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The local and systemic production of prostaglandin E2 (PGE2) and its actions in phagocytes lead to immunosuppressive conditions.
PGE2 is produced at high levels during inflammation, and its suppressive effects are caused by the ligation of the E prostanoid
receptors EP2 and EP4, which results in the production of cyclic AMP. However, PGE2 also exhibits immunostimulatory properties
due to binding to EP3, which results in decreased cAMP levels. The various guanine nucleotide-binding proteins (G proteins) that
are coupled to the different EP receptors account for the pleiotropic roles of PGE2 in different disease states. Here, we discuss the
production of PGE2 and the actions of this prostanoid in phagocytes from different tissues, the relative contribution of PGE2 to
the modulation of innate immune responses, and the novel therapeutic opportunities that can be used to control inflammatory
responses.

1. General Considerations

Prostaglandins (PGs) are lipid mediators derived from
arachidonic acid (AA) metabolism via the activation of the
cyclooxygenase (COX) pathway, that regulates inflammation,
immune response, hematopoiesis, tissue injury and repair,
and bone resorption. PGs are found in most tissues and
organs, and the variety of effects that they can elicit reflects
the presence of specific PG receptors in many cell types.
Upon cell activation by microbial products, cytokines, and
opsonins, cytosolic phospholipase A2 (PLA2) is activated and
recruited to hydrolase plasma cell phospholipids. Once it is
released from the membrane, AA is rapidly converted into
PGs by cells expressing prostaglandin H synthase (COX).
At least two COX isoforms exist, the constitutive (COX-
1) and inducible (COX-2) isoforms. COX-1 is expressed in
many cell types distributed throughout the body, whereas

COX-2 expression is highly restricted under basal conditions
and upregulated during inflammation in different cell types
[1] (see Figure 1). COX proteins are the major targets of
nonsteroidal anti-inflammatory drugs (NSAIDs).

COX-2 is transcriptionally regulated by mediators that
act through phosphatidylinositol 3-kinase (PI3K), extracel-
lular signal-regulated kinase1/2 (ERK1/2), and p38, and
the activation of COX-2 culminates in the activation of
the transcription factors, nuclear factor kappa B (NFκB),
activator protein (AP-1) and the cAMP response element-
binding (CREB) [2, 3]. Therefore, COX-2 activity is induced
by a variety of proinflammatory cytokines and growth
factors and by one of its products, PGE2. Conversely, COX-
2 expression is inhibited by glucocorticoids and interleukin
(IL)-4. Both COX-1 and COX-2 are present in the active
state in the endoplasmic reticulum and the nuclear envelope.
These enzymes convert AA to the unstable endoperoxide
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Figure 1: Prostanoid biosynthesis and receptors. Upon cell
stimulation, PLA2 is activated, and (AA) is released from the
cellular membranes. AA is then metabolized by COX-1 or COX-
2 in different cellular compartments and further metabolized by
different synthases, which leads to the generation of different
prostanoids. Once the product is formed, different prostanoids
are transported outside the cells to bind to their respective recep-
tors. (PG prostaglandin; Tx thromboxane; PGJ2 15-deoxy-Δ12,14-
prostaglandin J2; Cox-1/2 cyclooxygenase-1/2; PGDS, PGES, PGFS,
and PGIS prostaglandin D2/E2/F2/I2-synthase; PGIS prostacyclin
synthase; TxAS thromboxane A2 synthase; PGER prostaglandin E2
9-reductase).

PGH2, which is converted by specific synthases to the
five following biologically active prostanoids: PGD2, PGE2,
PGF2α, PGI2 (prostacyclin), and thromboxane A2 (TXA2).
There are several PGE synthases, and one of these synthases
(mPGES-1) is a highly inducible microsomal enzyme that
acts downstream of COX to catalyze the conversion of PGH2

to PGE2 [4–6] (Figure 1).
PGE2 is a potent mediator of inflammation that induces

both pro- and anti-inflammatory effects and signals via
four different E prostanoid (EP) receptors, EP1-EP4. The
EP receptors are member of a family of G protein-coupled
receptors (GPCRs). EP1 signals through Gαq, which leads
to increased levels of Ca2+. EP2 and EP4 signal through
Gαs, which leads to increased cAMP levels. EP3 primarily
signals through Gαi, which leads to decreased cAMP levels
[7] (Figure 2).

The distribution and relative expression of these four
receptor subtypes provide an elegant system that can account
for the ability of PGE2 to evoke pleiotropic and sometimes
opposing bioactions that are tissue- and cell-type specific.

Although PGE2 is commonly considered to be a potent
proinflammatory mediator [8], its role as a mediator of anti-
inflammatory responses is now being studied [9, 10]. The
anti-inflammatory response opposes the host inflammatory
response, which potentially limits collateral damage to
neighboring cells and tissues and aids in the resolution of
inflammation after the pathogens are contained [11]. This
dual effect depends on the cell type, the tissue compartment,
the state of cellular activation, and the particular expression
of the signaling-EP receptors. The existence of four subtypes
of receptors that signal differently and can be expressed in
different combinations in a single cell explains the multi-
plicity of biological responses that are elicited by PGE2 and
how these responses may differ among cells and tissues. This
paper reviews the recent knowledge regarding PGE2 synthesis
and its modulatory effect on innate immune responses in
different tissues.

2. Lung

The synthesis of PGE2 occurs in several different cellular
types within the airways, such as epithelial cells, fibrob-
lasts, vascular endothelial cells, and leukocytes [12]. The
leukocytes that can synthesize PGE2 include the alveolar
macrophages (AMs), neutrophils, follicular dendritic cells,
and T cells. The relative capacity of these cells to produce
PGE2 is shown in Table 1. The AMs represent a major source
of PGE2 during microbial infection [13], whereas alveolar
epithelial cells and pulmonary fibroblasts also represent an
important source of PGE2 in the lungs [14]. High levels of
PGE2 are produced in AMs following the lipopolysaccharide
(LPS)-and granulocyte/macrophage colony-stimulating fac-
tor (GM-CSF)-dependent expression of the inducible form
of COX-2 [15]. Several mediators and signal transduction
pathways are involved in the modulation of the synthesis
and release of PGE2 by these cells. The inhibition of
endogenous rat AM-producing transforming growth factor
(TGF)-β enhances PGE2 synthesis, while the expression
of LPS-induced COX-2 and PGE2, which are released by
human AMs, is upregulated following the inhibition of
PI3K activity [3]. AMs also produce increased PGE2 after
bone marrow transplantation [16]. Although neutrophils
are considered to be the main producers of leukotriene B4

(LTB4) (5-lipoxygenase-derived lipid mediator), few studies
have attempted to evaluate the ability of lung neutrophils
to produce prostanoids. In fact, the majority of studies is
focused on the peritoneal and peripheral blood-derived neu-
trophils [17]. One of these studies demonstrated that lung
PMNs (but not AMs) from mice that received bone marrow
transplants synthesized pronounced levels of PGE2 when
compared with cells from control mice [16]. In general, the in
vitro synthesis of the cytokine-induced PGE2 by neutrophils
involves the activation and novel synthesis of COX [18]. In
addition, while PGE2 synthesis is well documented in human
monocyte-derived immature dendritic cells (DCs) [19], no
studies to date have demonstrated the particular capacity of
lung DCs to produce this mediator.
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Figure 2: PGE2 receptors and their actions in macrophages. PGE2 produced during inflammatory conditions binds to EP2, EP4, EP3, or EP1.
EP2 and EP4 are coupled to Gαs, and the binding of PGE2 to these G protein-coupled receptors (GPCRs) induces a conformational change
that results in the liberation of the Gαs subunit from the Gβγ subunit complex. The binding of the Gα subunit to adenylyl cyclase (AC)
either stimulates (Gαs) or inhibits (Gαi, via EP3 signaling) the enzyme’s generation of cAMP. The production of cAMP is also regulated by
microbial pathogens. Downstream cAMP signaling is mediated by its interactions with effector molecules, such as protein kinase A (PKA),
or exchange proteins that are directly activated by cAMP (Epac), which have been shown to modulate phagocyte functions. Depicted here is
a pattern for alveolar macrophages in which specific antimicrobial functions are differentially regulated by specific cAMP effectors.

PGE2 produced in the lungs elicits a wide variety of
effects [1]. The effects vary from the induction of tissue
repair and pulmonary vascular remodeling [20] to the
regulation of immune inflammatory responses [21].

AMs are the primary lung cells that are involved in the
protection of the alveolar-blood interface and serve as the
front line of cellular defense against respiratory pathogens
[22] in both murine and human cells. AMs express all
four types of EP receptors [23] and contribute greatly
to the amount of PGE2 produced in infected lungs [13]
(Table 1). Monick and collaborators have demonstrated that
LPS induces COX-2 expression and PGE2 release in human
AMs [3, 24].

The immunomodulatory effects of PGE2 are largely
caused by its ability to increase intracellular cAMP through
the stimulatory Gαs-coupled EP receptors EP2 and EP4

[25]. Increases in intracellular cAMP levels are transduced
into cellular responses mediated by its effectors, cAMP-
dependent protein kinase A (PKA), and the exchange protein
directly activated by cAMP-1 (Epac-1) [26]. In phagocytes,
the effects of PGE2 are usually anti-inflammatory since
PGE2 has been demonstrated to inhibit the production of
proinflammatory molecules and increase the secretion of

anti-inflammatory cytokines, such as IL-10 [27]. In human
AMs, PGE2 potently inhibited LPS-induced tumor necrosis
factor (TNF)-α through the activation of the EP2 and EP4

receptors [28]. The downmodulation of LPS-induced TNF-
α by PGE2 in rat AMs is dependent on cAMP signaling-
dependent PKA activation since the selective PKA activating
cAMP analog 6-Bnz-cAMP, but not the Epac-1 activating
analog 8-pCPT-2-O-Me-cAMP, inhibits its production [29].
EP2 signaling is also involved in the enhancement of LPS-
induced nitric oxide (NO) by the activation of PKA rather
than Epac-1 [30]. Exogenous PGE2 can potentiate the
synthesis of LPS-mediated IL-6 and IL-10 in rat AMs via
AKAP10-(A-kinase anchoring protein-10-) mediated PKA
signaling, while the suppression of TNF-α occurs via AKAP-
8-anchored PKA-RII (PKA regulatory subunit type II) [30].

PGE2 has also been shown to inhibit AM FcR-mediated
phagocytosis by activating the EP2 receptor, judged by the
mimicked effect of the selective EP2 agonist butaprost [23]
or a specific Epac-1 agonist (8-pCPT-2′-O-Me-cAMP) [32].
Moreover, PGE2 inhibits rat AM microbicidal activity and
this effect was restored after treatment with indomethacin,
EP2, and EP4 antagonists [31]. The role of EP3 receptor
activation-driven AMs was also studied in the context of
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Table 1: Prostaglandin E2 Synthesis and Receptor Expression in Leukocytes from different organs.

Type of compartment Type of cells Relative synthetic capacity
Receptor expression

EP1 EP2 EP3 EP4

Neutrophils − + +& + +&

Lung Alveolar macrophages + + + − + + + + ++

Dendritic cells +∗ + ++& + ++&

Neutrophils − ND ND ND ND

Spleen Macrophages +∗ ND ND ND ND

Dendritic cells + ND ND ND ND

Bone
BMDM-derived + + + + + + + + + + +

osteoclasts + + ++ + ++

Relative synthetic capacity is expressed by the number of plus (+) signs; a minus sign (−) characterizes no or a negligible synthetic capacity. Receptor
expression is classified as positive (+), negative (−), minimal (±), or not determined (ND). ∗Synthesis of PGE2 is relatively low in unstimulated conditions
but is upregulated upon stimulation. &Receptor expression is upregulated during inflammatory stimulus.

pulmonary infection. Although the Gαi-coupled EP3 was
thought to oppose the Gαs-coupled EP2 and EP4 receptors,
EP−/−3 mice were protected from bacterial induced death,
which corroborates the increased ability of AMs to phagocy-
tose and kills Streptococcus pneumoniae [33]. Through EP2,
PGE2 was also involved in the mediation of the immunosup-
pressive response characterized by increased IL-10 synthesis
and the impairment of neutrophil recruitment to the lungs
during the ingestion of apoptotic cells (efferocytosis) by
phagocytes [10]. As a suppressive mediator, PGE2 inhibits
AA release and LTB4 synthesis in rat AMs by a mechanism
independent of PLA2 [34].

Human and mouse lung DCs are localized in the
airway epithelium, lung parenchyma, visceral pleura, and
bronchoalveolar lavage fluid (BALF) [35]. DCs exposed to
PGE2 exhibit a decreased capability to secrete proinflam-
matory cytokines [36]. They are in contact with many
other cells in the lungs such as the airway epithelium,
type II alveolar epithelial cells, AMs, pulmonary inter-
stitial macrophages, (myo)fibroblasts, bronchus-associated
lymphoid tissue (BALT) lymphocytes, nonadrenergic, non-
cholinergic (NANC) nerve endings, capillary endothelium,
and mast cells. Although the particularly contribution of
lung DC as producer of PGE2 is still unknown, there are
several studies using bone-marrow-derived DCs (BM-DCs)
showing that their immunomodulatory function is highly
regulated by mediators including PGE2, potentially produced
by neighboring cells in the lungs. BM-DCs exposed to
PGE2 present decreased ability to secrete proinflammatory
cytokines [36]. The importance of lung DC modulation by
PGE2 is highlighted considering DC as the mediator cell
of the adaptative immune response and the lungs as an
important local tissue for airway microbial defenses [37].

Lung PMNs are the primary cells recruited to the
lungs during acute lung injury [38]. LPS is an important
inducer of the inflammatory response by its activation of
Toll-like receptor 4 (TLR4). After binding to TLR4, LPS
triggers the synthesis of chemoattractants that induce PMN
migration at sites of inflammation, such as the lung [39].
The overproduced PGE2 by lung PMNs from bone marrow
transplantation mice is involved to the decreased ability

of PMN to kill Pseudomonas aeruginosa, an effect restored
by the PG inhibition with indomethacin [16]. However,
evaluation of EP signaling in the PGE2-mediated impaired
host defense by lung PMMs is much less appreciated.

Due to the low yield of murine alveolar macrophages,
one plausible alternative to study PGE2 synthesis/actions
is the use of alveolar macrophage cells lines. However, a
very limited number of studies have been done to identify
the profile of PGE2 synthesis and actions in this cell
line. Here, we are summarizing some of the key findings
regarding the expression of COX mRNA and protein in MH-
S murine alveolar macrophages. MH-S is a murine alveolar
macrophage cell line transformed by SV40 obtained from
Balb/c mice and displays several properties of primary AM,
such phagocytic capacity and expression of Mac-1 antigen,
major histocompatibility complex class II, the CR3 receptor,
and the Fc receptor Mbawuike and Herscowitz, 1989 to [40].
LPS-stimulated MH-S cell line promotes robust increment
of COX-2 and large amounts of PGE2 (Joo et al., 2005 to
[41]; Chen et al., 2007 to [42]). Luteolin, a flavonoid that
exhibits anti-inflammatory properties, is shown to inhibit
COX-2 gene expression and PGE2, IL-6, TNF-α, and iNOS
production in LPS-activated MH-S cells by decreasing NF-
κB and AP-1 activation Chen et al., 2007 to [42]. In this
context, LPS or overexpression of IKKβ is reported to activate
NF-κB signaling and COX-2 expression, which was impaired
after ectopic expression of hepatitis C virus in MH-S cells
Joo et al., 2005 to [41]. However, so far there are no reports
regarding EP receptors expression profile and the relative role
of individual receptor in MH-S cells.

3. Spleen

Splenic macrophages, DCs, and lymphocytes contribute to
PGE2 synthesis in the spleen [43]. In splenic tissues, mPGES-
1 accounts for the majority of basal (COX1-dependent)
PGE2 synthesis, and the in vivo mPGES-1 deletion abol-
ished LPS-inducible PGE2 synthesis [44]. Normal splenic
macrophages produce low levels of PGE2 when compared
with bone-marrow-derived macrophages (BMDM; Table 1),
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AMs, and peritoneal macrophages [45]. However, high levels
of this mediator are produced by splenic macrophages in
chronic inflammatory conditions, such as mycobacterial
infection [46]. It has been shown that the formation of
PGE2-producing splenic macrophages is dependent on the
radiosensitive bone marrow cells [47]; the precursors migrate
from the bone marrow cells to the spleen to become mature
cells [48]. Splenic DCs appear phenotypically immature
and mature after microbial stimuli [37]. The phenotype
seems to be determined by other suppressive mediators,
including NO, TGF-β, 1α, 25 dihydroxyvitamin D3 (vitamin
D) and PGE2 produced by antigen-presenting cells (APCs)
such as macrophages and DCs [49]. To date, no reports
have described EP expression in splenic DCs; most studies
are focused on bone-marrow-derived DCs (BM-DCs) [50].
These cells express all four EP receptors [51] that can induce
different effects, including DC generation, migration, and
maturation [52].

PGE2-producing macrophages that are induced from
mycobacterial stimuli interact closely with splenic lympho-
cytes to induce a shift from the Th1 to Th2 immune
responses in a PGH2 synthase-dependent manner [53]. This
shift is based on the suppressive effect of the synthesis of Th1
cytokines, such as IL-1, IL-12, and interferon (IFN)-γ, but it
does not affect Th2 cytokines [54]. The downmodulation of
TNF-α synthesis by PGE2 in in vitro-derived BM-DCs occurs
through EP2- and EP4-induced signal transduction events
[55]. It has also been shown that this signaling can upregulate
IL-23 synthesis and downmodulate APC-produced IL-12
[56], which favors the expansion of IL-17-producing Th17
cells [57].

4. Bone

PGE2 produced in the bone is primarily derived from
osteoblasts, cells responsible for bone formation [58]. As
shown in Table 1, mouse BMDMs, osteoclast precursors,
and mature osteoclasts differentially express EP receptors.
BMDMs express the EP1, EP2, EP3β, and EP4 receptors, while
mature osteoclasts only express the EP1 receptor [59]. It
was demonstrated that PGE2 can stimulate cAMP levels in
BMDMs but does not affect cAMP in mature osteoclasts; this
result demonstrates that functional EP2 and EP4 receptors are
inhibited in osteoclasts during its differentiation [59].

Osteoclasts are bone-resorbing multinucleated cells
derived from the monocyte-macrophage lineage [60]. The
differentiation and activation of osteoclasts are tightly
regulated by osteoblasts through the release of receptor
activator of NF-κB ligand (RANKL) and macrophage colony-
stimulating factor (M-CSF) [61], which are required for the
differentiation of osteoclast progenitors into mature osteo-
clasts [62]. RANKL activation induces COX-2 expression
in immature osteoclast by utilizing a Rac1-dependent NK-
κB activation pathway; that results in PGE2 synthesis and
contributes to accelerated osteoclast differentiation [63].

In bone, PGE2 is known to be an important local factor
in the regulation of bone formation [64] and resorption [65].
PGE2 acts in precursors and mature osteoclasts to regulate

their function. PGE2 can directly inhibit the bone-resorbing
activity of osteoclasts. This inhibitory effect was dependent
on an increase of intracellular cAMP caused by activator
of adenylate cyclase (forskolin) and mimicked by the EP2

and EP4 agonists (butaprost and AE-604). In calvaria culture
from EP4 knockout mice, PGE2 presented an impaired role
in promoting bone resorption, whereas EP2 agonist slightly
restored bone resorption and EP4 agonist did not [66].

5. Central Nervous System (CNS)

Although the immunoprivileged status of the CNS is
well known, similar to any other organ, it is connected
and engaged with the immune system to maintain tissue
homeostasis. An excessive inflammatory status can promote
several types of brain damage, which include ischemia and
neurodegenerative diseases, such as Alzheimer’s disease and
Parkinson’s disease [67].

The CNS typically contains low prostanoid levels.
Specifically, PGE2, PGD2, and PGF2a are associated with
inflammatory responses [68]. Oddly, the COX-1 and COX-
2 enzymes are both constitutively expressed in the CNS (in
neurons, astrocytes, microglia and endothelia) [69], and a
putative COX-3 enzyme, which is a splice variant of COX-
1 that is denoted as COX-1b, is described in rodent and
human neural tissues [70–72]. The PGE2 levels in the CNS
are enhanced during various neurological diseases, such
as multiple sclerosis, Alzheimer’s disease, and Parkinson’s
disease [68].

Importantly, the proinflammatory stimuli that lead
to brain injury further enhance COX-2 expression and
therefore enhance PGE2 synthesis. All three PGES isoforms
are found in the CNS tissues, and the expression levels
vary according to the cell type [73]. An elegant study
demonstrated that brain PGE2 synthesis is orchestrated
by COX-1/COX-2/membrane-associated cPGES (cPGES-m)
and by nuclear/perinuclear COX-2/mPGES-1/cPGES [74].

Because few studies have described DCs and neutrophils
in the CNS, we will focus primarily on the microglia
functions. It is noteworthy that although there is a close rela-
tionship between the peripheral macrophages and microglia,
all of the knowledge concerning the peripheral cells cannot
simply be extended to microglia cells that are inserted in a
unique environment.

Initially, astrocytes were reported to be the major source
of prostanoids within the CNS [75], but later studies have
demonstrated that microglial cells can release higher levels
of PGE2, PGD2, and TXB2 than astrocytes [76]. Similar
to peripheral macrophages, COX-2 is the main enzyme
expressed by microglia after activation [77]. LPS induces
high levels of PGE2 synthesis by upregulating COX-2 and
mPGES-1 expression [76, 78]. Additionally, activation of
microglia by TLR can be modulated by further PGE2

synthesis. Although factors such as TGF-β [79], TNF-α [80],
norepinephrine [81], adenosine, and PGE2 [82], can act
as COX-2 positive regulators, other factors, such as IFN-γ
[83], IL-10 [79], NO [83], and lipocortin [84] are negative
regulators of COX-2 expression and activation. Interestingly,
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PGE2 synthesis is rapidly augmented when microglia are
treated with phosphatidylserine (PS) liposomes in a manner
that is dependent on the COX-1/mPGES-2 axis [85].

From the moment that PGE2 is released, it acts in
close proximity to its production site in an autocrine or
paracrine manner. In general, PGE2 acts as a suppressive
mediator of the microglia. In the CNS, PGE2 primarily
causes enhanced levels of cAMP [80], which further sug-
gests a role for EP2 and EP4 in the mediation of CNS
inflammation. Supporting its suppressive functions, studies
of TLR4-mediated microglial activation have shown that
PGE2 can inhibit the production of TNF-α [86] and IL-
12 [87], IL-18 [88], the expression of the B7-2 (CD86) co-
stimulatory molecules [89], the enhancement of IL-10 and
IL-6 production, and the expression of inducible nitric oxide
synthase (iNOS). Additionally, a recent study has associated
PGE2 with decreased microbicidal activity by microglial cells
in meningitis [90].

In addition to its inflammatory roles, PGE2 is related
to several central functions, such as fever (thermogene-
sis), the neuroendocrine axis, food intake, and behavior
during sickness. Circulating IL-1β acts at the blood-brain
barrier (BBB) to induce COX-2 expression and PGE2

synthesis, and PGE2 subsequently diffuses into the brain
parenchyma to perform its actions [91]. Recent studies have
revealed that central COX-2 inhibition did not abrogate
fever induction or the increases in plasma corticosterones
and anorexia, which suggests that other sources of PGE2,
such as COX-2-dependent peripherally synthesized PGE2

or COX-1-dependent centrally produced PGE2 [92], are
involved. Interestingly, PGE2 production in the spinal cord
is elevated by peripheral inflammation through COX-2 and
mPGES-1 induction, which is correlated with peripheral
edema potentiation, enhanced neuron hyperexcitability, and
hyperalgesia [93]. Moreover, COX-2-dependent PGE2 is an
important signaling mediator for synaptic modification [94].

The role of PGE2 in the brain remains controversial,
and its differential effects depend on its specific receptor
[95]. Because the expression and timing of the EP receptors
vary according to the cell type and neuronal stimuli, the
specific role of each EP receptor depends on its specific
context (for an extensive review, see [96]). The EP3 receptor
is likely not associated with inflammatory roles, while the EP2

and EP4 receptors appear to have opposing activities [96].
Although the EP2 receptor is related to a proinflammatory
neurotoxic effect in activated microglia [97], the EP4 receptor
has an anti-inflammatory, neuroprotective role [98]. These
contradictory effects reflect the differential expression and
timing of the EP receptors.

Consistent with the myriad activities of PGE2 and the
dependence on the expression of specific EP receptors in
different cell types, studies that investigate the roles of PGE2

in the CNS should be addressed carefully. The inflammatory
effects of PGE2 are related to its dual neuroprotective and
neurotoxic roles, and unless the PGE2 paradoxical effects are
finely tuned, neurodegenerative diseases could occur. A full
understanding of the roles of PGE2 and the dynamics of EP
receptors in the CNS requires the study of the restrained areas

of the CNS and the endogenous PGE2 functions relative to
the different cell types and receptors that are involved.

6. Reproductive Tract

Uterine macrophages are an important source of PGs for
uterine activity [99]. They are known to be potent agonists
that promote contractile activity in the uterus, and either PGs
or its precursor treatments initiate preterm labor throughout
gestation. Therefore, LPS-induced uterine activation may be
due to increased levels of proinflammatory cytokine and
PGE2. Furthermore, exogenously added PGE2 analogs can
reduce the innate immune defenses within the reproductive
tract. Slama et al. provided a good example of the role of
PGE2 in inhibiting innate immune response. They injected a
PGE2 analog into the maternal cervix of cows for 1 wk follow-
ing calf delivery and observed an increased purulent uterine
secretions, increased frequency and severity of bacterial
contamination of the uterus, and reduced levels of antibodies
in uterine secretions. Pharmacological PGE2 administration
facilitated the establishment of chlamydial infections of the
murine female reproductive tract [100]. We have shown
that the intrauterine administration of misoprostol in rats
infected with Clostridium sordellii further enhanced the
bacterial numbers in the uterine tract and was followed by
decreased animal survival. This effect was associated with
the inhibition of TNF-α and defensin secretion by decidual
macrophages and uterine epithelial cells [101]. Although
little is known about the potential of misoprostol to suppress
the reproductive tract’s innate immunity, a study reported
an increase in the rate of infections when misoprostol was
administered orally, and the rate increased with intravaginal
administration [102]. This may help to explain the connec-
tion between medical abortion and clostridial endometritis
in contrast to infections that are caused by more commonly
encountered pathogens.

7. Peritoneal Macrophages

Peritoneal macrophages are extensively used as a model
to investigate macrophage function. This cell type is a
standard model used to identify inflammatory responses,
cellular metabolism, and apoptosis. Resident peritoneal
macrophages exhibit low responsiveness to inflammatory
stimuli relative to inflammatory peritoneal macrophages that
are recruited by inflammatory stimuli, such as thioglycol-
late, peptone or glycogen. Resident peritoneal macrophages
express mainly EP4 but not EP2 mRNA at basal levels.
In the presence of LPS, the expression of EP4 mRNA is
downregulated to levels that are lower than in nonstimulated
macrophages, and the expression of EP2 mRNA is transiently
increased after 3 h of stimulation [103].

Peritoneal macrophages have a greater capacity for PGE2

synthesis than macrophages from different organs, such
as alveolar macrophages or spleen macrophages. These
cells have higher levels of cytosolic and membrane COX-1
expression in activated cells, which are similar to the levels of
COX-2 expression after LPS treatment [104].
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The effect of PGE2 in the inhibition of inflammatory
cytokines, such as TNF-α, IL-1β, and IL-6, was initially
demonstrated in peritoneal macrophages upon TLR4 activa-
tion [105]. However, recent studies described that the effects
of PGE2 are due to the production of IL-10 [106]. However,
the suppressive effect of PGE2 on IL-6 production is con-
troversial and seems to be dependent on the inflammatory
stimulus used. In addition to the modulation of cytokines,
exogenous PGE2 can also modulate the expression of the cell
surface receptors of peritoneal macrophages. The addition
of different concentrations of PGE2 induces an increase in
CD14 on the surface of peritoneal macrophages through the
activation of cAMP/PKA, which results in the activation of
AP-1. The treatment of macrophages with a PKA inhibitor
or with antisense c-fos and c-jun oligonucleotides in the
presence of PGE2 prevented the increase of CD14 on the
surface of these cells [107].

PGE2 modulates a broad range of cytokines in peritoneal
macrophages involved in inflammatory processes. Endoge-
nous PGE2 production in LPS-stimulated resident peritoneal
macrophages acts as a brake for TNF-α and IL-12 synthesis
[103]. The activation of peritoneal macrophages with other
macrophage activators, such as IFN-γ and the fungal particle
zymosan, induces the synthesis of cytokines, chemokines,
lipid mediators, and reactive nitrogen and oxygen species
that directly or indirectly modulate the synthesis of PGE2.
Of the mediators that modulate PGE2 synthesis in these cells,
NO seems to play a key role in inhibiting PGE2 biosynthesis
by nitrosylating and preventing the activity of COX-2 and
mPGES [108].

The capacity of PGE2 to modulate cytokine production
clearly influences the inflammatory response during injury
and infection. The susceptibility or resistance to infection in
different mice strains could be associated, at least in part,
with the ability to stimulate the production of eicosanoids
from phagocytes. When they are stimulated with LPS,
peritoneal macrophages isolated from Balb/c mice produce
approximately 3-fold more PGE2 than the macrophages
isolated from other mouse strains, such as C57BL. The higher
levels of PGE2 in the peritoneal macrophages of Balb/c mice
are associated with high expression levels of sPLA2 type V
and mPGES mRNA relative to the levels in the macrophages
of C57BL mice. The increased capacity to produce PGE2 by
the macrophages isolated from Balb/c mice directly reflects
the inhibition of cytokines, such as IL-12 and TNF-α [109].

The peritoneal site also represents a primary organ to
generate macrophage cell lines, which are very often used
to study macrophage behavior and functions. Below we will
highlight some of the key human and murine cell lines used
to study PGE2 production and actions.

8. RAW 264.7 Cells

RAW 264.7 cells are mouse macrophage-like cells established
from the ascites of a tumor that was induced into a male
Balb/c mouse by an intraperitoneal injection of Abselon
leukemia virus (A-MuLV). These cells are extensively studied
in models of inflammation, metabolism, and apoptosis, and

they are used for in vitro drug screening. Currently, many
reports have shown that EP4 is the most abundant EP
receptor in RAW 264.7 cells, followed by EP2 and EP3 but
not EP1 [110]. The expression of these receptors in RAW
246.7 cells can be modulated in a manner that is dependent
on the inflammatory stimuli. TLR4 activation increases EP2

and inhibits EP4 receptor mRNA expression. In contrast, if
these cells are stimulated only with IFN-γ, the expression of
EP2 and EP4 decreases in a concentration-dependent manner
[111].

Several inflammatory mediators, including TNF-α, IL-1
[112], and IFN-γ [113], can directly or indirectly increase the
expression of COX-2 in RAW 246.7 cells. However, COX-2
expression and PGE2 synthesis in IFN-γ-treated RAW 264.7
cells is directly regulated by TNF-α [114]. In the presence
of an inflammatory stimulus, PGE2 appears to have an
autocrine effect in RAW 264.7 cells and can self-regulate
the expression of COX-2. The pretreatment of cells with
PGE2 or EP2/EP4 agonists followed by the stimulation with
LPS induced an increase in COX-2 expression, and this
expression was completely inhibited in the presence of an
adenylyl cyclase inhibitor [115].

9. U937

U937 is a cell line isolated from the histiocytic lymphoma of
a 37-year-old male and is used to study the differentiation
of monocytes into mature macrophages in the presence of
different stimuli, such as IFN-γ, phorbol 12-myristate 13-
acetate (PMA), and vitamin D [116]. In PMA-differentiated
cells, EP4 is the predominant receptor, while only low levels
of EP1, EP2, and EP3 were detected [117]. Unstimulated
U937s expressed high levels of EP2 on the surface; however,
when these cells were incubated with different concentra-
tions of PMA, the expression of EP2 and the cAMP levels
that were induced by PGE2 decreased in a manner that was
dependent on PKC [118].

Undifferentiated U937 cells produce low levels of PGE2;
however, in the presence of 12-0-tetradecanoylphorbol13-
acetate (TPA), these cells produce high levels of PGE2. U937
cells express high basal levels of PLA2, cPLA2α, and iPLA2β,
and the presence of IFN-γ does not alter the expression
of these proteins. The activation of these cells by the
aggregation of FcγRI promotes the generation of PGE2, but
only iPLA2β appears to be involved in the release of AA
and the generation of this prostanoid [119]. Untreated U937
cells or differentiated U937 cells in the presence of 1,25-
dihydroxyvitamin D3 express only COX-1; however, when
the differentiated cells are stimulated with serum-treated
zymosan (STZ), they begin to express high levels of COX-
2; in the presence of exogenous AA, they produce high levels
of PGE2 [120]. U937 cells differentiated in the presence of
PMA express COX-2 and high levels of PGE2, IL-1β, and
TNF-α after 6 h of stimulation with LPS. However, unlike
other cell types, the increased COX-2 levels in U937 cells are
independent of the presence of IL-1β and TNF-α because
the treatment of these cells with the respective neutralizing
antibodies does not interfere with the expression of LPS-
induced COX-2 [121].
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10. Therapeutic Approaches

Because PGE2 is the major PG product of most organs and
its synthesis is upregulated during inflammatory conditions,
which include infections and pathophysiologic conditions,
it is expected that PGE2 plays a nonredundant role in
controlling the inflammatory response and modulating
phagocyte function in diverse organs. Increased plasma
PGE2 levels have been reported in murine models and in
patients who have undergone bone marrow transplantation
[16, 122], are infected with HIV [123], display protein-
calorie malnutrition [124], are smokers, are aging [125], or
have cancer [126] or cystic fibrosis [127]. In all circum-
stances, these conditions are associated with susceptibility
to infection. More specifically, in a murine bone marrow
transplantation model, high levels of PGE2 were observed in
the lung and peritoneal lavage fluid, and the overproduction
of PGE2 by multiple cell types, including AMs, PMNs,
and alveolar epithelial cells, was observed [16]. Similarly, a
bactericidal PMN defect in guinea pigs following thermal
burn injury has been linked to increased intracellular cAMP
levels and the overproduction of PGE2 [128]. In both a
murine bone marrow transplant model and also a thermal
burn injury, these defects were overcome by treatment with
COX inhibitors. While COX inhibition is conventionally
regarded to be an “anti-inflammatory” strategy, an alterna-
tive possibility is that COX inhibitors or other nonsteroidal
anti-inflammatory drugs (NSAIDs) can prevent the over-
production of immunosuppressive PGE2, which may instead
represent an “immunostimulatory” strategy. In contrast, in
conditions in which PGE2 exerts proinflammatory activities,
such as in arthritis, atherosclerosis, and fever, COX inhibition
is also an attractive target due to its analgesic and antipyretic
properties. These drugs also have the beneficial effects of
pathogen clearance. This effect has been shown that the in
vivo treatment with NSAIDs enhances microbial clearance
in different models of infection [26]. Although it has not
been explicitly tested, we speculate that PGE2 inhibition by
NSAIDs should lead to reductions in intracellular cAMP
levels, which may account for the immunostimulatory effects
of NSAIDs in these models.

11. Conclusion

In summary, pharmacological inhibition or receptor genetic
deletion in mice has unveiled the big diversity and distinct
biological effects of PGE2. Depending on cell-specific sig-
naling programs and the context of injury, EP receptors
can mediate either bad or protective effects in processes
that mediate various diseases. The development of highly
selective pharmacological agents that targets individual EP
receptors should be studied in clinical trials in different
disease settings.
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