
INTRODUCTION

MicroRNAs (miRNAs) play important roles in regulating 
many cellular processes in normal physiological and patholog-
ical conditions. Circulating miRNAs have been recently sug-
gested to serve as easily accessible biomarkers for diagnosis 
of cancer and other disease states (Yu et al., 2011; Guay and 
Regazzi, 2013). More importantly, high levels of circulating 
miRNAs are produced within certain cells in a tissue-specific 
manner (Lagos-Quintana et al., 2002; Ason et al., 2006). One 
of the most recent exciting findings is that miRNAs exist in 
exosomes. Exosomal miRNAs can be physically transferred 
to target cells and play an important regulatory role in diverse 
biological processes. In addition, miRNAs in exosomes from 
blood samples have been shown to be stable even under ex-
treme conditions, making them excellent candidates for non-
invasive biomarkers (Turchinovich et al., 2011). 

Previous studies have considered the potential use of miR-
NA species as biomarkers in acetaminophen (APAP)-induced 
liver injury. For instance, in the animal models of liver injury, 
circulating miR-122, miR-192, and miR-155 may reflect liver 
damage and inflammation (Wang et al., 2009; Starkey Lewis 

et al., 2011; Bala et al., 2012). In addition, circulating miR-
122 was confirmed as a sensitive and reliable blood marker 
for drug-, viral-, alcohol-, and chemical-induced liver injury 
(Zhang et al., 2010). John et al. (2014) also reported that the 
levels of miR-122 in serum and liver tissues were elevated in 
acute liver failure patients. The levels of circulating miR-146a, 
which is considered kidney-specific due to its high expression 
in the kidney, has been shown to increase following chronic 
kidney disease in mice and humans (Wang et al., 2011; Ichii 
et al., 2012). The miR-206 is specifically expressed in skeletal 
muscle (Sempere et al., 2004) and released into the plasma in 
the muscle-related disorders (Mizuno et al., 2011; Toivonen et 
al., 2014). Although liver-specific circulating miRNAs in drug-
induced liver injury have been recently reported, circulating 
plasma and exosomal miRNAs in injury of other organs have 
not well-established. Therefore, we evaluated whether circu-
lating miRNAs in plasma and exosomes can serve as easily 
accessible biomarkers of drug-induced organ injury. In this 
study, we specifically focused on the levels of candidate miR-
NAs such as miR-122, miR-155, and miR-192 (as liver spe-
cific), miR-146a (as kidney specific), and miR-206 (as muscle 
specific) after treatment with an organ-specific toxicant. Our 
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results show that increased levels of circulating miR-122, 
miR-155, and miR-192 correlate with the degree of liver injury, 
while circulating miR-146a and miR-206 correlate with kidney 
and muscle injury, respectively. Furthermore, we showed for 
the first time that the identities of exosomal miRNAs could re-
flect drug-induced organ injury.

MATERIALS AND METHODS

Animals studies
The animal studies were approved by the Institutional Ani-

mal Use and Care Committee of the Kyungpook National Uni-
versity. Male 6-week old Balb/C mice (n=5/group) were fasted 
overnight before they were treated with a single i.p injection 
with PBS (phosphate buffered saline) as control (CON), APAP 
(300 mg/kg, Sigma, St. Louis, MO, USA), or cisplatin (CIS, 10 
mg/kg, Sigma) for 24 h. In addition, bupivacaine-HCl (BPVC, 
0.4 mL of 0.5% wt/vol, Sigma) dissolved in PBS, was injected 
once into both the right and left tibialis anterior of the mice. 

For protection against APAP-induced liver injury, antioxi-
dant N-acetyl cysteine (NAC, 100 mg/kg, Sigma) was admin-
istrated i.p. 1.5 h prior to APAP injection. To protect against 
CIS-induced kidney injury, mice were treated with quercetin 
(QR, 100 mg/kg/day), which was administrated orally for 10 
consecutive days after mice were exposed to a single i.p injec-
tion with cisplatin (10 mg/kg).

ALT and AST analysis
ALT and AST levels were determined in plasma obtained 

from the individual animals by using a standard end-point col-
orimetric assay kit (TECO Diagnostics, Anaheim, CA, USA).

Histological analysis
Formalin-fixed liver, kidney, and muscle tissues were stained 

with hematoxylin-eosin and examined with a light microscope 
(Nikon, Tokyo, Japan; original magnification, ×10 to ×20). 

Exosomes isolation
Plasma was mixed with ExoQuick exosome precipitation 

solution to isolate exosomes by following the manufacturer’s 
protocol (SBI System Biosciences, Palo Alto, CA, USA). Brief-
ly, after incubation at 4°C for 30 min, the mixed samples were 
centrifuged at 1,500×g for 30 min. The exosome fraction was 

washed twice with PBS and lysed with QIAzole (Qiagen, Va-
lencia, CA, USA) and RIPA buffer for isolating total RNA and 
protein, respectively. 

miRNA extraction from plasma and exosomes 
The miRNA was extracted using a miRNeasy kit (Qia-

gen) by following the manufacturer’s instructions with minor 
modifications. Synthetic Caenorhabditis elegans (cel)-miR-39 
was spiked before miRNAs were further purified by using the 
miRNeasy kit protocol (Qiagen). The quality and quantity of 
the RNA containing miRNA components from plasma or exo-
somes were evaluated by using an Agilent 2100 Bioanalyzer 
(Agilent Technologies, Santa Clara, CA, USA).

Real-time quantitative RT-PCR analysis
The expression levels of miRNA were confirmed with 

SYBR-based quantitative PCR (qRT-PCR) using individual 
miRNA-specific primers (Qiagen). The first-standard miRNA-
cDNA PCR template was generated from total RNA accord-
ing to the manufacturer’s instructions. Approximately 2.5 ng of 
cDNA was then used in the PCR. The level of specific miRNA 
based on SYBR green intensity was then monitored with the 
ABI7500HT real-time PCR system (Applied Biosystems, Her-
cules, FL, USA). Cel-miR-39 was used to normalize the tech-
nical variation between the samples.

Transmission electron microscopy 
For negative staining, isolated exosomes were fixed in 

2.5% glutaraldehyde (vol/vol) in cacodylate buffer. Exosomes 
were adsorbed onto 400 mesh carbon-coated copper grids 
and stained with 0.75% uranyl formate (wt/vol). Samples were 
observed under a FEI Tecnai G2 Spirit transmission electron 
microscope (North America NanoPort, OR, USA) operated at 
a 60 kV accelerating voltage. Images were recorded with an 
Olympus SIS Veleta CCD camera (Olympus, Center Valley, 
PA, USA).

Western blot analysis
Exosomal preparations were lysed with RIPA buffer to iso-

late exosomal proteins. Protein concentrations were deter-
mined using the BCA Protein Assay Kit (Thermo, MA, USA), 
and equal amounts of protein from each sample were sepa-
rated by SDS/PAGE for immunoblot analyses, as describe 
(Cho et al., 2012). 
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Fig. 1. Confirmation of APAP-induced liver injury. (A) NAC pretreatment protocol in a mouse model of APAP-induced liver injury. (B) Rep-
resentative images of hematoxylin and eosin (H&E) staining for formalin-fixed liver sections in mice pretreated with or without NAC. Scale 
bars, 200 mm. (C, D) Plasma aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels (n=5/group). The data represent 
mean ± SD, *p<0.05.
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Statistical analysis
Data are presented as mean ± SD as indicated for each 

graph. Means and standard deviations were calculated using 
SPSS 17.0 (IBM Inc., Brea, CA, USA). Student’s t-test was 
used to evaluate differences in means for normally distributed 
data. All p-values are two-tailed, and values of less than 0.05 
were considered to indicate statistical significance. *p<0.05.

RESULTS

Hepatotoxicity induced by acetaminophen
APAP overdose is the predominant cause of acute drug-in-

duced liver injury (DILI) and leads to mitochondrial dysfunction 
and nuclear DNA fragmentation, resulting in necrotic liver cell 
death (Hinson et al., 2010). We used a protocol of NAC-me-
diated protection against APAP-induced acute liver injury, as 
shown in Fig. 1A. The histological examination of liver tissues 
confirmed APAP-induced liver injury with the classical centri-
lobular necrosis (Fig. 1B). However, NAC pretreatment fully 
prevented APAP-induced liver injury (Fig. 1B). APAP exposure 
markedly increased the serum ALT and AST levels, frequently 
used as biomarkers for liver injury, compared to the control 
group (Fig. 1C, 1D). NAC pretreatment significantly sup-
pressed the ALT and AST levels elevated by APAP (Fig. 1C, 
1D). These results indicated that our mouse model of APAP-
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Fig. 2. Characterization of exosomes isolated from individual mouse plasma. (A) A representative electron microscopic image of EVs iso-
lated from the individual mouse plasma from PBS (CON) or APAP-exposed group. Scale bar, 100 nm. (B) Representative immunoblot im-
ages of exosome markers (i.e., CD63 and CD9). (C) Analysis of the size distribution of EVs from CON- or APAP-exposed mice. (D) miRNA 
content of exosomes from PBS (CON) or APAP-exposed mice analyzed by capillary electrophoresis. (E) miRNA content of plasma from 
PBS (CON) or APAP-exposed mice analyzed by capillary electrophoresis. 
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induced hepatotoxicity was successfully established. 

Characterization of APAP-derived exosomes
To confirm the purity of exosomes, we first examined the 

size of CON- and APAP-derived exosomes under electron mi-
croscopy and validated the size range of less than 100 nm 
(Fig. 2A). In addition, identification of isolated exosomes was 
demonstrated by the presence of exosomal biomarkers, CD63 
and CD9 (Fig. 2B). Furthermore, Nanoparticle Tracking Analy-
sis (NanoSight) verified the average size of CON- and APAP-
derived exosomes 93 and 95 nm, respectively (Fig. 2C).

Elevation of circulating liver-specific miR-122, miR-192, 
and miR-155 in APAP-induced liver injury

We first evaluated the profile of total RNA isolated from cir-
culating exosomes by capillary electrophoresis. Compared to 
the plasma, RNA extracted from circulating exosomes did not 
show clear bands of 18S and 28S rRNA, and the RNA content 
of circulating exosomes was selectively enhanced for small 
RNAs, such as miRNAs (Fig. 2D, 2E). We also specifically 
examined the levels of miR-122, miR-192, and miR-155 ex-
pression in circulating exosomes from plasma in mice treated 
with PBS (CON) or APAP. Our results revealed that APAP ad-
ministration markedly increased hepatocyte-specific miRNAs 
(i.e., miR-122 and miR-192) while it modestly elevated inflam-
matory miRNA (i.e., miR-155) in plasma (Fig. 3). Interestingly, 
in APAP-induced liver injury associated with massive hepato-
cyte necrosis, the levels of miR-122, miR-192, and miR-155 in 
circulating exosomes were significantly increased (Fig. 3). To 
further validate the utility of hepatocyte-associated miRNAs 
as potential liver-injury biomarkers, we also studied the effects 
of NAC pretreatment on the levels of exosomal miRNAs. The 
elevated levels of the circulating miR-122, miR-192, and miR-

155 in plasma and exosomes following APAP-treatment were 
significantly decreased and returned to basal levels by NAC 
pretreatment (Fig. 3). These results suggest that miR-122, 
miR-192, and miR-155 in circulating exosomes mirror hepa-
tocyte damage and thus can be used as potential biomarkers 
for liver injury.

Elevation of circulating kidney-specific miR-146a in  
CIS-induced kidney injury

Cisplatin nephrotoxicity is the composite result of the trans-
port of cisplatin into renal epithelial cells, injury to nuclear and 
mitochondrial DNA, activation of a multiple cell death and in-
flammation (Miller et al., 2010). We evaluated the levels of 
circulating miR-146a as the target gene of CIS-induced kidney 
injury because miR-146a is expressed in renal tissues and 
that its elevated expression in kidney and urines was ob-
served in a murine model of chronic kidney disease (CKD) 
(Ichii et al., 2012). To further validate the utility of miR-146a 
as a kidney disease-specific biomarker, we also tested the 
effects of quercetin (QR), which effectively prevented CIS-
induced nephrotoxicity through its strong antioxidant and anti-
inflammatory properties (Sanchez-Gonzalez et al., 2011). His-
tological analyses revealed that CIS caused serious tubular 
damage, while co-treatment with quercetin effectively reduced 
the number of tubular necrosis (Fig. 4A). Quercetin adminis-
tration significantly prevented the CIS-mediated elevation of 
the plasma AST level (Fig. 4B). In addition, circulating plas-
ma and exosomal miR-146a levels, elevated in CIS-induced 
kidney injury, were restored by quercetin administration (Fig. 
4C). Thus, antioxidant quercetin sufficiently blocked some of 
cisplatin-mediated kidney injury and the elevated levels of cir-
culating exosomal and plasma miR-146a. Furthermore, the 
levels of miR-146 in circulating plasma and exosomes were 
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not elevated in APAP-induced liver injury (data not shown). 
Thus, these results support the utility of using exosomal miR-
146a as a potential biomarker of kidney injury.

Elevation of circulating muscle-specific miR-206 in  
BPVC-induced muscle injury

To further support our hypothesis of using miRNAs as po-
tential biomarkers for tissue-specific injury, we also determined 
the levels of circulating plasma and exosomal miR-206 in a 
mouse model of bupivacaine hydrochloride (BPVC)-mediated 
muscle injury. Here, using BPVC-induced muscle necrosis, 
where the sequences of fiber breakdown are similar to that of 
progressive muscular dystrophy (Nonaka et al., 1983). Histo-
logical analyses confirmed muscle injury after BPVC exposure 
(Fig. 5A). To assess the changes of muscle-specific miR-206 
in the plasma and exosomes, we evaluated the expression of 
skeletal troponin I, known as a muscle injury marker protein, in 
the plasma from mice under BPVC-induced muscle injury. We 
observed the amounts of plasma troponin I were significantly 
elevated by BPVC exposure (Fig. 5B). Furthermore, the lev-
els of plasma and exosomal miR-206 were markedly elevated 
in mice under BPVC-induced muscle injury (Fig. 5C). These 
results, observed for the first time, also validate the utility of 
using exosomal miR-206 as a potential biomarker of muscle 
injury.

DISCUSSION

MicroRNAs are expressed within cells in a tissue-specific 
manner and have been recently reported to be remarkably 
stable in plasma. Different miRNAs have emerged as fine 

regulators of gene function and their presence in various body 
fluids identifies them as attractive potential biomarkers of dis-
ease states (Etheridge et al., 2011). Extracellular miRNAs are 
associated with Ago complexes or packaged inside exosomes 
in cell lines or in healthy human plasma (Hu et al., 2012; Ohno 
et al., 2013). Although the identities, expression and functional 
roles of miRNAs have been extensively studied in the past, 
the content and role of a specific miRNA in circulating exo-
somes as potential biomarkers for tissue-specific injury have 
not been extensively evaluated. In fact, little is known about 
the fate of extracellular miRNAs after exposure to an organ-
specific toxicant and their usage as potential biomarkers for 
tissue injury. Therefore, this study was aimed to examine the 
alterations of specific miRNAs in both circulating plasma and 
exosomes in the mouse models of drug-induced liver, kidney, 
or muscle injury. For the first time, our results showed that 
the levels of respective miRNAs in circulating plasma and 
exosomes were elevated in a few experimental models of 
drug-induced tissue injury. Our results also demonstrated that 
specific miRNAs may be able to detect hepatotoxicity, neph-
rotoxicity and myotoxicity in an organ-specific manner, since 
the elevated levels of plasma and exosomal kidney-specific 
miR-146 were not observed in APAP-induced liver injury, sug-
gesting a tissue-specificity of a target miRNA.

For instance, we demonstrated that miR-122, miR-192, and 
miR-155 expression in circulating exosomes were elevated 
in a mouse model of APAP-induced liver injury. However, the 
potential usefulness and mechanisms underlying changes in 
liver expression of specific miRNA species, such as miR-122 
and miR-192, which are enriched in liver tissue, remain to be 
elucidated. miR-155 is present in immune cells and hepato-
cytes (Faraoni et al., 2009). A recent study demonstrated in-
creased miR-122 in the plasma of APAP-overdosed humans 
(Starkey Lewis et al., 2011). The authors reported time-depen-
dent increases in plasma miR-122, miR-155, and miR-125b 
following APAP treatment (Wang et al., 2009). In addition, 
miR-122 and miR-155 are associated with exosome-rich frac-
tions in a mouse model of alcohol- and inflammation-induced 
liver damage (Kaplowitz, 2005). N-acetylcysteine (NAC) was 
used to prevent APAP-induced hepatotoxicity (Chun et al., 
2009). Ward and colleagues reported that NAC was effec-
tive at decreasing the elevated levels of circulating miRNAs 
in murine models of ischemic hepatitis and may be useful in 
other hepatotoxic conditions (Ward et al., 2014). Importantly, 
the levels of liver specific miRNAs were restored by NAC treat-
ment used as an APAP antidote. These findings suggest that 
miRNAs become sensitive diagnostic biomarkers for liver in-
jury in pre-clinic and clinic contexts.

The kidney-specific miR-146a was first identified in the im-
mune system, where it regulates the mammalian response to 
microbial infection (Taganov et al., 2006). Additionally, Huang 
et al. (2014) reported that miRNA-155 and miR-146a were in-
creased in the kidney tissues from patients with diabetic ne-
phropathy and contribute to inflammation-mediated glomeru-
lar endothelial injury. Quercetin is one of the most abundant 
flavonoids in the human diet and exerts many beneficial ef-
fects on human health via its antioxidant properties and other 
effects (Boots et al., 2008). Lopez-Novoa and coworkers re-
ported that quercetin markedly prevented cadmium- or cispl-
atin-induced nephrotoxicity, through its strong antioxidant and 
anti-inflammatory properties (Morales et al., 2006a, 2006b; 
Sanchez-Gonzalez et al., 2011). In our results, the amounts 
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of kidney-specific miRNA miR-146a in circulating exosomes 
were increased in a mouse model of CIS-induced kidney in-
jury and its levels were returned to basal levels by quercetin 
(QR) treatment. Therefore, miR-146a is likely to represent a 
potential biomarker for drug-induced kidney injury, although 
further studies are needed to investigate function of miRNA, 
including miR-146a, in drug-induced kidney injury. 

The skeletal muscle-specific miR-206 is required for ef-
ficient regeneration of neuromuscular synapses after acute 
nerve injury, and the absence of miR-206 accelerates disease 
progression of amyotrophic lateral sclerosis (ALS) in mice 
(Williams et al., 2009). Muscle-specific miRNA, miR-206 and 
other miRNAs (e.g., miR-1 and miR-133) induce expression 
of myogenic marker proteins after skeletal muscle injury and 
may play a crucial role in the regulation of muscle develop-
ment and homeostasis (Nakasa et al., 2010). Liu et al. (2012) 
reported an essential role of miR-206 in satellite cell differen-
tiation during skeletal muscle regeneration and indicated that 
miR-206 slows progression of Duchenne muscular dystrophy. 
To the best of our knowledge, our results represent the first re-
port that identify circulating exosomal miR-206 as a potential 
biomarker of muscle injury in mice treated with BPVC.

Taken together, our current results demonstrated that spe-
cific miRNAs in circulating plasma and exosomes can be used 
as potential biomarkers for monitoring drug-induced liver, 
kidney, or muscle injury. However, the mechanism by which 
organ-specific miRNAs in circulating exosomes are elevated 
remains to be investigated. Our results with murine models 
of drug-induced tissue injury need to be further verified in ap-
propriate human disease specimens.
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