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Abstract: Unlike other malignant bone tumors including osteosarcomas and Ewing sarcomas with a
peak incidence in adolescents and young adults, conventional and dedifferentiated chondrosarcomas
mainly affect people in the 4th to 7th decade of life. To date, the cell type of chondrosarcoma origin
is not clearly defined. However, it seems that mesenchymal stem and progenitor cells (MSPC) in
the bone marrow facing a pro-proliferative as well as predominantly chondrogenic differentiation
milieu, as is implicated in early stage osteoarthritis (OA) at that age, are the source of chondrosarcoma
genesis. But how can MSPC become malignant? Indeed, only one person in 1,000,000 will develop a
chondrosarcoma, whereas the incidence of OA is a thousandfold higher. This means a rare coincidence
of factors allowing escape from senescence and apoptosis together with induction of angiogenesis
and migration is needed to generate a chondrosarcoma. At early stages, chondrosarcomas are still
assumed to be an intermediate type of tumor which rarely metastasizes. Unfortunately, advanced stages
show a pronounced resistance both against chemo- and radiation-therapy and frequently metastasize.
In this review, we elucidate signaling pathways involved in the genesis and therapeutic resistance of
chondrosarcomas with a focus on MSPC compared to signaling in articular cartilage (AC).

Keywords: chondrosarcoma; articular cartilage; mesenchymal stem and progenitor cell; primary
cilia; angiogenesis; metastasis; differentiation; fibroblast growth factor 2; isocitrate dehydrogenase;
vascular endothelial growth factor

1. Chondrosarcoma Subtypes and Epidemiology

Chondrosarcomas are rare mesenchymal tumors with a cartilage-like appearance. They account
for 10–20% of all malignant bone tumors [1]. In Europe, the incidence of chondrosarcoma is
0.1:100,000 [2]. In comparison, the incidence of osteoarthritis (OA) is 100–200:100,000, with a prevalence
of symptomatic OA of about 20% in people aged ≥50 years [3,4].

Indeed, the term chondrosarcoma encompasses a group of tumors, which are heterogeneous
both morphologically and clinically. About 80–90% of all chondrosarcomas are conventional
chondrosarcomas [5]. Conventional chondrosarcomas start to grow intramedullary (central) and often
affect the pelvis, femur and humerus, but also ribs and ilium [6]. The highly aggressive dedifferentiated
chondrosarcomas, which make up about 10% of all chondrosarcomas [7] most often arise in the long
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bones, namely the femur and humerus or the pelvis [8]. Dedifferentiated chondrosarcomas consist of
chondroid and non-chondroid parts often resembling fibroblastic or osteoblastic tissue indicating two
types of mesenchymal differentiation in one tumor [9,10]. Notably, the non-cartilaginous part of these
tumors seems to determine local growth and recurrence [11].

Secondary chondrosarcomas may develop from formerly benign central cartilage lesions like
enchondromas [12]. In addition, peripheral chondrosarcomas may arise from the cartilaginous cap of
osteochondromas, which are benign bone tumors of childhood and adolescence [13,14]. Moreover, there
are very rare low-grade entities like clear cell chondrosarcomas, which often involve the epiphysis of
the proximal femur and humerus and extend to the articular cartilage (AC) of the acetabulofemoral
joint and glenohumeral joint [15,16].

Unlike other bone sarcomas, conventional and dedifferentiated chondrosarcomas have their peak
incidence at the ages of 40–70 years [8,17]. In contrast, clear cell chondrosarcomas and peripheral
chondrosarcomas more often affect adolescents and young adults [15].

Low grade chondrosarcomas rarely metastasize. In the 2013 World Health Organization (WHO)
classification system, grade I chondrosarcomas have been renamed as atypical cartilaginous tumors
describing their clinical behavior as an intermediate type of tumor [1,18,19]. In contrast, high grade
chondrosarcomas, which make up 5–10% of all conventional chondrosarcomas, are very aggressive
and frequently metastasize to the lung [5] with a five-year survival rate of 50–60% and a ten-year
survival rate of only 30–40% [6]. Yet, also about 20% of low grade tumors locally recur [6].

2. Mesenchymal Stem and Progenitor Cells in Adult Bone and Cartilage

Mesenchymal stem and progenitor cells (MSPC) exhibiting multipotent differentiation potential
are resident in the bone marrow [20]. Although, the cells of origin of chondrosarcoma are still not
clearly defined [21,22], conventional and dedifferentiated chondrosarcomas most likely develop from
MSPC in the medullary space of bones [23].

According to the International Society for Cellular Therapy (ISCT), bone marrow derived
mesenchymal stem cells (MSC) must differentiate to osteoblasts, adipocytes and chondrocytes in vitro
and should at least express the markers cluster of differentiation 73 (CD73), CD90 and CD105, while
markers characteristic for monocytes (CD11b or CD14), B cells (CD19 or CD79a), hematopoietic stem
cells (HSC) (CD34), leukocytes (CD45 or human leukocyte antigen—antigen D related (HLA-DR)) are
absent [20,24]. In addition, stromal cell surface marker-1 (STRO-1) and CD106 positive MSPC have a high
proliferative potential [25]. Indeed, MSPC express a mixture of markers which undergo dynamic changes
according to growth factor and cytokine availability during development and disease or artificial plastic
adherence in cell culture [26,27]. In addition, MSPC marker expression depends on the species [27].

Actually, chondrosarcomas express several proteins either known as MSPC markers, chondrogenic
markers or markers of other mesenchymal lineage commitment (Figure 1). From primary conventional
chondrosarcomas, two cell types with different marker expression signatures have been isolated.
One group resembled multipotent MSC (CD49b high/CD10 low/CD221, also known as insulin-like
growth factor 1 receptor (IGF1R), high), whereas a second group more likely corresponded to a
fibroblastic lineage (CD49b low/CD10 high/CD221 low). This implicates that both chondrosarcoma
cell types arose from MSPC, which are the assumed origin of chondrosarcomas [23].

CD44, also known as phagocytic glycoprotein 1 (PGP-1) is a tumor stem cell marker and receptor
for hyaluronan, osteopontin (OPN), collagens, and matrix metalloproteinases (MMP) in various tissues
(Figure 2). Moreover, CD44 may act as a cofactor for vascular endothelial growth factor (VEGF)
and fibroblast growth factor 2 (FGF2) binding. After cleavage, its intracellular domain is involved
in transactivation of notch homolog 1 (NOTCH1), receptor activator of NF-κB ligand (RANKL) and
MMP-9 expression [28]. CD44 overexpression is increased in chondrosarcomas with progressive
grading and correlated with metastatic potential and survival [29]. Interestingly, CD44 expression in
human MSPC seems to be acquired in culture since freshly isolated MSPC are generally negative for
this marker [30,31]. CD271, a stem cell marker, which may be associated with osteogenic potential
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of MSPC [32], was expressed by a highly proliferative subpopulation of chondrosarcoma cells [33],
indicating that sustained stemness may increase chondrosarcoma proliferation.

Members of the SRY-related HMG box-containing (SOX) family of transcription factors are
master regulators of cell differentiation [34,35]. Human conventional chondrosarcomas of all
grades express SOX9 [36], which is the main mediator of chondrogenesis [34]. In addition, SOX5
and SOX6 augment the pro-chondrogenic transcriptional activity of SOX9 [37]. MiR-145, which
negatively regulates SOX9, was downregulated in human chondrosarcomas, enhancing the relative
abundance of SOX9 protein [38]. SOX4 is expressed by human MSPC and downregulated during
chondrogenic differentiation [39]. Notably, SOX4 and runt related transcription factor 2 (RUNX2),
which are both implicated in regulation of chondrogenesis and osteogenesis, are targets of miR-30a,
which is progressively downregulated with increasing chondrosarcoma grade, leading to a relative
overexpression of SOX4 and RUNX2 [40]. Also, miR-129-5p, which targets SOX4, was significantly
downregulated in human chondrosarcoma tissues, while SOX4 protein was activated [41]. Indeed, this
imbalance of SOX9 and SOX4 may contribute to the incomplete chondrogenic differentiation
and persistent proliferation of chondrosarcomas. In line with this, in chondrosarcoma cell lines
miR-129-5p repressed WNT/β-catenin signaling by targeting SOX4 which repressed proliferation and
invasion [41].

Also, adult AC contains MSPC expressing MSC related markers [42], which are predominantly
localized in the superficial zone (SZ) [43,44] and undergo proliferation upon onset of OA [44].
Depending on the study, the human AC MSPC population was defined as positive for CD105 and
CD166 [45–47], STRO-1 [48], NOTCH1 [49], CD166 and CD90 [50], STRO-1 and FGF2 [51] or CD106,
STRO-1 and NOTCH1 [43,49]. The MSPC fraction makes up 3–17% of all AC resident cells and increases
in human OA AC compared to normal adult AC [46,47,49,52]. Utilizing a colony-forming assay, Fellows
et al. reported a doubling of the MSPC population in human OA AC compared to normal adult AC [53].
Moreover, it seems that especially OA AC contains two MSPC populations. One population consists
of more committed cartilage progenitor cells exhibiting a limited proliferation potential and early
senescence, which may either arise from dedifferentiated chondrocytes or activated cartilage inherent
quiescent progenitors. A second population consists of rather multipotent stem cells, which are either
inherent, since they are also found in normal adult AC, or which may be also recruited from adjacent
tissues like bone marrow or synovium [53]. Whether the increase of MSPC number in OA AC is an
attempt of cartilage intrinsic repair or rather a prerequisite for macroscopic cartilage degradation due
to a lack of extracellular matrix (ECM) maintenance, respectively proliferation-associated degradation,
remains elusive.

Culturing of human bone marrow-derived MSPC with rFGF2 reduced the cell size and turned the
cell shape into a spindle-like fibroblastic-like appearance, which was accompanied by a faster growth,
increased life span and an advance in chondrogenic potential [54–57]. FGF2 signaling was mediated
by fibroblast growth factor receptor 1 (FGFR1) activity, which was rate limiting for self-renewal of
human MSPC [58]. Interestingly, telomere length of MSPC expanded under rFGF2 increased. Since no
telomerase activity was detected, FGF2 seems to selectively expand a subpopulation of cells with
longer telomeres [59]. Moreover, in human MSPC FGF2 increased SOX5, SOX6 and SOX9 expression,
which are all implicated in enhanced chondrogenesis [60], although siRNA-mediated knockdown of
SOX9 did not prevent rFGF2-mediated chondrogenesis [57]. Notably, aging of human bone marrow
derived MSPC progressively decreased FGF2 and FGFR1 expression, which coincided with reduced
proliferative capacity of MSPC after prolonged cultivation [61].

Interestingly, around the age of 40, when chondrosarcoma incidence starts to rise, also MSPC in the
SZ of AC start to proliferate and exhibit reorganization of cell arrangement which may be a prerequisite
or early indicator of OA [62,63]. Collectively, this indicates a proliferation-inducing environment in
cartilage and bone at that age in which increasing abundance of free FGF2 may be implicated.
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Figure 1. Conflicting differentiation stimuli in chondrosarcoma. In chondrosarcoma cells signaling 
pathways simultaneously promoting or antagonizing chondrogenesis, stemness, osteogenesis and 
fibrogenesis are activated preventing differentiation in one or the other direction. Established positive 
stimuli are depicted as black arrows, established inhibitory stimuli are depicted as black bar-headed 
lines. Pathways, which are active in chondrosarcoma cells, but whose stimulatory function has not 
been clearly established in chondrosarcoma are shown as light gray arrows.  

 

Figure 2. Chondrosarcoma signaling. Several growth factor and cytokine regulated signaling 
pathways are activated in central chondrosarcomas (black arrows). FGFR1, integrins, ADIPOR, CCR5 
and CXCR4 are all capable of MAPK-ERK and PI3K-AKT signaling induction leading to MMP, 
RANKL and VEGF transactivation. Moreover ADIPOR, CCR5 and CXCR4 activate NF-κB and p38 
MAPK signaling. In addition, signaling regulation is obtained by adaptor proteins like CCN2, which 
binds VEGF, FGF2 and FGFR1 or coreceptors including CD44. Chondrosarcoma cells actively excrete 
FGF2 and VEGF (gray arrow), which promotes angiogenesis by attracting endothelial cells. 

Figure 1. Conflicting differentiation stimuli in chondrosarcoma. In chondrosarcoma cells signaling
pathways simultaneously promoting or antagonizing chondrogenesis, stemness, osteogenesis and
fibrogenesis are activated preventing differentiation in one or the other direction. Established positive
stimuli are depicted as black arrows, established inhibitory stimuli are depicted as black bar-headed
lines. Pathways, which are active in chondrosarcoma cells, but whose stimulatory function has not
been clearly established in chondrosarcoma are shown as light gray arrows.
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Figure 2. Chondrosarcoma signaling. Several growth factor and cytokine regulated signaling pathways
are activated in central chondrosarcomas (black arrows). FGFR1, integrins, ADIPOR, CCR5 and CXCR4
are all capable of MAPK-ERK and PI3K-AKT signaling induction leading to MMP, RANKL and VEGF
transactivation. Moreover ADIPOR, CCR5 and CXCR4 activate NF-κB and p38 MAPK signaling.
In addition, signaling regulation is obtained by adaptor proteins like CCN2, which binds VEGF, FGF2
and FGFR1 or coreceptors including CD44. Chondrosarcoma cells actively excrete FGF2 and VEGF
(gray arrow), which promotes angiogenesis by attracting endothelial cells.
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3. Hypoxia and Angiogenesis in the Bone Niche

In the bone, chondrosarcoma cells interact with resident MSPC, HSC, mature immune cells,
(pre)osteoblasts, (pre)osteoclasts and endothelial cells [21]. Chondrosarcoma growth dysregulates the
balance between osteoblasts and osteoclasts leading to bone degradation, which might be mediated by
increased RANKL expression by chondrosarcoma cells [64].

Without neovascularization the size of a tumor is inherently limited to 1–5 mm due to
restricted oxygen and nutrient availability [65]. Although conventional chondrosarcomas remain
poorly vascularized compared to other tumors [66,67], which may contribute to the cartilage like
differentiation and systemic chemotherapy resistance, induction of angiogenesis is the major limiting
step towards local invasion and metastasis. This is reflected by a low rate of vascularization in G1
conventional chondrosarcomas, which is largely enhanced in the significantly more aggressive G2
and G3 chondrosarcomas [66,68]. VEGF and FGF2, which have an intense crosstalk, are the two
main growth factors involved in chondrosarcoma angiogenesis [65]. VEGF, FGF2, endothelin-1 (ET-1)
and hypoxia-inducible factor-1α (HIF-1α) expression and mitogen activated protein kinase (MAPK)
signaling are significantly enhanced in G2 and G3 conventional chondrosarcomas compared to G1
chondrosarcomas [65,68–72]. In addition, central chondrosarcomas commonly express FGFR1, whereas
FGFR3 expression is rarely detected [13]. Moreover, high HIF-1α expression has been linked to shorter
disease free and overall survival in chondrosarcoma patients [73,74].

Interestingly, dedifferentiated chondrosarcomas showed a high microvessel density without
correlation to the grade of the tumor [67] or VEGF expression [70]. FGF2 exerts its pro-angiogenetic
activities by interaction with a variety of surface receptors on endothelial cells including receptor
tyrosine kinases, heparan-sulfate proteoglycans and integrins. Subsequently, endothelial cells
upregulate VEGF, FGF2, OPN and cyclooxygenase 2 (COX-2) expression. Moreover, FGF2 induces the
expression of inflammatory cytokines and acts as a direct chemoattractant for immune cells, which
actively participate in neovascularization of various tumors [75]. C-X-C motif chemokine ligand 12
(CXCL12) is secreted in the bone marrow, where it mediates the homing of HSC [76]. C-X-C motif
chemokine receptor 4 (CXCR4) is the receptor for CXCL12, which is typically expressed by HSC
and mature immune cells. Both expression of CXCL12 and CXCR4 can be upregulated by HIF-1α
under hypoxic conditions in several cell types [76]. Moreover, CXCR4 downstream signaling has
been implicated in migration and metastasis of different tumors [76]. Notably, both CXCR4 and
CXCL12 expression was increased in human chondrosarcoma tissues [77] and CXCR4 expression
was also enhanced by hypoxia induced HIF-1α and VEGF-A expression in chondrosarcoma cell
lines concomitantly with MMP1 expression [78–80], whereas CXCL12 induced VEGF-A secretion
under hypoxic conditions [80], indicating a self-reinforcing system. In addition, miR-181a was
overexpressed in high grade chondrosarcomas and its expression was upregulated by hypoxia in
human chondrosarcoma cell lines. Regulator of G-protein signaling 16 (RGS16), a negative regulator
of CXCR4 signaling is a direct target of miR-181a [78], implicating this miRNA in activation of
CXCR4 signaling. C-C motif chemokine ligand (CCL5), also known as regulated upon activation,
normally T-expressed, and presumably secreted (RANTES) has been implicated in downregulation of
miR-199a in human chondrosarcoma cells, which promotes VEGF upregulation and angiogenesis [81].
In vitro, rFGF2 treated chondrosarcoma cells increased VEGF-C expression via downregulation
of miR-381 [82]. In addition, CCN2, also known as connective tissue growth factor (CTGF), has
been identified as a binding partner of VEGF-A (Figure 2). In complex with rCCN2, rVEGF-A
was not able to induce angiogenesis in a human in vitro system as well as in vivo in mice [83].
The CCN2-VEGF-A complex could be dissociated by CCN2 cleavage by MMP-1, MMP-3, MMP-7 and
MMP-13 reactivating the angiogenetic activity of VEGF-A in vitro and in a matrigel injection model in
mice [84]. Indeed, in high grade chondrosarcomas CCN2 mRNA was downregulated compared to low
grade chondrosarcomas [85]. In contrast, rCCN6 promoted angiogenesis in human chondrosarcoma
cell lines SW1353 and JJ012 by induction of VEGF-A expression through inhibition of miR-452, which
interacts with the 3′UTR of the human VEGF-A gene repressing its transcription [86].
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Notably, Wang et al. showed that human growth plate cartilage expressed the NH2-propeptide of
the cartilage-characteristic collagen type IIB splice variant (PIIBNP), which was capable of killing both
human chondrosarcoma and carcinoma cells upon binding of αvβ3 and αvβ5 integrins in vitro [87].
These integrin types were not expressed on cells of human developing cartilage, whereas adult human
AC cells expressed low levels [88]. In contrast, human osteoclasts and endothelial cells express high
levels of αvβ3 and αvβ5 integrins [89,90], indicating that they are actively excluded from the growth
plate. Whether PIIBNP is also present in adult healthy or OA AC has not been investigated.

In summary, vascularization is an important step during chondrosarcoma progression and appears
to be predominantly mediated by VEGF and FGF2. Whereas avascularity of developing cartilage
seems to be ensured by active exclusion of endothelial cells.

4. Local Invasion and Metastasis

Catabolic degradation of the ECM, an important prerequisite for migration and tumor cell
invasion, is predominantly mediated by MMP [91]. Basically, MMP expression is a stem cell
feature [92], but also differentiated cells may upregulate MMP expression upon senescence [93]
or inflammation [94]. MMP-1, MMP-2, MMP-3, MMP-7, MMP-9 and MMP-13 are frequently
expressed in chondrosarcoma tissues [95,96]. In addition, high levels of MMP-26 were detected
in chondrosarcoma samples by Xu et al. [97]. Increased MMP-1 expression has been linked to poor
outcome in chondrosarcoma patients [95] and also promotes invasiveness of human chondrosarcoma
cells in vitro [98]. A single nucleotide polymorphism (SNP) frequently found in the promoter region
of MMP-1 in human chondrosarcoma tissues and established chondrosarcoma cell lines [99] generates
an artificial avian erythroblastosis virus E26 oncogene homolog (ETS) binding site, which has been
implicated in enhanced MMP-1 expression in several carcinomas [100]. Especially in high grade central
chondrosarcomas increased MMP-2 levels have been documented [101,102]. But also expression of
MMP-3, MMP-7 and MMP-13 increased with tumor grade [103]. Often, MMP expression was highly
variable in different areas of a single chondrosarcoma [104]. Moreover, MMP-1, MMP-7 and MMP-9
expression was found to be highest in the invasive protrusions of chondrosarcomas [95,103].

Also, elevated expression of pro-inflammatory CCL5, CCL3 and their receptor C-C motif
chemokine receptor 5 (CCR5), which is a typical surface protein of macrophages and T-cells, has
been detected in human chondrosarcoma tissues (Figure 2) [105]. In vitro, rCCL3 induced MMP-2
expression and migration in the JJ012 chondrosarcoma cell line, which was mediated by AMP-activated
protein kinase (AMPK), p38 MAPK and nuclear factor kappa B (NF-κB) [102]. rCCL5 induced MMP-3
expression and migration via phosphatidylinositol 3-kinase (PI3K), v-Akt murine thymoma viral
oncogene homolog (AKT) and NF-κB in the same chondrosarcoma cell line [105].

Adipose tissue may function as endocrine organ by secretion of adipokines including
pro-inflammatory cytokines [106]. Resistin, also known as adipose tissue-specific secretory factor
(ADSF), has been identified as peptide hormone secreted by murine adipose tissue. Notably, in humans
especially, monocytes express resistin [107]. High resistin levels in human chondrosarcoma tissues
have been linked to MMP-2 expression and r-resistin promoted invasiveness and MMP-2 expression
in human chondrosarcoma cells in vitro mediated by AMPK and p38 MAPK [108]. Another adipokine
implicated in chondrosarcoma migration and angiogenesis is adiponectin, which is increasingly
upregulated with the histological grade of conventional chondrosarcoma [109]. In addition, elevated
expression of the two adiponectin receptors ADIPOR1 and ADIPOR 2 mRNA was detected in
human chondrosarcoma tissues and cell lines [110]. In chondrosarcoma cell lines, r-adiponectin
promoted VEGF-A expression via ADIPOR activating the PI3K-AKT-mTOR pathway and HIF-1α [109].
Migration was induced via ADIPOR activating AMPK, p38 and NF-κB pathways [110].

ET-1 is a peptide hormone secreted by vascular endothelial cells and monocytes [111]. COX-2, a
key enzyme in prostaglandin biosynthesis, mediates inflammation, angiogenesis and cancer
progression [112]. Significant ET-1 and COX-2 expression in human chondrosarcoma tissues has
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been linked to chondrosarcoma cell migration in vitro. In JJ012 cells rET-1 increased COX-2 expression
via ET-receptors, MAPK, and activator protein 1 (AP-1) signaling.

OPN is secreted by bone cells like osteoblasts and osteoclasts, but also immune cells and
endothelial cells [113]. It demonstrably promotes progression of different cancers by enhancing
proliferation, survival, angiogenesis, motility, and invasion. In the bone, its main functions are
the regulation of mineralization and remodeling [113]. The expression of OPN can be upregulated
by different growth factors including FGF2 in murine endothelial cells [114,115], whereas OPN is
involved in COX-2 and HIF-1α dependent VEGF expression in human carcinoma and melanoma [114].
rOPN increased MMP-9 expression and migration of JJ012 chondrosarcoma cells through αvβ3 integrin,
focal adhesion kinase (FAK), MAPK/ERK kinase (MEK), extracellular signal-regulated kinase (ERK)
and NF-κB signaling [116].

In human HCS-2/8 chondrosarcoma cells rFGF2 induced MMP-13 expression [72]; rCCN2, which
interacts both with FGF2 and FGFR, increased MMP-13 expression and migration in human JJ012
cells in vitro via αvβ3 integrin, FAK, ERK, and NF-κB [117]. In addition, rMMP-3 has been shown
to upregulate the expression of CCN2 in the human chondrosarcoma cell line HCS-2/8 in vitro [118].
However, in human high-grade chondrosarcoma tissues CCN2 mRNA was reduced compared to low
grade chondrosarcomas [85]. rCCN6 enhanced migration of the human chondrosarcoma cell line JJ012
by increasing intercellular adhesion molecule 1 (ICAM-1) expression via αvβ3 and αvβ3 integrins,
FAK and MAPK signaling [119].

Collectively, these data indicate that the signaling events that induce MMP-based ECM
degradation and local invasion are closely interconnected to those that mediate inflammation and
angiogenesis. Yet, metastasis can only occur when cancer cells are able to settle down and proliferate
in a foreign environment [120]. For chondrosarcoma, the lung is the primary site of metastasis [5],
albeit further research is needed to elucidate the reasons for this and how it may be prevented.

5. Primary Cilia in Chondrogenesis, Cartilage Maintenance and Chondrosarcoma

In mammals, primary cilia mediate cellular responses to mechanical load but also substrate texture
by activation of different signaling pathways including wingless-type MMTV integration site family
(WNT) and hedgehog (Hh) [121–123]. Loss of primary cilia in human MSPC inhibited adipogenic
and osteogenic differentiation to a greater extent than chondrogenic differentiation (Figure 1) [124].
Nevertheless, chondrogenesis of human MSPC can be induced by dynamic compression of 3D
cultures [125–127], which has to be perceived by the cells through an appropriate mechanism which
may be localized in the primary cilia. Interestingly, MSPC in the SZ of human OA AC seem to have
more and longer cilia compared to cells in healthy AC [128]. This difference in cilia length has been
also demonstrated in the SZ of bovine AC [129]. In human MSPC increased cilia length has been
associated with decreased WNT signaling and decelerated proliferation [123]. Indeed, primary cilia
claim the basal body and therefore the centrosome for assembly, which means that primary cilia have
to be disassembled for the formation of the mitotic spindle, which takes more time the longer the
cilium is [130]. On the other hand, fast growing cells may not have the time to assemble primary cilia
between cell divisions. In tumor cells, both the lack of primary cilia but also formation of multiple cilia
due to inhibited cytokinesis in multinucleated cells with several centrosomes has been described [131].
Human chondrosarcoma cells lose primary cilia with increasing malignity [132], which may be either
a consequence of rapid proliferation or the prerequisite for enhanced cell cycle progression. Recently,
histone deacetylase 6 (HDAC6) has been implicated in suppression of cilia formation in human
chondrosarcoma [133]. Notably, osteochondroma have a random cilia orientation compared to normal
growth plate chondrocytes where cilia are arranged parallel to the growth axis, which assures the
correct assembly of chondrocytes in stacked columns [134]. Upon closure of the growth plate usually
also osteochondroma growth stops [135]. However, resting MSPC in the metaphysis of long bones
may be reactivated during formation of secondary chondrosarcoma [14]. In summary, the progressive
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loss of primary cilia in conventional chondrosarcomas may foster chondrogenic differentiation, but
also facilitate proliferation.

6. Chondrosarcoma Treatment

6.1. State of the Art

The risk of local recurrence and metastasis of conventional chondrosarcomas largely increases
with histological grade [6]. For low grade tumors intralesional excision may be sufficient [136],
whereas surgery with wide margins has become the primary care for malignant cartilage lesions [137].
Yet, depending on the location in the skeleton, wide resection may not be possible [138,139] and
adjuvant therapies may be needed. Unfortunately, conventional chondrosarcomas are highly
resistant both to radiation and chemotherapy [139–141]. Chemoresistance of chondrosarcoma may
be due to slow proliferation, multidrug resistance protein 1 (MDR1) overexpression [142,143], poor
vascularity [66,67] and dense hyaline ECM [144] when compared to other cancers. Notably, under
moderate hypoxic conditions (5% O2) radiation resistance of chondrosarcoma cell lines was
significantly higher compared to standard cell culture conditions (21% O2) [141], indicating that
prevalent hypoxia may also interfere with radiation response in chondrosarcoma. Yet, there are
publications indicating sustained stable disease after chemotherapy in palliative care for some patients
with dedifferentiated chondrosarcoma [8,145–147]. Also, proton beam radiation therapy resulted in
sustained local control of some chondrosarcomas of the skull base [148]. Besides, carbon ion radiation
may be useful for inoperable pelvic chondrosarcomas [149].

In addition, chondrosarcomas tend to be genetically instable with loss of heterozygosity at many
loci [150,151], which exacerbates identification of relevant targets and raises the question whether
single agent approaches may be applicable at all. Moreover, many older studies investigating genetic
aberrations and potential target proteins in chondrosarcoma did not distinguish between different
subtypes and gradings.

In summary, there is an urgent need for new targeted therapies in chondrosarcoma which are
discussed in the following paragraphs.

6.2. Targetting the Hh Pathway

The Hh pathway is involved in stem cell proliferation and differentiation during development and
tissue regeneration [152]. In addition, Hh signaling is also implicated in the formation and progression
of several kinds of cancer, including basal cell carcinoma, medulloblastoma, osteosarcoma, Ewing
sarcoma and rhabdomyosarcoma [153–157]. The Hh pathway is activated by binding of one of the
three human ligands (IHH, DHH, SHH) to the patched 1 (PTCH1) receptor. Subsequently, smoothened
(SMO) initiates downstream signaling via the glioma associated oncogene family (GLI) transcription
factors [158]. Depending on the tumor, aberrant Hh pathway activation may be mediated by ligand
overexpression or PTCH loss-of-function mutations. But also ligand-independent activation via
SMO gain-of-function mutations, respectively constitutive overexpression and activation of GLIs
is possible [154]. Yan et al., 2008 detected a single SMO mutation in a selection of dedifferentiated
chondrosarcomas. All SNPs detected in the PTCH1 gene of chondrosarcomas resulted in silent
alterations [159]. Therefore, mutations in the Hh pathway seem to be infrequent in chondrosarcomas.
However, Tiet et al., 2006 reported a constitutive active Hh pathway in human chondrosarcoma
explant cultures similar to growth plate chondrocytes, although in high grade chondrosarcomas IHH,
PTCH1 and GLI1 mRNA expression declined when compared to low grade lesions [160,161]. Also in
peripheral chondrosarcomas PTCH1, GLI1 and GLI2 mRNA expression was reduced compared to
benign osteochondromas [162].

Indeed, in animal models ligand dependent Hh signaling required primary cilia [122].
Therefore, drug efficacy of SMO inhibitors like vismodegib (GDC-0449) or saridegib (IPI-926) is
probably dependent on the presence of primary cilia, where Hh pathway components have been shown
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to be concentrated in murine chondrocytes [163]. Yet, Ho et al. observed that most chondrosarcoma
and enchondroma cells (70–100%) lack primary cilia, whereas 65% of human AC chondrocytes had
primary cilia [132]. Notably, ablation of primary cilia in chondrosarcoma explants enhanced Hh
pathway regulated transcription, probably via prevention of GLI3 processing in its repressor form,
whereas the SMO inhibitor cyclopamine was ineffective in these cells [132].

With this in mind, it is not surprising that GDC-0449 did not meet the primary endpoint in
a phase II clinical trial with chondrosarcoma patients, although some patients with grade I or II
chondrosarcomas seemed to benefit from the treatment [164]. Also the results of a phase II trial using
IPI-926 for treatment of chondrosarcoma patients were discouraging [5].

Potentially, the use of Hh pathway inhibitors acting downstream of SMO like HPI-4 may be
more successful in chondrosarcoma treatment by means of targeting cancer stem cells and early grade
chondrosarcoma cells [165], but maybe also later stages as its mechanism of action is not necessarily
dependent on the presence of primary cilia. In the SW1353 chondrosarcoma cell line the use of arsenic
trioxide (ATO) induced G2/M cell cycle arrest and apoptosis as well as autophagy. In addition to the
GLI transcription factors ATO has several other targets and indeed, autophagy induction in SW1353
cells was reported to depend on mTOR inhibition [166]. Thus, using ATO alone or in combination with
other substances may aid to develop novel treatment strategies for chondrosarcomas.

6.3. Targetting IDH1, IDH2 and HDACs

The isocitrate dehydrogenases 1 and 2 (IDH1 and IDH2) catalyze the conversion of isocitrate
to to α-ketoglutarate (α-KG) in the Krebs cycle and concomitantly produce nicotinamide adenine
dinucleotide phosphate (NADPH) from NADP+ [167]. Missense mutations at arginine 132 in IDH1 or
the homologous arginine 172 in IDH2 occur in 80–90% of enchondromas [168,169] and 50–60% of central
chondrosarcomas with IDH1 mutations dominating [170]. Also, dedifferentiated chondrosarcomas
predominantly contain IDH1 mutations [171]. Indeed, IDH mutations seem to be an early event in
chondrosarcoma genesis [171]. The mutant enzymes have a modified enzymatic activity reducing
α-KG under consumption of NADPH to the onco-metabolite R(−)-2-hydroyglutarate (2-HG) [167].
IDH mutations are always restricted to one allele and it seems that the presence of the wild type
protein in a homodimer increases the capacity of 2-HG generation [172]. Many cellular enzymes
are dependent on the presence of α-KG including the Ten-Eleven-Translocation (TET) protein family
reducing DNA methylation, the JumonjiC domain-containing (JmjC) histone demethylases altering
histone methylation, prolyl and lysyl hydroxylases implicated in collagen folding and maturation,
and prolyl hydroxylases (PHD) regulating hypoxia-inducible factor (HIF) protein degradation [172].
Thus, mutant IDH is capable of altering the epigenetic state of cells leading to DNA and histone
hypermethylation which affects differentiation [173] and impairs collagen maturation as well as
oxygen homeostasis [174]. Indeed, generation of 2-HG not only reduces α-KG abundance but 2-HG
directly inhibits enzymes dependent on α-KG by occupying the binding site [172].

In human MSPC, the expression of the IDH1 R132C mutant also upregulated global histone
methylation, but repressed osteogenic differentiation and induced chondrogenic differentiation
(Figure 1) indicated by SOX9 and collagen type II α 1 chain (COL2A1) expression, whereas no functional
cartilage matrix was deposited [175]. This effect might contribute to the incomplete chondrogenic
differentiation of chondrosarcomas.

Inhibition of the mutant IDH1 in the human chondrosarcoma cell line JJ012 (IDH1 R132G) by
AGI-5198 significantly reduced 2-HG production, colony formation and migration and induced
apoptosis [176], illustrating that IDH1 inhibition may have therapeutic value.

Indeed, different clinical studies targeting IDH mutant chondrosarcomas and other tumors are
currently ongoing. The NCT02273739 phase I/II, multicenter study has been actually completed.
In this study, AG-221, an oral IDH2 inhibitor, has been tested in patients with advanced solid
tumors, including gliomas, angioimmunoblastic T-cell lymphomas and chondrosarcomas with an IDH2
mutation. In two other ongoing phase I studies (NCT02481154/NCT02073994), the IDH inhibitors
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AG-881 and AG-120 are under clinical evaluation for advanced solid tumors that harbor an IDH1
and/or IDH2 mutation, including gliomas, cholangiocarcinomas and chondrosarcomas. In addition,
there is a phase Ib, open-label, single-center, nonrandomized study recruiting patients that evaluates
the toxicity and efficacy of the antidiabetic drug metformin in combination with the antimalarial
drug chloroquine in IDH1/2 mutated patients with a glioma, intrahepatic cholangiocarcinoma or
chondrosarcoma (NCT02496741) [177].

In addition to methylation, acetylation of histones regulates gene expression and differentiation.
Since many tumors exhibit aberrant histone modifications, HDAC inhibitors have emerged as new
class of anticancer drugs [178]. Indeed, the HDAC inhibitor depsipeptide (romidepsin) induced growth
arrest, apoptosis and differentiation in human chondrosarcoma cell lines in vitro [179]. A phase II
study (NCT00112463) including extra-skeletal chondrosarcoma patients treated with romidepsin has
been actually completed. Whether IDH inhibition or HDAC inhibition is indeed a beneficial therapy
in chondrosarcoma remains to be demonstrated.

In line with chondrosarcomas, accumulating evidence also shows epigenetic dysregulation in
OA [180,181]. However, IDH mutations have not been detected in AC so far, but inflammatory
cytokines suppressed IDH and TET activity in human primary chondrocytes in vitro [182],
a mechanism which might also apply in chondrosarcomas without IDH mutation.

6.4. Tagetting the PI3K-AKT-mTOR and SRC Pathway

AKT kinases are highly active in human chondrosarcomas [183,184]. Indeed, PI3K-AKT signaling
is activated by many growth factors including FGF2 and IGF1 as well as inflammatory cytokines
like CCL5 (Figure 2), which have been implicated in chondrosarcoma genesis and progression [185].
In addition, p70 S6 kinase (p70S6K) activation was increased with histological grade of conventional
chondrosarcomas and has been also detected in dedifferentiated chondrosarcomas [186]. P70S6K is
a downstream target of mTOR in the PI3K-AKT pathway phosphorylating the ribosomal S6 protein,
which enhances protein synthesis [5]. However, activating mutations in the PI3K-AKT pathway are
very rare in chondrosarcomas [187]. Although IGF1R positivity of human central chondrosarcomas
increases with histological grade, IGF1R inhibition did not impair proliferation or migration of
chondrosarcoma cell lines in vitro [188]. Treatment with BEZ235, a PI3K/mTOR inhibitor, significantly
reduced growth of chondrosarcoma cell lines in vitro and in a murine xenograft model [186]. In a rat
chondrosarcoma model, the use of the mTOR inhibitor everolimus suppressed tumor progression and
delayed recurrence of microscopic residual disease [189]. Moreover, in a small retrospective study
with patients with unresectable chondrosarcoma a combination of sirolimus (rapamycin) inhibiting
mTOR and the chemotherapeutic agent cyclophosphamide was successful in disease control in 70% of
patients during a period of several months [190]. Yet, a phase II clinical trial (NCT02008019) utilizing
everolimus in patients with primary or relapsed chondrosarcomas has been suspended in 2016 due to
unavailability of everolimus.

Aberrant activation of SRC kinase signaling has been detected in human chondrosarcoma
tissues [183,191]. SRC is a common mediator of growth factor and integrin signaling and may also act
upstream of PI3K-AKT [185]. Together SRC and AKT activate survival pathways and HIF1α, which is
upregulated in high grade chondrosarcoma tissues [73,74].

Dasatinib (BMS354825), which targets SRC as well as Abelson tyrosine protein kinase (ABL), KIT
and platelet derived growth factor receptor (PDGFR) decreased viability of chondrosarcoma cell lines
in vitro [183,192]. Moreover, dasatinib especially sensitized p53 mutant chondrosarcoma cell lines
to doxorubicin treatment, indicating a potential of dasatinib to overcome chemoresistance [191].
Nevertheless, in the SRC009 phase II trial, the use of dasatinib as single agent in pretreated,
high-grade sarcomas, including chondrosarcomas showed no benefit [193]. Therefore, inhibition
of PI3K-AKT-mTOR and SRC might be advantageous in combination therapy of chondrosarcoma
patients, although reliable clinical data are still missing.
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6.5. Targeting Angiogensis and Invasion

As already discussed in chapter 3 and 4, both VEGF and FGF2 signaling are activated in
chondrosarcomas and apparently contribute to angiogenesis and invasion. Since enhanced activation
of PDGFR has been shown in human chondrosarcoma cell lines in vitro [183], PDGFR may be a
therapeutic target as well. SU6668, an inhibitor of vascular endothelial growth factor receptor
2 (VEGFR2), PDGFR-β and FGFR1 induced growth inhibition in chondrosarcoma animal models,
which seems to be attributed to the antiangiogenic effects of SU6668 [194]. The ongoing NCT01330966
phase II study is investigating the efficacy and safety of the single agent pazopanib, inhibiting
KIT, FGFR, PDGFR and VEGFR among other enzymes [195], in patients with unresectable or
metastatic chondrosarcoma. Another phase II trial (NCT02389244) currently recruiting patients utilizes
regorafenib, an oral multikinase inhibitor, which targets VEGFR, tyrosine kinase with Ig and EGF
homology domains-2 (TIE2), KIT, rearranged during transfection (RET), RAF-1, BRAF, BRAFV600E,
PDGFR and FGFR, in patients with metastatic bone sarcomas including chondrosarcomas. Sorafenib, a
multi-kinase inhibitor inhibiting several tyrosine kinases including VEGFR, PDGFR and RAF, mediated
pMEK and pERK inhibition leading to growth arrest and apoptosis in the chondrosarcoma cell lines
SW1353 and CRL7891, which was accompanied by downregulation of cyclin D1, retinoblastoma
suspectibility protein (RB), B-cell lymphoma-extra large (BCL-XL) and myeloid cell leukemia sequence
1 (MCL-1) expression [196]. Two phase II studies utilizing sorafenib in patients with different types of
sarcomas indicated prolonged stable disease when evaluated in 3 chondrosarcoma patients [197,198].
Moreover, imatinib, another multi-kinase inhibitor, inhibiting ABL, KIT and PDGFR, was tested in
a phase II trial with patients having recurrent, non-resectable, PDGFR positive chondrosarcomas.
However, in this trial no benefit of imatinib treatment has been reported [199]. Another open-label
study (NCT00928525) utilizing imatinib in chondrosarcoma patients is ongoing. Once data of the
ongoing trials are available, it may be determined, whether the use of multikinase inhibitors is a
therapeutic option for chondrosarcoma patients.

6.6. Additional Targets and Biomarker

In addition to the pathways mentioned in the previous chapters that are currently being
investigated in clinical trials, there may be other signaling pathways involved in chondrosarcoma
genesis and progression that could serve as potential novel targets.

Canonical WNT signaling is implicated in the β-catenin-dependent regulation of mitotic and cell
fate-determining gene transcription of MSPC, whereas two non-canonical WNT pathways affect
cell shape and motility in the planar cell polarity pathway and the Ca2+/WNT pathway [200].
Dickkopf WNT signaling pathway inhibitor 1 (DDK1), an antagonist of canonical WNT/β-catenin
signaling as well as β-catenin were progressively overexpressed in chondrosarcoma tissues with
increasing histological grade and correlated with poor prognosis [201]. In the chondrosarcoma cell line
SW1353 WNT3A, WNT6, WNT7B and frizzled-3 (FZD3) mRNA expression was upregulated compared
to MSPC and rWNT3A enhanced SW1353 proliferation [202]. Recombinant WNT inhibitory factor
1 (WIF1), which inhibits WNT signaling by binding of several WNT ligands including WNT3A and
WNT5A, prevented WNT induced MSPC growth by neutralizing rWNT3A-mediated inhibition of
chondrogenesis in micromass cultures of embryonic chick limb bud cells [203]. WIF1 is epigenetically
silenced via promoter methylation in human chondrosarcoma tissues and cell lines, and loss of
WIF1 protein expression correlated with lower progression free and overall survival rates [204].
Interestingly, aging reduced expression of β-catenin in bone marrow derived MSPC, while β-catenin
phosphorylation increased, indicating enhanced proteasomal degradation [61]. Therefore, targeting of
WNT signaling might be of interest for chondrosarcoma treatment.

NOTCH signaling maintains the stem cell phenotype and prevents differentiation of different
types of MSPC. In 3D cultures of hMSPC NOTCH signaling was downregulated with increased
chondrogenic differentiation. Indeed, jagged 1 (JAG1) overexpression prevented chondrogenesis in
hMSPC [60]. In adult AC NOTCH1 expression is restricted to MSPC in the SZ which proliferate during
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the onset of OA and form clusters [49]. In a human conventional chondrosarcoma of the maxilla
strong NOTCH3 and JAG1 protein expression was detected at areas of tumor proliferation [205].
Increased NOTCH1, hairy and enhancer of split 1 (HES1), hairy/enhancer-of-split related with YRPW
motif (HEY) 1 and HEY2 protein expression indicating active NOTCH signaling has been detected in
human chondrosarcoma tissues [206]. In conclusion, inhibition of NOTCH signaling might impede
proliferation and induce differentiation in chondrosarcomas.

Intriguingly, 96% of high grade central chondrosarcomas harbor alterations in the p53 or RB tumor
suppressor pathways [207]. Inactivating p53 mutations especially occur in G3 chondrosarcomas [2],
indicating a rather late event. In addition, amplification of 12q13 and loss of 9p21 are common
genetic changes in advanced chondrosarcomas [135]. Indeed, the genes for mouse double minute
2 (MDM2), negatively regulating p53, and cyclin dependent kinase 4 (CDK4), important for G1
cell cycle progression, are localized at 12q13, whereas 9p21 contains the cyclin dependent kinase
inhibitor 2A (CDKN2A) locus, coding for the tumor suppressor proteins p16INK4A and alternative
reading frame (ARF) [208,209]. Lack of p16INK4A was implicated in the radiation resistance of
human chondrosarcoma cell lines in vitro [141]. Although the loss of these tumor suppressor genes is
frequently found in advanced chondrosarcomas, their inactivation might be also a result of increasing
genomic instability [150,151] and not the primary cause of tumor progression.

Programmed cell death ligand 1 (PD-L1) expression, either by tumor cells themselves or by the
tumor-associated immune cells, can be an effective mechanism for tumors to evade T-cell recognition
and destruction [210]. Indeed, 41% of dedifferentiated chondrosarcomas examined in a study of Kostine
et al. displayed PD-L1 positivity. Preliminary results of the SARC028 phase II study utilizing the
anti-PD1 antibody pembrolizumab (MK-3475) in patients with advanced soft tissue and bone sarcomas
showed in one out of six dedifferentiated chondrosarcoma patients a partial tumor remission [5]
indicating a potential use of this therapy in a subset of chondrosarcoma patients.

As already discussed in the previous chapters, several miRNAs are dysregulated in their
expression in human chondrosarcomas [211]. However, functional implication in chondrosarcoma
tumorigensis has yet only been attributed to a few of them, although many have distinct functions
in other types of cancer. Depletion of two miRNAs has been implicated in chemoresistance; miR-100
is downregulated in human chondrosarcoma tissues and cell lines. In vitro, depletion of miR-100
resulted in cisplatin resistance of chondrosarcoma cells probably mediated by mTOR, which is a
direct target of miR-100 [212]. Low miR-125b level have been associated with doxorubicin resistance
of chondrosarcoma cells in vitro [213]. In the human chondrosarcoma cell line JJ012 predominantly
NOTCH and IGF signaling were deregulated by reduced endogenous miRNA levels [214]. Hence, the
interest in miRNAs in cancer is consistently growing.

Although some individual targets seem to be promising for chondrosarcoma treatment, in the
clinic, the use of single targeted drugs just like chemotherapeutics and radiation is often disappointing.
This might be due to global epigenetic and genomic changes in chondrosarcoma, but also some special
features including poor vascularity and dense ECM accompanied by permanent activation of stem cell
pathways preventing differentiation. In addition, the rarity of chondosarcomas prevents initiation of
large stratified trials.

7. Conclusions

Chondrosarcomas are a heterogenic group of rare tumors. Basically, some entities seem to
arise from MSPC of the growth plate in adolescents and young adults. On the other hand, quite
unusual for bone sarcomas, the peak incidence of conventional and dedifferentiated chondrosacomas
is in adults beyond the age of 40. Indeed, these chondrosarcomas seem to originate from MSPC in
the bone marrow, but not necessarily in the long bones. High grade conventional, but especially
dedifferentiated chondrosarcomas have an irregular appearance, with zones of rather chondrogenic and
areas of rather fibrogenic or osteogenic differentiation, that together indicate conflicting signaling, or
even a heterogenous pool of MSPC, which prevents differentiation in one or the other direction.
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Cartilaginous differentiation is a challenge for tumor growth, as avascularity—a hallmark of
cartilage—limits the growth rate. Actually, low grade conventional chondrosarcomas do slowly grow
and are rather benign. However, once vascularization is induced, conventional and dedifferentiated
chondrosarcomas tend to be locally aggressive and also frequently metastasize to the lung. In addition,
high grade conventional chondrosarcomas and dedifferentiated chondrosarcomas exhibit a remarkable
therapeutic resistance comprising chemotherapy, radiation therapy, but also targeted approaches.
This has been attributed to comparatively slow proliferation, MDR1 overexpression, relatively poor
vascularization and a dense hyaline ECM. Sustained stemness as well as global epigenetic and genomic
changes seem to be implicated in therapeutic resistance of chondrosarcomas. In addition to the challenge
to identify relevant targets for this rare disease, single agent approaches may be not applicable at all.
Due to various subtypes and grading specific differences, identification of biomarkers for stratification
of chondrosarcoma patients is urgently needed. Actually, clinical trials targeting mutant IDH, HDAC,
PI3K/AKT/mTOR and SRC signaling as well as FGF2, VEGF and PDGF pathways are ongoing and
have to be evaluated. Furthermore, immunotherapy has to be considered as a therapeutic option.

Notably, at the age beyond 40 at which the conventional and dedifferentiated chondrosarcoma
incidence starts to rise, also MSPC in the SZ of AC start to proliferate and exhibit reorganization of
cell arrangement which may be a prerequisite or early indicator of OA. Collectively, this indicates
a changed microenvironment in cartilage and bone, in which an increasing abundance of free FGF2
might be implicated, since FGF2 signaling is involved in proliferation, migration, inflammation and
angiogenesis. To date, it has not been investigated whether chondrosarcoma patients may additionally
suffer from progressive OA or obesity. Such data may help to answer whether both diseases induce a
growth factor and cytokine milieu that is supportive of chondrosarcoma growth and progression once
chondrosarcoma-specific genetic and epigenetic aberrations have occurred in bone marrow MSPC.
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Abbreviations

2-HG R(−)-2-hydroyglutarate
α-KG α-ketoglutarate
ABL Abelson tyrosine protein kinase
AC articular cartilage
ADIPOR adiponectin receptor
ADSF adipose tissue-specific secretory factor
AKT v-Akt murine thymoma viral oncogene homolog
AMPK AMP-activated protein kinase
AP-1 activator protein 1
ARF alternative reading frame
ATO arsenic trioxide
BCL-XL B-cell lymphoma-extra large
CCL C-C motif chemokine ligand
CCR C-C motif chemokine receptor
CD cluster of differentiation
CDK4 cyclin dependent kinase 4
CDKN2A cyclin dependent kinase inhibitor 2A
COL2A1 collagen type II α 1 chain
COX-2 cyclooxygenase 2
CTGF connective tissue growth factor
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CXCL12 C-X-C motif chemokine ligand 12
CXCR4 C-X-C motif chemokine receptor 4
DHH desert hedgehog
DDK1 dickkopf WNT signaling pathway inhibitor 1
ECM extracellular matrix
ERK extracellular signal-regulated kinase
ET-1 endothelin-1
ETS avian erythroblastosis virus E26 oncogene homolog
FAK focal adhesion kinase
FGF2 fibroblast growth factor
FGFR1 fibroblast growth factor receptor 1
FZD3 frizzled-3
GLI glioma associated oncogene family
HDAC6 histone deacetylase 6
HES1 hairy and enhancer of split 1
HEY hairy/enhancer-of-split related with YRPW motif
Hh hedgehog
HIF-1α hypoxia-inducible factor-1α
HLA-DR human leukocyte antigen—antigen D related
HSC hematopoietic stem cells
ICAM intercellular adhesion molecule
IDH isocitrate dehydrogenase
IGF insulin like growth factor
IGF1R insulin like growth factor 1 receptor
IHH indian hedgehog
ISCT International Society for Cellular Therapy
JAG1 jagged 1
JMJC jumonjiC domain-containing
MAPK mitogen activated protein kinase
MCL-1 myeloid cell leukemia sequence 1
MDM2 mouse double minute 2
MDR1 multidrug resistance protein 1
MEK MAPK/ERK kinase
MMP matrix metalloproteinases
MSC mesenchymal stem cells
MSPC mesenchymal stem and progenitor cells
mTOR mammalian target of rapamycin
NADPH nicotinamide adenine dinucleotide phosphate
NF-κB nuclear factor kappa B
NOTCH notch homolog
OA osteoarthritis
OPN osteopontin
p70S6K p70 S6 kinase
PDGFR platelet derived growth factor receptor
PHD prolyl hydroxylase
PI3K phosphatidylinositol 3-kinase
PIIBNP collagen type IIB splice variant
PD-L1 programmed cell death ligand 1
PGP-1 phagocytic glycoprotein 1
PTCH1 patched 1
r recombinant
RANKL receptor activator of NF-κB ligand
RANTES regulated upon activation, normally T-expressed, and presumably secreted
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RB retinoblastoma suspectibility protein
RET rearranged during transfection
RGS16 regulator of G-protein signaling 16
RUNX2 runt related transcription factor 2
SHH sonic hedgehog
SMO smoothened
SNP single nucleotide polymorphism
SOX SRY-related HMG box-containing
STRO-1 stromal cell surface marker-1
SZ superficial zone
TIE2 tyrosine kinase with Ig and EGF homology domains-2
TET ten-eleven-translocation
VEGF vascular endothelial growth factor
VEGFR vascular endothelial growth factor receptor
WHO World Health Organization
WIF1 WNT inhibitory factor 1
WNT wingless-type MMTV integration site family
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