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Abstract: Diabetes, being a metabolic disease dysregulates a large number of metabolites and factors.
However, among those altered metabolites, hyperglycemia is considered as the major factor to
cause an increase in oxidative stress that initiates the pathophysiology of retinal damage leading
to diabetic retinopathy. Diabetes-induced oxidative stress in the diabetic retina and its damaging
effects are well known, but still, the exact source and the mechanism of hyperglycemia-induced
reactive oxygen species (ROS) generation especially through mitochondria remains uncertain. In this
study, we analyzed precisely the generation of ROS and the antioxidant capacity of enzymes in a
real-time situation under ex vivo and in vivo conditions in the control and streptozotocin-induced
diabetic rat retinas. We also measured the rate of flux through the citric acid cycle by determining
the oxidation of glucose to CO2 and glutamate, under ex vivo conditions in the control and diabetic
retinas. Measurements of H2O2 clearance from the ex vivo control and diabetic retinas indicated
that activities of mitochondrial antioxidant enzymes are intact in the diabetic retina. Short-term
hyperglycemia seems to influence a decrease in ROS generation in the diabetic retina compared to
controls, which is also correlated with a decreased oxidation rate of glucose in the diabetic retina.
However, an increase in the formation of ROS was observed in the diabetic retinas compared to
controls under in vivo conditions. Thus, our results suggest of diabetes/hyperglycemia-induced
non-mitochondrial sources may serve as major sources of ROS generation in the diabetic retina as
opposed to widely believed hyperglycemia-induced mitochondrial sources of excess ROS. Therefore,
hyperglycemia per se may not cause an increase in oxidative stress, especially through mitochondria
to damage the retina as in the case of diabetic retinopathy.

Keywords: retina; diabetes; hyperglycemia; oxidative stress; metabolism

1. Introduction

Diabetes is an endocrinological disorder that dysregulates several metabolic processes
and so forth alters the levels of a multitude of metabolites and signaling molecules, ei-
ther due to lack of insulin or insulin signaling. Apart from the altered metabolites of
carbohydrate, lipids, and amino acids, an increasing number of other biomolecules and
hormones including hydroxy acids, pyrimidines, arginine, proline, various peptides, and
growth factors have all been found to be altered, making the pathophysiology of diabetes
extremely complex [1–6]. However, over the years, an increasing amount of research has
been dedicated to diabetes-induced hyperglycemia, the hallmark of diabetes as the major
factor involved in the etiology of diabetes and its complications [7–11]. Hyperglycemia
has been widely considered as the main trigger that initiates the dysregulation of various
anabolic and catabolic pathways within cells, thereby inducing cellular damage that leads
to various complications of diabetes including diabetic retinopathy, the leading cause of
blinding disease worldwide [4,5,12].

Numerous studies have reported mechanisms of hyperglycemia stimulated biochem-
ical abnormalities in the diabetic retina including stimulation of protein kinase C, glyca-
tion, polyol formation, and hexosamine synthesis that induce oxidative stress, ultimately
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leading to cellular damage [10,13–15]. Besides, many investigators reported that diabetes-
induced hyperglycemia stimulates glycolysis and tricarboxylic acid cycle fluxes that in-
crease NADH/NAD+ ratios both in the cytosol and mitochondria of the cells [8,9,16–19].
This in turn increases electron disposal at the electron transport chain which, thereby
produces superoxide radicals by partial reduction of oxygen [20,21]. These findings were
partly supported by an increased level of reactive oxygen species (ROS) found in the retina
of diabetic animals [8,22], and also in isolated Müller and endothelial cells once exposed
to hyperglycemic conditions [23]. In contrast, we and others did not support the hyper-
glycemic induced fluxes that may generate surplus NADH to generate excess superoxide
radicals in the diabetic retina and cultured endothelial cells [24–26]. We believe that the
discrepancies in results might be primarily due to the difference in the methodologies, as
most of the investigators measured the metabolites and generation of free radicals either
by using frozen tissues of diabetic animals or in the isolated diabetic retinas incubated
without high glucose [8,22,27]. Since oxygen free radicals are extremely short-lived and
their generation in an intact retina requires adequate oxygen tension in the incubation
buffer. Due to these impediments, proper techniques and physiological conditions are
warranted to measure the exact level of oxygen-free radicals in diabetic retinas.

Moreover, several researchers have reported excess free radicals being generated in
cultured retinal cells under hyperglycemic conditions [7,9,28,29], which may not correlate
with the results of the intact retina, since isolated cells cannot depict the exact pathophysi-
ology as in the case of the whole retina; although increased ROS levels and their damaging
effects are well known in the diabetic retina [9,30–32], their source and the mechanism of
increasing ROS is still uncertain. Therefore, in this study, we adopted a unique experi-
mental approach and techniques to measure precisely the generation of free radicals in a
real-time situation under hyperglycemic and diabetic conditions in the intact rat retina. We
analyzed the ROS generation in the control and diabetic retinas under in vivo and ex vivo
experimental conditions, and a comparison was made between them to elucidate the basis
of oxidative stress concerning hyperglycemia in diabetic retinopathy.

2. Materials and Methods
2.1. Animals

Wister albino rats were used in this study. Rats were housed under controlled con-
ditions (25 ◦C; 12-h light–dark cycle) and allowed to have free access to food and water.
The rats aged 8–9 weeks, weighing 260–290 g were used to make them diabetic using
streptozotocin (STZ) from Sigma (St. Louis, MO, USA). A single intraperitoneal injec-
tion of STZ (65 mg/kg body weight) freshly prepared in 50 mM citrate-buffered solution
(pH 4.5) was induced to each rat. Age-matched control rats were injected with an equal
amount of the citrate buffer. Diabetes was confirmed by measuring blood glucose levels
of more than 250 mg/dL. Retinal experiments were carried out either after 5 or 10 weeks
of STZ-injections. Rats were routinely treated following the guidelines of the National
Institutes of Health. All experimental procedures and protocols were under the Association
for Research in Vision and Ophthalmology (ARVO) recommendations to the Care and
Use of Experimental Animals. The experimental animal protocol has been approved by
the Experimental Animal Care committee (approval number KSU-SE-21-04 ), King Saud
University, Riyadh, Saudi Arabia.

2.2. Isolation of the Retinas and Incubation Conditions for Metabolic Studies

The 10 weeks STZ-diabetic and age-matched controls rats were anesthetized with
ketamine-xylazine (53 mg ketamine, 5.3 mg xylazine/kg). Retinas from rats were dissected
from excised eyes and the metabolic experimental protocol was followed according to
our previously published methods with a slight modification [24]. [U-14C]glucose was
purchased from New England Nuclear Life Science Products (Boston, MA, USA) for
metabolic studies. First, each freshly excised intact retina from control and diabetic rats
was preincubated for 3 min at 37 ◦C in 1 mL Krebs bicarbonate buffer (20 mM HEPES,
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pH 7.4, 118 mM NaCl, 4.7 mM KCl, 2.5 mM CaCl2, 1.2 mM KH2PO4, 1.17 mM MgSO4,
25 mM NaHCO3, with 5 or 20 mM glucose, equilibrated with 95% O2-5% CO2, pH 7.4)
to metabolically recover the retina after removal from the animals [33]. Incubation was
initiated by the addition of approximately 5 µCi [U-14C]glucose and terminated at 30 min
by the addition of 20% perchloric acid (final concentration 2%). To evaluate CO2 and
glutamate formation, incubation in the buffer was carried out under euglycemic (5 mM
glucose) or hyperglycemic (20 mM glucose) conditions. A total of five control and diabetic
rats were used in this study.

2.3. Oxidation of Glucose to CO2

To measure the oxidation of glucose to CO2, retinas from control and diabetic rats were
incubated in 1 mL of Krebs buffer under euglycemic and hyperglycemic conditions at 37 ◦C
in glass vials with the addition of [U-14C]glucose as described above, and a trap containing
fluted filter paper was inserted in the vials. Immediately, the vials were sealed from the
atmosphere. After 30 min, reactions were stopped by injecting 100 µL of 20% perchloric
acid into the incubation buffer, and 100 µL of 1 N NaOH in the traps. 14CO2 formed by
glucose oxidation reaction was allowed to diffuse out of the acidified samples and trapped
in the filter paper traps soaked with NaOH. The filter paper traps were immersed in liquid
scintillation fluid and counted after shaking for several hours. The disintegrations per
minute of trapped 14CO2 in the filter paper are divided per milligram of retinal protein
and by the specific activity of 14C-glucose to get values for 14CO2 formation per minute
per milligram of protein.

2.4. Oxidation of Glucose as a Measure of Glutamate Formation

After incubating with [U-14C]glucose in the control and diabetic retinas, reactions were
stopped by adding perchloric acid as described above. Retinas were homogenized and
centrifuged to separate precipitated protein and the supernatant containing [14C]glutamate.
The supernatant was neutralized and chromatographed using Dowex-1 acetate columns to
separate glutamate with acetic acid [33]. The eluted [14C]glutamate from the column was
quantitated by scintillation counting. The radiolabeled 14C-glutamate counts per minute
divided by milligrams of retinal protein and by the glucose-specific activity permits to cal-
culate the glutamate formation from glucose. Protein pellets obtained after centrifugation
of retinal extract were sonicated in NaOH (0.5 mL of 1 M) and assayed for protein using
the Bio-Rad reagent.

2.5. The Rate of H2O2 Clearance in the Excised Control and Diabetic Rat Retinas

The rate of intracellular H2O2 formation depends upon pro-oxidant superoxide dismu-
tase (SOD), while its removal depends upon antioxidant catalase and peroxidases. H2O2
formed by SOD is removed by the catalase and peroxidases, which convert it into water.
The rates of disposal of H2O2 by antioxidant enzymes were determined under ex vivo
conditions in the excised whole retina of 5 and 10 weeks diabetic and age-matched control
rats. Each of the freshly excised retinae from both groups of rats was first preincubated for
3 min at 37 ◦C in glass vials with 600 µL Krebs bicarbonate buffer, pH 7.4 containing 20 mM
HEPES, 118 mM NaCl, 4.7 mM KCl, 2.5 mM CaCl2, 1.2 mM KH2PO4, 1.17 mM MgSO4,
25 mM NaHCO3, 5 mM glucose equilibrated with 95% O2-5% CO2 to allow the retina to
adapt to the buffer. After 3 min, the preincubated buffer was replaced with 600 µL fresh
Krebs bicarbonate buffer with either 5 mM glucose (euglycemic) in case of control retinas
and 20 mM glucose (hyperglycemic) for diabetic retinas. The reaction was allowed until
30–40 min with the addition of 5µM H2O2. At every 5–10 min intervals, an aliquot of 50 µL
was collected from each incubation vial to assay for H2O2 using Fluoro H2O2

TM kit (Cell
Technology, Mountain View, CA, USA), following the company instructions. The H2O2
kit employs a non-fluorescent reagent to be oxidized by H2O2 to produce a fluorescent
product, resorufin. The collected aliquot samples were assayed fluorometrically using
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excitation at 570, and emission at 590 nm wavelengths with a plate reader (Spectra-Max
Plus; Molecular Devices, Sunnyvale, CA, USA).

In another set of experiments, an inhibitor of catalase, 3-aminotriazole (3-AT) was
used to influence the rate of disposal of H2O2 by the excised control and diabetic retinas.
Each retina was preincubated with 2 mM 3-AT in the Krebs bicarbonate buffer, 30 min
before the addition of H2O2. The reaction was initiated with the addition of 5 µM H2O2 in
the incubation buffer and at every 5–10 min intervals, 50 µL aliquots were collected from
the buffer to measure the concentration of H2O2. After completion of the reactions, retinas
were sonicated in 1 mL 50 mM phosphate buffer, pH 7.0 containing 0.1% SDS, and then
centrifuged to obtain a supernatant. Total protein in the supernatant was measured using
the Lowry method [34]. Disposal rates of H2O2 by the retina are expressed as % of H2O2
disposal/mg of protein.

2.6. The Measurement of the Level of H2O2 in the Excised Control and Diabetic Retinas

The level of H2O2 was determined under ex vivo conditions in the excised retinas
from 10 weeks diabetic and control rats, under euglycemic and hyperglycemic conditions.
Each of the freshly excised retinae from both groups of rats was separately preincubated at
37 ◦C in glass vials with 600 µL Krebs bicarbonate buffer as described above, containing
5 or 20 mM glucose equilibrated with 95% O2-5% CO2. In separate experiments, retinas
were treated with 10 µM CuSO4. CuSO4 is known to catalyze the production of H2O2 and
lowers the activity of catalase and glutathione peroxidase [35,36]. Aliquots of 100 µL from
the reaction vials were collected after 15 and 30 min of incubation to measure the H2O2
generation in the retinas using the Fluoro H2O2 kit. After reactions, retinas were processed
for protein estimation as described above. Results from H2O2 generation in the retina were
presented as relative fluorescence unit/mg of protein.

2.7. The Measurement of ROS in the Excised Control and Diabetic Rat Retina

The fluorogenic marker CM-H2DCFDA (molecular probe) that passively diffuses into
cells was used to measure ROS generation in the retina. Oxidation of CM-H2DCFDA yields
fluorescent adducts that are trapped inside the cell. Fluorescent assay of the intracellular
adducts provides a measure of ROS. Thus, the level of ROS was determined in the excised
retinas from 10-week diabetic and age-matched control rats. Each of the freshly excised
retina from diabetic and control rats was incubated at 37 ◦C in glass vials with 1 mL Krebs
bicarbonate buffer equilibrated with 95% O2-5% CO2, along with 5 or 20 mM glucose and
freshly made 10 µM CM-H2DCFDA. After 30 and 60 min of incubations, the retinas were
separated and washed in cold 50 mM phosphate buffer saline. Then, those retinas were
briefly sonicated in 300 µL 20 mM HEPES buffer, pH 7.4 containing 0.1% SDS. The retinal
homogenate was centrifuged, and 100 µL supernatant immediately assayed fluorometri-
cally at excitation and emission wavelengths of 485 and 538 nm, respectively. The level of
ROS in the retina was presented as oxidized H2DCFDA fluorescence units/retina.

2.8. The Measurement of ROS under In Vivo Conditions in the Rat Retina

To measure the level of ROS in the 10 weeks diabetic and age-matched control retinas
of live rats, a fresh stock solution (2.16 mM) of CM-H2DCFDA was made in DMSO,
and 3 µL of the dye was injected intravitreally into the eye cavities of anesthetized rats
according to our recently published method [37]. After six hours of injections, rats were
anesthetized, retinas dissected, and immediately washed with cold phosphate buffer saline.
Then, the retinas were homogenized by sonication in 300 µL of 20 mM HEPES buffer, pH
7.4 containing 0.1% SDS. The retinal homogenate was centrifuged, and 100 µL supernatant
assayed fluorometrically. A comparison of the in vivo ROS level was made between the
control and diabetic retina.

Additionally, we made three groups of control rats. In the first group, only 5 µL (2 µL
saline + 3 µL of CM-H2DCFDA) was intravitreally injected into the retina. In the second
group of rats, we intravitreally injected lipopolysaccharide (LPS, 1 µg/2 µL; plus, CM-



Cells 2021, 10, 794 5 of 15

H2DCFDA, 3 µL), and in the third group, diamide (2 µL/eye, 1 mM; plus, CM-H2DCFDA
3 µL) was injected. Lipopolysaccharide (LPS) is a well-known endotoxin to causes in-
flammation and increases the ROS level. Diamide is also known to increase oxidative
stress by oxidizing glutathione [38]. After injections, the three groups of rats were housed
overnight. After 16 h of injection, they were anesthetized, retinas dissected, washed in
cold phosphate buffer saline, and sonicated in the 20 mM HEPES buffer, pH 7.4 containing
0.1% SDS, and processed as described above to assay the oxidized H2DCFDA fluorescence
in each retina. Total retinal protein in the supernatant of each retina was measured. The
level of oxidized fluorescence reflected the level of ROS in the retina, which is presented
as fluorescence units/mg of retinal protein. The extent of the fluorescence level in the
retina of three groups of control rats injected with; H2DCFDA alone, H2DCFDA + LPS,
and H2DCFDA + diamide, were compared.

2.9. Statistical Analysis

Data are presented as means ± standard error of the mean (SEM). p-values less than
0.05 were considered significant. Statistical analyses were conducted by an unpaired,
two-tailed Student t-test.

3. Results
3.1. Glucose Oxidation under Ex Vivo Condition in the Control and Diabetic Retina

We analyzed the influence of hyperglycemia and diabetes on flux through the citric
acid cycle by measuring CO2 and glutamate production. The production of 14CO2 from [U-
14C]glucose was measured in the 10 weeks control and diabetic rat retinas incubated with 5
or 20 mM glucose, respectively (Figure 1A). The rate of 14CO2 production was significantly
decreased in diabetic rat retinas compared to controls when exposed to either 5 or 20 mM
glucose (p < 0.01). Interestingly, there was also no significant influence of hyperglycemia on
the rates of CO2 production in the controls compared to euglycemic exposure. Similarly, no
significant change was observed between hyperglycemic and euglycemic diabetic retinas.
Furthermore, the rate of [14C]glutamate formation modestly decreased in diabetic retinas
compared to controls both under euglycemic and hyperglycemic conditions as shown in
(Figure 1B); besides, no significant difference in the rate of glutamate formation in the con-
trol or diabetic retinas was observed under hyperglycemic and/or euglycemic conditions.
The rate of glutamate formation reflected the differences seen in CO2 production. Both CO2
and glutamate data are related because both are tricarboxylic acid cycle fluxes. Therefore,
despite the excess glucose in the diabetic retinas, they oxidized less glucose to CO2 and
glutamate as compared to euglycemic controls.

3.2. Rates of Clearance of H2O2 under Ex Vivo Condition in the Control and Diabetic Retinas

We measured the rate of clearance of H2O2 in the 5 and 10-week diabetic and age-
matched control rat retinas. First, we optimized the concentration of H2O2 for the clearance
experiments, and 5 µM of H2O2 was found to be appropriate, as this concentration did
not saturate under our experimental conditions. After applying 5 µM of H2O2 to 5 weeks
excised control and diabetic retinas incubated under euglycemic and hyperglycemic con-
ditions respectively, the level of H2O2 started to disappear linearly for at least 10 min in
both groups. There was an insignificant difference in the H2O2 disposal between control
and diabetic retina (Figure 2). The H2O2 clearance followed the first-order kinetics with an
apparent 14 min half-life as calculated from the semi-logarithmic plot of the data (Figure 2,
Insert). Furthermore, to analyze the influence of the duration of diabetes on the rates of
H2O2 disposal, 10 weeks hyperglycemic-diabetic, and age-matched control rat retinas were
employed. The rates of disappearance of H2O2 indicated a slight increase in the disposal
rate of 10 weeks of diabetic retinas compared to euglycemic controls (Figure 3). The slope
of the straight lines obtained from the logarithmic plot indicated rates of H2O2 clearance
in the euglycemic control and hyperglycemic diabetic rat retinas (Figure 3, Insert). In the
absence of retina but under similar conditions, the concentration of H2O2 in the incubation
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buffer remained constant for at least 40 min. An inhibitor of catalase, 3-aminotriazole
(3-AT) was used to discriminate between the involvement of the two groups of antioxidant
enzymes (catalase and glutathione peroxidase) for detoxification of H2O2 in both 5 and
10 weeks, control and diabetic retinas [39]. Surprisingly, no significant influence of catalase
inhibitor on the rates of H2O2 disposal was observed in all the groups of control and
diabetic rat retinas.

Figure 1. Glucose oxidation in the diabetic rat retinas. Retinas from 10-week diabetic rats and
their controls were incubated in the buffer with 5 or 20 mM glucose at 37 ◦C for 30 min. Rates of
the production of 14CO2 and 14C-glutamate in retinas were measured as described in the method
section. (A). Oxidation of glucose to CO2 in diabetic retinas significantly decreased compared to
control retinas (* p < 0.05, control vs. diabetic at 5mM glucose; and # p < 0.05, control vs. diabetic at
20 mM glucose). (B). Rate of glutamate synthesis in diabetic retina moderately decreased compared
to controls incubated with 5 or 20 mM glucose. Rates of CO2 and glutamate were measured as
nmoles/min/mg of retinal protein. Data are expressed as means ± SEM (n = 6 for each).
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Figure 2. Clearance of H2O2 by the 5 weeks excised control and diabetic retina under euglycemic and hyperglycemic
incubation conditions. Control retinas were incubated in the buffer with 5 mM glucose ± 3-aminotriazole (3-AT), and
diabetic retinas with the buffer containing 20 mM glucose ± 3-AT. The retinas were pre-incubated for 30 min in the
incubation buffer with or without 3-AT. Clearance reactions by the retinas started with the addition of 5 µM H2O2. Insert:
semi-logarithmic representation of the data obtained during the 30 min period. The half-lives are approximately 14 and 15
min, in the control and diabetic retina, respectively. No significant change in the rate of disposal was observed in the case of
3-AT treatments in both control and diabetic retinas. The content of the retinal protein was determined for each incubation.
Values are means ± SEM for 5 determinations (n = 5 for each). (C) control; (D) diabetic; AT (aminotriazole).

Figure 3. Clearance of H2O2 by 10 weeks excised control and diabetic retina under euglycemic and hyperglycemic incubation
conditions. Control retinas were incubated in the buffer containing 5 mM glucose ± 3-AT and diabetic retinas with the
buffer containing 20 mM glucose ± 3-AT. The retinas were pre-incubated for 30 min in the incubation buffer with or without
3-AT. Clearance reactions by the retinas started with the addition of 5 µM H2O2. Insert: semi-logarithmic representation
of the data obtained during the 30 min period. The half-lives are approximately 10 and 9 min, in the control and diabetic
retina, respectively. No significant change in the H2O2 disposal rate was observed in the case of 3-AT treatments in both
control and diabetic retinas. Values are means ± SEM for 5 determinations (n = 5 for each).
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3.3. H2O2 Levels under Ex Vivo Conditions in Control and Diabetic Rat Retinas

We were not successful in the measurement of the level of H2O2 in the control and
10 weeks of diabetic rat retinas under ex vivo conditions even after 30 min of incubation
under hyperglycemic conditions. However, a robust increase in the level of H2O2 was de-
tected in the incubation buffer when retinas were treated with 10 µM CuSO4. A significant
increase in the level of H2O2 was observed in the hyperglycemic diabetic retinas compared
to euglycemic controls as soon as after 15 min of CuSO4 treatments (Figure 4). Moreover,
the level of H2O2 did not increase further and remained persistent until 30 min of CuSO4
treatments, indicating a complete inactivation of antioxidant enzymes in the retina within
15 min of CuSO4 treatments.

Figure 4. Effect of CuSO4 on the H2O2 level in excised control and diabetic rat retinas. 10-week diabetic retinas were
incubated in Krebs bicarbonate buffer with 20 mM glucose, and their age-matched euglycemic controls were incubated with
5 mM glucose. H2O2 measurement was done in the buffer after 15 and 30 min of 10 µM CuSO4 treatments. The content
of the retinal protein was determined for each incubation. Values are means ± SEM for 5 determinations (n = 5 for each).
*,# p < 0.05, diabetic versus control retina.

3.4. ROS Levels under Ex Vivo Conditions in the Rat Retinas

The level of ROS was measured using CM-H2DCFDA dye (10 µM) in the excised
control and 10 weeks diabetic retina, under euglycemic and hyperglycemic incubation
conditions. We measured oxidized H2DCFDA fluorescence in the retina. As shown in
Figure 5, there was a low endogenous ROS level detected in the hyperglycemic diabetic
retinas after 30 and 60 min of incubation as compared to euglycemic controls. However,
the difference in fluorescence was more evident after 60 min in the hyperglycemic diabetic
retina compared to euglycemic controls. Contrary to several previous studies, our study
shows that hyperglycemia seems to influence a decrease in the ROS level in the diabetic
retina compared to euglycemic control retinas.
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Figure 5. Measurement of oxidative stress in excised control and diabetic retina using fluorescent ROS indicator. Excised
retinas from 10 weeks control and diabetic retinas were incubated in the Krebs bicarbonate buffer with 10 µM CM-H2DCFDA
for 30 and 60 min. The fluorescence intensity of oxidized H2DCFDA was measured within the retina as described in the
method section. Fluorescence from oxidized H2DCFDA in the retina is proportional to ROS. Data are expressed as
means ± SEM (n = 5–6 for each). *,# p < 0.05, diabetic versus control retina.

3.5. ROS Level under In Vivo Conditions in the Control and Diabetic Rat Retina

To measure the ROS production in retinas under in vivo conditions, we employed in-
travitreal injection of the “precursor” dye, carboxy-H2DCFDA. The dye passively diffused
into the rat retina. The intracellular ROS formed, oxidized the trapped precursor dye in
rat retinas which was measured as described in the above method section. The relative
fluorescence unit was considered to be proportional to the level of ROS [40]. The fluores-
cence data from 10 weeks control and diabetic rat retinas are presented in Figure 6. The
relative fluorescence was found to be more than 2-fold in the diabetic retinas as compared
to controls. To validate this in vivo measurement of ROS in the rat retinas, we injected LPS
and diamide as positive controls. Indeed, after 16 h of injection, both LPS and diamide
caused a significant increase in the level of ROS as reflected by an increase in the oxidized
dye fluorescence trapped inside the retina compared to only dye-injected retinas.
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Figure 6. Measurement of the ROS levels in rat retinas under in vivo conditions. Rats were intrav-
itreally injected with either CM-H2DCFDA or LPS or diamide as described in the method section.
The extent of the oxidized fluorescence and retinal protein were measured in each excised retina,
which is presented as fluorescence units/mg of retinal protein. (A). Control (C) vs. diabetic retina
(D): * p < 0.01. (B). Control retina: * p < 0.01, H2DCFDA vs. (H2DCFDA + LPS); # p < 0.01, H2DCFDA
vs. (H2DCFDA + Diamide). Values are expressed as means ± SEM (n = 5–6 for each).

4. Discussion

The purpose of this study was to investigate oxidative stress in the rat retinas due to
hyperglycemic and diabetic conditions that may cause long-term retinal damage, leading
to diabetic retinopathy. To achieve this, we first studied the glucose oxidation to CO2 and
glutamate under ex vivo conditions in the excised control and diabetic rat retinas using
radiolabeled 14C-glucose. We measured the rate of CO2 and glutamate formation in retinas,
which gives a measure of the rate of flux through the citric acid cycle. Secondly, we mea-
sured the antioxidant activity by hydrogen peroxide disposal and free radical generation
in the excised intact retinas from control and diabetic rats under ex vivo experimental
conditions, treated with euglycemic and hyperglycemic conditions. Finally, we employed
in vivo techniques to analyze free radical generation in both control and diabetic rats by
intravitreal injection of fluorogenic cell-permeant marker CM-H2DCFDA, as the oxidized
fluorescent product of the dye gives a measure of intracellular level of ROS generation in
the retina.

Several investigators proposed that a high serum level of glucose in diabetes increases
intracellular levels of glucose, which in turn increases the glucose metabolism by inducing
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the rate of glycolysis. This is followed by an increase in citric acid fluxes that consecutively
floods the mitochondria with excess reduced electron carriers (NADH) to increase the
accumulation of ROS [7,28,29]. This mechanism of hyperglycemia-induced excess ROS
generation has been widely accepted. However, our previous metabolic studies in the
ex vivo rat retinas, using unique radio-isotopic techniques, indicated a decreased flux of
glycolytic and citric acid cycle intermediates in diabetic retinas, which did not support
an increase in ROS by mitochondria under hyperglycemic conditions [24]. We and others
have been using the ex vivo retina or tissues, especially for metabolic studies, for a long
time which is quite recognized in the field. Similarly, in this study, we measured glucose
oxidation and oxidative stress parameters in the ex vivo retina of control and diabetic
rats. We found a decreased rate of glucose oxidation, as evidenced by a reduced level of
CO2 and glutamate in the diabetic retina. This indicates that the mitochondrial electron
transport chain may not be under the influence of high electron pressure to escape electrons
to make excess ROS. Thus, our studies negate the generation of excess ROS through
mitochondria under hyperglycemic conditions in the diabetic rat retinas as opposed to
several previous studies [8,9,11,16–19]. Generally, mitochondria through the electron
transport system generate a major part of cellular ROS, but the production is low under
normal conditions. However, due to the excess level of NADH, some electrons released
might not get reduced to O2 and H2O. Thus, these escaped electrons generate superoxide
and oxygen free radicals [20,21]. Moreover, if oxygen free radicals are generated in excess,
they are instantly detoxified by mitochondrial antioxidant enzymes to harmless products.
Hydrogen peroxide, a powerful oxidizing agent which is generated by mitochondrial
superoxide dismutase can be detoxified by catalase and peroxidase enzymes to water
molecules. In this study, we measured the antioxidant capacity of these enzymes in terms
of H2O2 disposal in the retina of two aged groups (5 and 10 weeks) of control and STZ-
diabetic rats under ex vivo conditions. Interestingly, we found a similar activity of H2O2
detoxifying enzymes in the control and diabetic retinas from both groups of rats even after
diabetes is prolonged. Thus, contrary to a few previous studies [8,16,17,41–43], our study
suggests that there is little to no influence of diabetes or the short-term duration of diabetes
(5–10 weeks) on the antioxidant capacity of mitochondrial enzymes, as evident from the
rate of disposal of H2O2 in the rat retinas. This is partly supported by the Obrosova
group, who reported that catalase activity was high, but not low in diabetic rat retina [44].
Moreover, after treating retinas with 3-aminotriazole (a specific inhibitor of catalase), no
difference in the rates of H2O2 disposal was found between control and diabetic retinas
of the two groups of rats. This suggests the possibility of a major role of peroxidases,
other than catalase in the degradation of H2O2. A study by Makino et al. reported that
glutathione peroxidase detoxifies H2O2 at a concentration below 10 µM, as we only used 5
µM H2O2 in our experiment, whereas catalase contributes at a higher concentration [45].
Our results further suggest the existence of a strong antioxidant system in the retina to
detoxify excess H2O2, if generated in the case of diabetic retinas. Also, the measurement
of H2O2 level in the ex-vivo rat retinas indicated that the concentration of H2O2 was
too little to be detected by our H2O2 kit. For this reason, we exposed the excised retina
with CuSO4, a known inhibitor of catalase and peroxidases to induce the production of
H2O2 [35,36]. Indeed, after exposing the retinas with CuSO4, a robust increase in H2O2
generation was observed. Interestingly, a significant increase in the level of H2O2 was
observed in the hyperglycemic diabetic retinas compared to euglycemic controls, and the
difference remained unchanged after prolonged incubation. These results suggest that
antioxidant enzymes (catalase, peroxidases) became inactivated by CuSO4, but on the other
side, SOD appears to be relatively activated in the diabetic retinas to generate an increased
level of H2O2 as compared to non-diabetic controls. We speculate that the increase in
H2O2 is not due to hyperglycemia-induced excess pressure on mitochondria, rather due
to diabetes-induced non-mitochondrial sources such as by activation of xanthine oxidase,
NADPH oxidase, and peroxisomes in the cell.



Cells 2021, 10, 794 12 of 15

Next, we employed the fluorescent CM-H2DCFDA dye to analyze the ROS generation
in the excised control and diabetic retina, under euglycemic and hyperglycemic incubation
conditions. CM-H2DCFDA dye passively diffused inside the cells and the extent of the
oxidized fluorescent product of the dye corresponding to the intracellular level of ROS
generation [40]. Surprisingly, a significantly low endogenous ROS level was detected in the
diabetic retinas under hyperglycemic conditions as compared to euglycemic controls. This
is further supported by our recent in vitro studies using cultured rat retinal cells (Muller
and endothelial cells), where we found a significantly low ROS level when cells were treated
with high glucose (25 mM) as compared to euglycemic conditions (Unpublished data).
This observation is supported by a few other studies reporting that pyruvate, the glycolytic
product of glucose is a strong antioxidant and protects the retina and retinal cells under
diabetic conditions [46,47]. Thus, contrary to several previous studies, hyperglycemia
seems to influence a decrease in the ROS generation in the excised diabetic retina compared
to euglycemic controls.

Our next aim was to measure the ROS generation under in vivo conditions in the
intact control and diabetic rat retina by intravitreal injection of CM-H2DCFDA, for which
we successfully adopted the method recently published [37]. As expected, when rats were
intravitreally injected with LPS and diamide, which served as positive controls in this study,
induced a significant increase in the ROS generation. In agreement with most of the studies,
the in vivo ROS level in diabetic rat retinas was significantly high compared to controls.
This increased generation of ROS in the diabetic retina indicates a possibility of either
diabetes-induced activation of paracrine mediators or activation of non-mitochondrial
oxidases that may influence the excess ROS generation [26,27].

Taken together, our data show that oxidation of glucose decreased in the diabetic
retina despite hyperglycemic conditions. These decreased levels of oxidation of glucose
in the diabetic retina indicate a slow rate of glycolysis and/or citric acid cycle, thereby
suggesting that excess ROS may not be generated by mitochondria. The duration of
diabetes and treatments to high glucose could not influence the retinal antioxidant capacity
of mitochondrial enzymes in the disposal of H2O2, suggesting that mitochondria may not
be a major source of oxidative stress in the diabetic retina. Nevertheless, an increased
level of ROS was found under in vivo conditions in the diabetic retinas that indicate the
possibility of non-mitochondrial sources of ROS generation, which may include activation
of NADPH and NADH oxidases [27,48,49], activation of endothelial cells by paracrine
mediators [25], activation of microglia [50], and glutamate excitotoxicity [51,52]. Thus,
metabolic abnormalities by hyperglycemia per se, especially through mitochondrial stress
may not be the sole basis of retinal damage in diabetic retinopathy. Besides diabetes-
induced hyperglycemia, emerging evidence suggests a potential role of numerous other
altered metabolites and factors that need to be considered in the pathophysiology of retinal
damage through oxidative stress. In addition, further metabolic studies and possibly
in vivo ROS imaging techniques are required to better elucidate the mechanism of ROS
production and their major sources in the diabetic retina.
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