, Speed, and EV conditions, the dominant integration rule
was consistent with Equation 8 (multiplication), and with a
low proportion of error (median A < .25). The Performance
and WTP conditions were more varied, in terms of both pa-
rameter estimates and best fitting models, with clear evidence
for multiplication only when the participants inferred M1 in
the WTP condition. Otherwise, Bayesian binomial test pro-
vided nu support for a dominating additive or multiplicative
integration rule for Performance (M;: BF;q = 1.5, M,: BF o =
318, Prod: BF;y = .318) or WTP (M,: BF,( = .409, Prod:
BF,( = 1.5). Three Kruskal-Wallis ANOVAs confirmed that
the differences in \ are statistically significant for each re-
sponse variable—M;: x*(5) = 42.3, p < .001, My: x*(5) =
42.1,p<.001, Prod: x2(5) =44.1, p <.001, and this difference
was also confirmed when testing over participants best fitted
by the multiplicative model only—M;: x’(5)=37.1, p<.001,
M,: x2(5) = 25.3, p < .001, Prod: x*(5) = 39.7, p < .001. This

© The adjusted R> for M in the Performance condition might seem surpris-
ingly low, even for a badly fitting model, but it should be noted that adjusted
R? punishes low values of R* more than high values. So, for example, for M, in
the math condition, median R* = .961 and median adjusted R?=.955, while for
M, in the performance condition, median R* = .179 and median adjusted R* =
.021. Indeed, for especially badly fitted models, adjusted R* can even result in
negative values.
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confirms that both Analysis(B) and Intuition(B) type process-
es are present, and that the Intuition(B) processes are not only
observed for the additive model.

In alignment with the median estimated A in Table 4, the
null model of a homogenous Gaussian residual distribution
was rejected beyond the conventional o level of .05 for most
of the participants in the Math, Area, Speed, and Expected
Value conditions (between 87% and 100% in all directions;
K-S test). This null model was only rejected for about half or
the participants in the Performance and Willingness to Pay
conditions (between 13% and 60%, depending on the direc-
tion of inference). Importantly, in 73% of all the applications
of the PNP model, the null model of a homogenous Gaussian
residual distribution was rejected beyond the conventional «
level of .05, suggesting that a homogenous Gaussian error is
an incorrect specification of the error, which in turn may lead
to biased parameter estimates (see the analyses for ID-24 in
Fig. 1, above).

Error magnitude As in Experiment 1, the error magnitudes
were correlated with the estimates of the A\ parameter.
Participants with no error variance at all were excluded from
the analysis. Contrary to in Experiment 1, Bayesian Kendall’s
tau indicated no support for any negative correlations (M;: 7,
=.130, BF;o = .608; M,: r.=-.071, BF ;o = .223; Prod: r, =
_.151, BF]O = 103)

Conclusions The results of Experiment 2 verify that the PNP
model identifies parameters consistent with Analysis(B) in the
Math, Area, Speed, and EV conditions, as would be expected
if people applied the arithmetic of Equation 8. In these condi-
tions the PNP model recovers exactly the multiplicative refer-
ence function invited by the contents (i.e., x =0, 3 = 1). The
Performance and WTP conditions are less straightforward to
interpret, with median A =.75. We observed a similar result in
the perceptual triangle condition in Experiment 1, apparently
due to contributions of both Analysis(B) and Intuition(B) pro-
cesses. This is potentially the case here as well but, as previ-
ously discussed (see Individual-Level Modeling section), it is
equally likely to be a consequence of the experimental design
as of the nature of the task. Indeed, the median parameter
estimates for participants best fit by a multiplicative model
for inferring M, and M, (Performance) and M, (WTP) sug-
gest that although most response were not precise, precise
response were in line with the objective criterion.
Nonetheless, we do confirm that Intuition(B) processes are
present and arguably dominant in the Performance and WTP
conditions. Note that, for a given cue-integration rule (i.c.,
additive or multiplicative), the only difference between the
Analysis(B) and Intuition(B) instantiations of the model refers
to the assumptions about the shape of the error distributions.
Yet the modeling results clearly separate most of the tasks
addressed in Experiment 2 into tasks dominated either by
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Table 4 Compilation of overall median A and the distribution of best fitting model for each response variable (within participant) in each condition
(between participants), and median parameter estimates for best fitting multiplicative or additive model

Median A Mult Add
M, .031 15 o =.000, § = 1.00, -
0 =.200, A =.031
Math M, .063 15 o =.000, § = 1.00, -
0 =35.6,\=.063
Prod. .063 14 o =.000, § = 1.00, 1 o =100, 3, =3.57,
0=>58.1,A=.047 B,=-.035 0=943,A=.978
M, .063 15 o =.000, f = 1.00, -
0=.279,A =063
Area M, 156 15 o =.000, § = 1.00, -
0=228,A=.156
Prod. 125 14 « =.000, $ = 1.00, 1 a=10.0, 3; =347,
o=157,A=.109 Br=-.035 0=946, A\ =.953
M, 719 11 o =.000, § = 1.00, 4 =299, 3; =.196,
0=28.67,\=. 688 B, =.049, 0 =19.2, A = .957
Performance M, .688 7 « =.000, 3 = 1.00, 8 =833, B; =146,
0=24.6,\=.688 B, =-20.0,0=152,A=.688
Prod. .852 8 a =170, f =.625, 7 o =-.500, 3; =32.5,
0="730,\=.848 B, =.325,0=3.51,A=.866
M, 156 15 o =.000, § = 1.00, -
o=.210,A=.156
Speed M, .032 15 o =.000, § = 1.00, -
o=251,A=.032
Prod. 156 15 a =.000, § = 1.00, -
0=10.0,A=.156
M, .063 15 o =.000, § = 1.00, -
0=.242,\=.063
EV M, .188 13 o =.000, § = 1.00, 2 «=599, B, =1.53,
0=23.8,A=.156 Bo=-11.1,0=111,A=.842
Prod. 250 15 o =.000, § = 1.00, -
0=27.1,A=.250
M, 714 15 o =.233, f =833, -
0=.180,A=.714
WTP M, 751 9 o =.000, § = 1.00, 6 o =225, 3; =2.50,
0=324,A=.719 B,=-.001,0=354,A= 818
Prod. .692 11 x=35,3=.625, 4 o =-7.88, B; =25.0,

0=4.70,A=.688 Bo=.425,0=535A=.738

Analysis(B) or Intuition(B) based on these differential as-
sumptions alone. Importantly, the results also illustrate that
the procedures we used in the PNP modeling also signal when
the considered algorithms do not provide a satisfactory ac-
count of the process (i.e., the low SI for M; with the
Performance judgments).

The results further indicate that additive cue integration is
more often associated with Intuition(B) while multiplicative
cue integration can potentially be associated with both
Analysis(B) and Intuition(B). In line with our hypotheses,
we see that with easy access to a known declarative rule (in
the Math, Area, Speed, and EV conditions) participants clear-
ly relied on multiplicative integration based on Analysis(B).
However, without such a rule and/or in more subjective do-
mains (in the Performance and WTP condition) participants
instead resorted to either Intuition(B) additive integration or

Intuition(B) multiplicative integration as indeed suggested
based on previous findings by, for example, Brehmer
(1994), for the former type of integration, and Andersson
(1996, 2008), for the latter. However, the marginal support
for the additive model as well as the low fit for either model
in the Performance condition makes it clear that this contin-
gency between process and integration strategy should be
interpreted with care and will need to be further replicated in
other content domains.

We found no support for Brunswik’s claim for larger errors
with Analysis(B) processes in Experiment 2. Both in
Brunswik (1956) and in Experiment 1 the errors were smaller
in the perceptual task than in the conceptual task. That this is
in not confirmed for the symbolic tasks in Experiment 2 may
indicate that the veracity of Brunswik’s claim regarding the
relative size of errors is confined to the very well attuned
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Intuition(B) processes involved in perception and does not
generalize to conceptual tasks. Conceptual tasks may be more
affected by Analysis(B) processes and/or involve evolutionary
more recent task requirements that draw on less fine-tuned
Intuition(B) process, as compared to the fine-tuned perceptual
judgments of size.

Experiment 3: Quasi-rationality
in multiple-cue judgments

Experiments 1 and 2 emphasized either perceptual tasks or
tasks for which the content suggested a more or less obvious
explicit algorithm to be mentally “crunched” (e.g., for area).
However, much of the discussion of “intuition and analysis”
in the Brunswikian tradition has involved research on
multiple-cue judgment, where participants discover the task
structure from prolonged training with outcome feedback (see
Hammond & Stewart, 2001). In multiple-cue judgment tasks,
the cue integration can, in principle, involve two different
sorts of rule-based processes: (i) the “crunching” of numerical
cues according to an explicit formula, and (ii) the “quasi-ra-
tional,” informal assessment and integration of the effect of
the cues on the criterion.

The purpose of Experiment 3 was to validate this quasi-
rational interpretation of the observed good fit of linear regres-
sion models in Brunswikian research on multiple-cue judg-
ment (Brehmer, 1994; Karelaia & Hogarth, 2008; Juslin
et al., 2008). In this view, people have rule-like beliefs about
how each cue relates to the criterion (e.g., that fever is a cue for
pneumonia), but the cues are not integrated by any explicit
symbolic formula, but informally by taking stock of the likely,
approximate impact of each cue on the criterion. This quasi-
rational mix of rule-like knowledge and informal cue integra-
tion is often used to explain the inconsistency observed in 50
years of lens-model research (Karelaia & Hogarth, 2008).
Although the processes are “analytic” in that people abstract
rule-like beliefs, the quasi-rational cue integration predicts that
these cue abstraction processes should disclose the empirical
hallmarks of Intuition(B).” The process is noisy and inconsis-
tent from judgment trial to judgment trial and gravitates to the
default of linear additive integration of the cues (Brehmer,
1994; Karelaia & Hogarth, 2008; Juslin et al., 2008).

7 In previous research, these cue abstraction models have often been juxta-
posed against exemplar-based models (e.g., Juslin et al., 2003), and, in com-
parison to exemplar-based models, cue abstraction models are “analytic” in the
sense that they assume that people abstract explicit rules connecting the cues
with the criterion. Nonetheless, the cue integration is not based on analytic
crunching of the cue numbers according to a symbolic formula, but this inte-
gration occurs intuitively and informally by a sequential updating of an esti-
mate of the criterion. For example, in Juslin et al. (2008), it is explicitly stated
(on p. 264) that cue integration rule is “procedural,” in contrast to the cue—
criterion relations that are part of the working memory content and which
provide input to these processes.
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In Experiment 3, we applied the PNP model to classical
multiple-cue judgments. Considering the vast amounts of data
already published on multiple-cue judgment (Brehmer, 1994;
Karelaia & Hogarth, 2008), we decided to apply the PNP
model to an already published data set that was easily avail-
able to us (Karlsson et al., 2007), which also mapped conve-
niently onto the simulations presented in Table 1, above (see
the section on Model Recovery, above). Experiment 1 in
Karlsson et al. (2007) involves a multiple-cue judgment task
where participants learn from outcome feedback training to
use four continuous cues to predict a continuous criterion,
either in a task where the cues combine by additive integration
(Equation 5) or by nonadditive integration, given by

P =509.05 + .54ttt tlu)/I§ (11)

with the constants chosen to define the same training criterion
range in both conditions.

The hypothesis tested in Karlsson et al. (2007) was that the
additive task should invite rule-based additive cue abstraction,
and the nonadditive task should invite exemplar-based strate-
gies (i.e., the generalized context model; Nosofsky, 2011, but
applied to a continuous criterion; see Karlsson et al., 2007).
Previous research suggests that people are spontaneously in-
clined to engage in additive integration of externally provided
cues, much as if they implemented a multiple linear regression
model with the cues as independent variables, but which only
contains main effects and no interaction terms (Brehmer,
1994; Karelaia & Hogarth, 2008). Therefore, people often
have difficulty mastering nonadditive tasks by cue abstraction
strategies (Juslin et al., 2008; Juslin et al., 2009). In licu of
access to any obvious explicit integration rules that can be the
subject of Analysis(B) (as for several tasks in Experiment 2,
like Area), in tasks with feedback learning, they often shift to
exemplar-based memory when tasks require multiplicative
cue integration (see also Hoffmann et al., 2014, 2016; Juslin
et al., 2008; Juslin et al., 2009; Juslin et al., 2003; Karlsson
etal., 2007; Little & McDaniel, 2015; Pachur & Olsson, 2012;
Platzer & Broder, 2013; von Helversen et al., 2010; von
Helversen & Rieskamp, 2009, for similar results). The general
context model entails judging the criterion of a task based on
informal similarity-based weighting of previous exemplars
(Nosofsky, 2011). Participants relying on exemplar-based
memory are thus expected to be Intuitive(B). However, if
people instead judge the criterion based on root-
memorization of previous exemplars, their responses should
instead show the hallmarks of Analysis(B).

The participants trained with outcome feedback for 300
trials and thereafter received a test phase with 44 trials (with-
out outcome feedback), which also required extrapolation

% A rule-based multiplicative cue abstraction model assuming cue integration
according to Equation 11 was also fitted to the data in Karlsson et al. (2007)
but this model was not supported by the results.
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beyond the training range to investigate whether the partici-
pants primarily relied on rule-based or exemplar-based strate-
gies. Both the measures of extrapolation and the computation-
al modeling supported the hypothesis that the participants in
the additive task primarily engaged rule-based cue-abstrac-
tion, while the participants in the nonadditive task primarily
engaged exemplar-based strategies.”

The modeling in Karlsson et al. (2007) was based on the
standard assumption of a homogeneous Gaussian noise. With
the PNP model, we can now test the assumption of quasi-
rationality often made in Brunswikian research on multiple-
cue judgment: The beliefs that people have abstracted about
how the cues are related to the criterion are integrated by an
informal and inconsistent process with the empirical hall-
marks of Intuition(B). Note that whereas the ability to extrap-
olate or not identifies if the beliefs involve rule-based and
generalizable knowledge or exemplar-memory based knowl-
edge, the PNP model identifies whether the process discloses
the systematicity typical of Analysis(B) or the noisiness of
typical Intuition(B). The quasi-rationality should imply both
rule-based generalizability and the noisiness of Intuition(B)
processes.

Method

The PNP model was applied to the data set from Karlsson
et al. (2007), with an additive model (see Equation 5) and an
exemplar-based model on the equation

300 sy o
jzlexp( 6Zi:1wi‘xi X

300 4
_/:1eXp( OY Wi

X ¢;
>) - (12)
where y represents a weighted average of the criteria ¢; of each
of the 300 exemplars from the feedback training based on the
similarity of the exemplars x e x*j4 to the probe x; ... x4; 6 is
a sensitivity parameter representing discriminability in psycho-
logical space and w; are weight parameters representing atten-
tional weights for each cue variable. Thus, the design of the
analysis was similar to Experiment 2, in the sense that two
different cue-integration rules (additive vs. exemplar-based)
were explored, each of which could potentially be realized as
an Analysis(B) or an Intuition(B) type process. As before, the
cue-integration rule was determined by the best fitting model,
while the contribution of Analysis(B) or Intuition(B) was sig-
naled by the value of the \ parameter for the best fitting model.

y= ,
Xim X

Results and discussion

The )\ parameters for the best-fitting models were high for all
participants (median = .977, min = .854, max = .996).
Accordingly, K-S tests could refute normality for 0% of partic-
ipants in the additive condition and for 12.5% in the

nonadditive condition. This indicates that participants predom-
inantly used Intuition(B) processes, most likely on account of
the probabilistic feedback format (which makes inductively in-
ferring the integration rule and the exact objective cue weights
very difficult) and the complexity of the nonadditive task.
Median adjusted R* for the best models in the two conditions
were Adj. R* = .723 for the additive condition and Adj. R* =
.529 for the nonadditive condition.” The proportions of best
fitted models mostly match those presented in Karlsson et al.
(2007), with 56.3% cue abstraction model in the additive con-
dition (81% in the original study) and 62.5% exemplar-based
model in the nonadditive condition (62.5% in the original
study).'”

Conclusions The best-fitting version of the cue abstraction
model in the additive task confirms the quasi-rational nature
of the process: we observe both the generalizability of a rule-
based strategy and the noisiness that is the empirical hallmark
of an Intuition(B) process. By combining an experimental
design requiring rule-based extrapolation with application of
the PNP model, we can confirm the interpretation that people
engage in a noisy quasi-rational cue integration process in
multiple cue judgment (Hammond & Stewart, 2001).

In the nonadditive task, due to the complex integration rule
in conjunction with the probabilistic feedback, the participants
instead had to engage an Intuition(B) exemplar-based memory
strategy, or, for a minority of participants, approximate the
task with Intuition(B) additive integration strategy. This is in
comparison to Experiment 2 where the PNP modeling of a cue
integration task with a simpler multiplicative rule yield the
empirical signs of Analysis(B). Thus, both in Experiments 2
and 3 we observed departures from the default of additive cue
integration often observed in multiple-cue judgments, but the
route of departure depends on the circumstances. In
Experiment 2, the nonadditive cue integration could be ad-
dressed by Analysis(B) processes to the extent that the task
invited salient explicit equations to execute (e.g., for area),
while in Experiment 3, the content of the nonadditive
multiple-cue judgment task affords no salient such explicit
rule and the participants instead had to turn to the use of
exemplar memory. The PNP model can thus successfully
identify to what extent participants engage in Analysis(B) or
Intuition(B) cue integration in different cue-integration tasks,
where participants are hypothesized to engage different pro-
cesses depending on, for example, the complexity of the nor-
mative integration rule and/or the access to known declarative
integration rules.

? Because the experiment in Karlsson et al. (2007) contained no replication,
we were unable to compute the SI.

19 Because all participants had very high values on ), it was not possible to
analyze correlation between \ and error magnitude.
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General discussion

The aim of the present study was to reintroduce the intriguing
operational definition of intuition and analysis proposed by
Egon Brunswik (1956), and to explore how these ideas can
be developed into a computational model that can stimulate
novel insights and hypotheses about human cognition. One
original implication by this proposal is to take the errors in
judgment not only or primarily as a nuisance in the scientific
process but also as a positive tool to understand the nature of
the process. By this method, two distinct kinds of cognitive
processes can be successfully identified by purely empirical
properties of the judgment distributions.

Brunswik argued that Intuition(B) is approximate and ro-
bust in nature, giving rise to a small Gaussian error that gen-
erally does not lead the agent too far astray. These processes
rely on error-perturbed (noisy) representations from perceptu-
al coding or readings of internal states (e.g., preferences).
Intuition(B) processes also involve cue-integration processes
by which often vague beliefs about relations (e.g., smoking
cause cancer) are translated, online and ad hoc, into quantita-
tive judgments by an inconsistent process that produces dif-
ferent judgments from time to time for the same stimuli—
similar to the inconsistency and “lack of cognitive control”
typically observed in multiple-cue judgments. Analysis(B),
on the other hand, is deterministic and is often precisely cor-
rect, but characterized by occasional large errors. These pro-
cesses rely on error-free representations deriving from explicit
rules that (for the most part) allow exact outputs.

To apply, explore, and extend Brunswik’s ideas, we
proposed the precise/not precise (PNP) model, which
uses a mixture distribution to distinguish between precise
and nonprecise responses relative to a predefined
computational-level cognitive algorithm. Thus, the model
samples from two different distributions: error-free appli-
cation of the cognitive algorithm, and responses that are
affected by errors in execution of the algorithm. In con-
trast to Brunswik’s (1956) original formulation, however,
these error distributions are not assumed to be distributed
around the correct criterion values, but can refer to the
output of any cognitive algorithm. Model recovery dem-
onstrated that when the generative model for the data is
known, the PNP correctly recovers the underlying pro-
cess, and often with much more accurate parameter
estimates.

Experiment 1 demonstrated that the PNP model can recov-
er Intuition(B) processes in perceptual tasks and Analysis(B)
processes in conceptual tasks in the same context that origi-
nally motivated Brunswik’s claim for different error distribu-
tions. More specifically, we replicated the claims about the
differential shapes of the error distributions in the two tasks
and demonstrated that the PNP model appropriately identifies
the two processes based on these error distributions. The
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results also confirmed Brunswik’s claim that Analysis(B) pro-
cesses are associated with larger, although less frequent, errors
than the perceptual Intuition(B) processes.

Experiment 2 showed that the error distributions that define
Intuition(B) processes are present and identifiable by the PNP
model also in purely symbolic and conceptual tasks involving
no perceptual noise. That conceptual tasks should involve
intuitive thought-processes in some sense is not surprising,
of course. But to our knowledge, this is the first empirical
demonstration showing that cognitive-modeling efforts can
be construed so that intuitive and analytical thought processes
can be identified specifically by the shape of the error distri-
butions. In contrast to Experiment 1, there was no strong ev-
idence that the magnitude of errors differed between process-
es. It is possible that perceptual processes are more “fine-
tuned” as a result of hard-wired processes shaped by evolu-
tion, a fine tuning that has yet to materialize for evolutionary
relatively new processes The results also demonstrate that the
PNP model often recovers the parameters of the process more
effectively than a standard regression model with homoge-
neous Gaussian error, suggesting that the standard Gaussian
assumption is often an incorrect specification of the error dis-
tribution (e.g., consider the examples of ID = 24 in Fig. 1 and
the results for Experiment 2).

Experiment 3 verified the quasi-rational character of the
cue integration in symbolic multiple-cue judgments, as often
assumed but not, in any direct way, tested. In the additive task,
the cognitive process was, on the one hand, rule-based,
allowing extrapolation beyond the training range, and, on
the other hand, noisy and inconsistent, as captured by an
Intuition(B) process. The process is accordingly different in
nature from the rule-based Analysis(B) processes observed in
Experiment 2, which entails “number crunching” in accor-
dance with a declarative rule.

Together, these results validate and extend Brunswik’s
claims concerning Intuition(B) and Analysis(B). In the re-
mainder of this article, we turn to a discussion of the wider
theoretical and methodological implications of Brunswik’s
claims and the PNP framework, as well as to discussing the
limitations, and highlighting promising venues for future
research.

Brunswik’s definition and the dual-system definitions

The distinction between intuition and analysis in dual-systems
theories (e.g., Evans, & Stanovich, 2013; Kahneman &
Frederick, 2002; Sloman, 1996) pervades research in numer-
ous areas (e.g., Ashby & Valentin, 2017; Juslin et al., 2008,
Pacini & Epstein, 1999; Sundh & Juslin, 2018; von Helversen
& Rieskamp, 2009). Although it has proven difficult to iden-
tify properties common to all dual-systems theories (Evans,
2008), it is typically assumed that analytic processes are slow,
rule-based, and explicit processes, drawing on deliberate and
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controlled thought in working memory. Intuitive processes are
faster, based on similarity, and less constrained by working
memory capacity (see, e.g., Evans, 2008, for a review).

Although this literature seems to capture a popular appre-
ciation, it has been repeatedly criticized (Gigerenzer, 2010;
Keren & Schul, 2009; Kruglanski & Gigerenzer, 2011;
Melnikoff & Bargh, 2018) for confusing distinctions, like
implicit versus explicit, automatic versus controlled process-
es, impulsiveness versus reflection, and intuition versus
analysis. Identifying which process is used has also proven
challenging (Dane & Pratt, 2009; Hammond et al., 1983):
Inspection times and response times have been proposed as
independent criteria (see Osman, 2004; Pashler, 1994), but
seem to have limited validity, at times confusing the two pro-
cesses (Furlan, Agnoli, & Reyna, 2016; Krajbich, Bartling,
Hare, & Fehr, 2015). "I Brunswik’s claim offers a complemen-
tary strategy that defines the processes in terms of properties
of empirical data that may be a useful alternative to the use of
vague and verbal concepts (e.g., automatic vs. controlled; im-
pulsive vs. reflective; explicit vs. implicit). At present, we
regard as empirical questions how the cognitive properties
captured by Analysis(B) and Intuition(B) processes relate to
the many distinctions proposed in the existing dual-systems
literature (Evans, 2008). In the following, we nonetheless pro-
vide a tentative discussion of when we expect that the
Brunswikian and the dual-system accounts are more likely
to converge, and when they are less likely to do so.'?

Similarities One of the most influential discussions of intuition
and analysis has been in terms of “attribute substitution”
(Kahneman & Frederick, 2005), where the assessment of a
normative and hard to assess variable (e.g., probability) is
replaced by a simpler and intuitive “natural assessment”
(e.g., representativeness). The use of such heuristic intuitive
variables often comes at the price of violating certain norma-
tive (analytic) principles, leading to biases.

The heuristics and biases program indeed also has links to
Brunswik. As noted by Kahneman and Frederick (2005), the
original formulation of the program “was intended to extend
Brunswik’s (1943) analysis of the perception of distance to the
domain of intuitive thinking” (p. 268). Not surprisingly then,
natural assessments that include physical properties such as
size and distance and more abstract properties such as

" The data in Experiments 1 and 2 were never collected with the instructions
and response settings required for valid measurement of response times.
Nonetheless, for the interested reader, we note that Bayesian Kendal’s tau
indicated no correlation between mean response times and estimated A in
Experiment 1 (r, = —.077, BF ¢ = .253) and no correlations in Experiment 2
(M;: r,=.033, BF 0 =.052; M, r,=.038, BF; = .158; Prod, r, = .080, BF o =
.256).

12 Due to the vastness of the dual-systems literature, we have chosen a select
number of clear-cut comparisons—future research will have to expand this
discussion further by incorporating also other conceptualizations (e.g.,
Mukherjee, 2010; Tenenbaum & Griffiths, 2001).

similarity, cognitive fluency, and affective valence
(Kahneman & Frederick, 2005) will presumably be defined
as intuitive also in the Brunswikian perspective—that is, what
we refer to as Intuition(B). The intuitive assessments of rep-
resentativeness that have been used to demonstrate, for exam-
ple, base-rate neglect or the conjunction fallacy are therefore
perfectly consistent with the definition of Intuition(B) sug-
gested by Brunswik’s distinction. Consider, for example, the
classic Linda problem, used to illustrate the use of the repre-
sentativeness heuristic:

Linda is 31 years old, single, outspoken, and very bright.
She majored in philosophy. As a student, she was deep-
ly concerned with issues of discrimination and social
justice and also participated in antinuclear demonstra-
tions. Which of the following is more likely?

(A) Linda is a bank teller.
(B) Linda is a bank teller and is active in the feminist
movement.

The conjunction error is the assessment that the conjunc-
tion, bank teller and feminist, is more likely than one of its
constituents, bank teller, presumably because Linda is per-
ceived to be particularly representative of the category “fem-
inists” (Tversky & Kahneman, 1983; see also Costello &
Watts, 2014; Nilsson, Juslin, & Winman, 2016). The
similarity-based impression that Linda “must be” a feminist
is indeed an example of an intuition that is also likely to
surface in analysis using the PNP model.'® A difference is that
with the PNP model, this issue need not be the subject of
speculation; it is solved empirically by applying the model
to the data.

Differences Other demonstrations of variable substitution in
the heuristics-and-biases literature, especially those connected
with the cognitive reflection test (CRT), are, however, likely
to be interpreted differently in terms of the PNP model.
Consider the following question: “A bat and a ball cost
$1.10 in total. The bat costs $1 more than the ball. How much
does the ball cost?” Most people guess “10 cents,” presumably
because “$1 + 10 cents = $1.10.” The PNP model is likely to
classify this not as the result of an intuitive variable substitut-
ing for an analytic variable (Kahneman & Frederick, 2005),

13 Note that the fact that people rely on representativeness or similarity to
make the assessments in this task—and there indeed seems to be little alterna-
tive to use this impression in this specific task—need not imply that this is the
cause of the conjunction fallacy. The conjunction fallacy is prevalent also in
many situations where people cannot rely on representativeness, and the more
fundamental underlying cause seems to be that people combine their proba-
bility assessments for the constituent events (however they are initially pro-
duced) by additive integration rather than the multiplicative integration rule
implied by probability theory (see Juslin et al., 2009, for a discussion).
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but as execution of the wrong analytic algorithm (i.e., other-
wise most people would not produce exactly the same an-
swer). In the context of the PNP model, the CRT is not a test
of intuition or analysis, but on the ability to critically reflect on
the output of the process (as indeed suggested by the name
CRT). As with Linda, people get this problem wrong, but not
primarily because of an intuition that it “must be” the correct
answer, but rather due to the mindless execution of an analytic
algorithm that is strongly invited by the numbers.

A major difference from the dual-systems framework,
however, is that there is nothing in the Brunswikian frame-
work suggesting that the Analysis(B) has priority, with the
role of supervising and “censoring” the output of
Intuition(B). Rather the two processes are likely to “super-
vise” each other. In the Linda problem, it may well be that
an analytic rule from probability theory is suddenly retrieved
and serves to overrule the strong intuition that there must be a
higher probability that Linda is a feminist and a bank teller,
than that she is a bank teller. But it might be just as common
that diligent analytic solutions are supervised by and overruled
by Intuitive(B) processes, as, for example, when a student
performing a math problem that concerns computation of a
person’s body weight, coming up with the answer of “5,000
kg,” will quickly appreciate that the analytic computation is
wrong.

The distinction captured by the PNP model is not identi-
cal to the distinction between controlled and automatic pro-
cesses (Atkinson & Shiffrin, 1968; Schneider & Shiffrin,
1977). Both the analytic crunching of numbers in mental
algebra tasks (Analysis(B)) and the intuitive linear additive
integration of cues in multiple-cue judgment tasks
(Intuition(B)) are likely to involve controlled processes,
and one reason for the inconsistency of the cue integration
in multiple-cue judgment is probably the working-memory
constraints on these processes. However, as we have seen,
automatic perceptual and memory retrieval processes are
likely to disclose the Intuition(B) properties. The explicit
symbolic nature of the representations in Analysis(B) pro-
cesses easily lend themselves to succinct verbal expression.
Such verbal expressions of representations will only be
available for some Intuition(B) processes, such as when
applying a deterministic rule to noisy input (i.e., calculating
the area of perceptual triangles in Experiment 1) or as when
people are able to articulate the direction of cue—criterion
relationship in multiple-cue judgment tasks, even though
they cannot verbally express the integration rule. The issue
of what aspects of the process that are “unconscious” in any
more profound sense, as compared with just difficult to map
onto explicit verbal representations, is more subtle. As al-
ready noted, the PNP distinction differs from the distinction
between impulsiveness versus reflection, because both
Intuition(B) and Analysis(B) processes can be used in a
more or less reflective way.
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The PNP model as an alternative to traditional
statistical modeling tools

Error distributions have been addressed in computational
modeling in other domains, like, for example, visual short-
term memory (Bays, Catalao, & Husain, 2009; Luck &
Zhang, 2008; Ma, Husain, & Bays, 2014; Van den Berg,
Shin, Chou, George, & Ma, 2012; Wilken & Ma, 2004), cat-
egorization learning (e.g., Ashby, Maddox, & Bohil, 2002),
and choice problems (Bimbaum & Quispe-Torreblanca, 2018;
Lee, 2018). In contrast to these previous approaches, the PNP
model combines modeling with the rationale derived from
Brunswik’s (1956) distinction between error distributions.
The PNP model therefore raises new methodological issues.

As we have seen, a standard model with Gaussian error
may sometimes erroneously specify the process, leading to
false conclusions (e.g., the different conclusions suggested
by the analyses for the participant in Fig. 1). In tasks with
Analysis(B) processes, the PNP model allows the unpacking
of the traditional notion of error into two components: the
probability than an error occurs in the first place (\), and the
magnitude of the error in those cases where an error has oc-
curred (o). Thus, tasks that are solved by Analysis(B) can
differ profoundly in their difficulty in terms of A quite regard-
less of the magnitude of the errors when they do occur.
Conversely, a task may be easy to perform decently, if the
magnitude of the error is low (o) also if errors are frequent
(see GroB & Pachur, 2019, for a similar distinction in
reconstructive memory).

On a more general note, the approach suggested by the
PNP model could also be a principled and more general solu-
tion to the problem of how to treat outliers in the data analysis.
The current practice is often to delete participants that are, for
example, four or more standard deviations from the mean of
the participants distribution. Potentially, the same problem
could be addressed in formal modeling by allowing for het-
erogeneous error distributions in the models. After all, the
application of the PNP model could be described as a matter
of correctly identifying the correct parameters in the presence
of severe outlier responses (see, e.g., Fig. 1).

Limitations and future directions

There are, of course, limitations to the PNP model, some of
which have already been addressed in this study. When the
response variable is discrete with few response categories
there is risk that the estimation of A and ¢ become biased.
There are, at least, two different ways to address this problem.
As detailed in Appendix A, a first way is to view it is as a
methodological problem, the solution to which is to use more
refined methods to estimate the parameters. However, a dif-
ferent way to address the problem is conceptually, by ac-
knowledging that the causes of this problem sometimes
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revolve around intrusion of constraints that indeed make the
process more analytic and deterministic in the context of the
PNP model. For example, the rounding of the responses to
even digits in our (cultural) number system or preknowledge
of a few admissible response alternatives, are constraints that
make the responses more predictable by application of rule-
like beliefs, reducing the error that is well captured by a
Gaussian noise.

Another potential issue is that, if the correct algorithm is
unknown, the PNP model might mistakenly categorize a pro-
cess as Intuition(B) because the systematic variation produced
by an unknown algorithm is modeled as noise. Although this
sort of theory-dependence is difficult to completely eliminate
in any cognitive modeling, it does imply a risk of bias when
applying the PNP model to data. There are ways to mitigate
this risk. First, it is imperative to make sure that the chosen
model captures most of the systematic variation in the data—
for example, by measures such as the saturation index (SI)
used in this paper (see Experiments 1 & 2). Second, it is
important to watch for regularities in the data that are not
captured by the modeling. For example, in probability elicita-
tion tasks, people sometimes prefer numbers divisible by 5 or
10, which might necessitate adding a rounding process to the
model. Third, one should be aware that the Intuition(B) model
is the “default,” in the sense that a participant will generally
consider Intuition(B) if no Analysis(B) model is found, and
interpret the data accordingly.

Although we have used Gaussian distributions in this
study, and we believe that this represents a useful stan-
dard that can be applied to a great variety of data, it is
possible that other types of distributions could be more
suitable in certain cases. For example, evidence suggests
that numerical estimates that cover large differences in
magnitude might be better represented by a log-normal
distribution (Dehaene, 2003; Feigenson, Dehaene, &
Spelke, 2004). This would be a relatively simple alter-
native application of the PNP model, but it would ne-
cessitate theoretical assumptions regarding in which
contexts noise are likely to be log-normally distributed.
Because errors in Analysis(B) and Intuition(B) processes
(as defined by us) spring from different sources, it is
not necessarily the case that they share the same distri-
bution, and it is possible that, for example, errors are
log-normally distributed with Intuition(B), but not with
Analysis(B).

While our results generally indicated support for the two
distinct categories of Intuition(B) and Analysis(B), it is not
inconceivable that other tasks, in other contexts, might result
in a less bimodal distribution of A. It is also possible that
certain more complex tasks could induce systematic shifts
between the two. This is no doubt a promising area for further
study, and one where the PNP model, or extensions thereof,
could prove useful.

Finally, we acknowledge that although we have tried to
nurture one legacy after Brunswik (1956), the distinction be-
tween Analysis(B) and Intuition(B) in terms of the error dis-
tributions, we have not even started to address the other im-
portant legacy: to better understand how these different pro-
cesses are selected by, and fit with the structure of, natural
environments. The work on cognitive continuum theory
(Hammond, 1996; Hammond et al., 1983) remains the most
systematic attempt to address the functional role of analytic
and intuitive cognitive processes, and we hope that the PNP
model can be an additional tool in this important pursuit. A
relevant avenue for future research is to investigate the prev-
alence of Analytic(B) and Intuitive(B) processes in environ-
ments with varying degrees of noise. A reasonable hypothesis
is that Analytic(B) processes should be prevalent in determin-
istic environments, but Intuitive(B) processes become more
and more prevalent with increasing degrees of probabilism.
The main reason being that participants will experience that
their Analytic(B) process is not providing them with correct
predictions, and thus they might abandon it for an Intuitive(B)
process.

Conclusions

In this article, we have pursued Brunswik’s definitions of
Intuition(B), defined by ubiquitous deviations from the algo-
rithm, as described by the sampling from a homogeneous
Gaussian error distribution, and Analysis(B), defined by a
heterogeneous error distribution. We propose that
Brunswik’s original insight, that the nature of the judgment
error can be diagnostic of the nature of the underlying cogni-
tive processes, is an underused approach that may prove use-
ful both in the current debates on dual-systems theories and in
other domains.
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