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Abstract

Given a sequence of epidemic events, can a single epidemic model capture its dynamics

during the entire period? How should we divide the sequence into segments to better cap-

ture the dynamics? Throughout human history, infectious diseases (e.g., the Black Death

and COVID-19) have been serious threats. Consequently, understanding and forecasting

the evolving patterns of epidemic events are critical for prevention and decision making. To

this end, epidemic models based on ordinary differential equations (ODEs), which effec-

tively describe dynamic systems in many fields, have been employed. However, a single

epidemic model is not enough to capture long-term dynamics of epidemic events especially

when the dynamics heavily depend on external factors (e.g., lockdown and the capability to

perform tests). In this work, we demonstrate that properly dividing the event sequence

regarding COVID-19 (specifically, the numbers of active cases, recoveries, and deaths) into

multiple segments and fitting a simple epidemic model to each segment leads to a better fit

with fewer parameters than fitting a complex model to the entire sequence. Moreover, we

propose a methodology for balancing the number of segments and the complexity of epi-

demic models, based on the Minimum Description Length principle. Our methodology is (a)

Automatic: not requiring any user-defined parameters, (b) Model-agnostic: applicable to

any ODE-based epidemic models, and (c) Effective: effectively describing and forecasting

the spread of COVID-19 in 70 countries.

1 Introduction

Infectious diseases have been serious threats to global public health. They not only change life-

styles of millions of people worldwide but also bring about dramatic changes in many areas,

including economies, cultures, ecologies, and more. Unfortunately, the war against infectious

diseases has continued throughout human history. The Black Death killed a third of the

world’s population in 1340s, and the Spanish flu in 1918 is estimated to have resulted in at

most 500 million deaths. Recent epidemic outbreaks of SARS, Ebola, Zika, and COVID-19

show that the war is not over yet.

Consequently, understanding and predicting epidemic spreads are important for preven-

tion and effective decision making. How many people will be infected within a week? How will
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lockdowns affect the spread? To answer these questions, we require a method that is simple

enough to be comprehensible but expressive enough to accurately model and predict the

spread of infectious diseases.

Ordinary differential equations (ODEs) have successfully described dynamic systems in

various fields, including ecology, economics, physics, and biology. ODEs have also been uti-

lized in epidemics. Some of the earliest epidemic models, such as SIS, SIR, and SEIR, are com-

partment models [1]. These models divide the population into several compartments and

capture patterns of dynamic changes in the sizes of the compartments over time. The dynamics

are expressed as predefined ODEs, which are based on human knowledge, with tunable

parameters. While these models are intuitive and simple, they often have limited expressive-

ness, failing to capture epidemic dynamics accurately. On the other hand, data-driven models

[2, 3] aim to model and forecast co-evolving time-series data using ODEs, without relying on

human knowledge. They employ latent variables and non-linear differential equations to cap-

ture complicated temporal dynamics.

Despite the development of epidemic models, describing long-term dynamics of

epidemics using a single epidemic model often faces limitations due to the unpredictability

and abruptness of real-world events. Indeed, various external factors may substantially

change the dynamics of epidemic events. For example, policies reducing contacts between

individuals (e.g., lockdown) and the capability to perform tests can significantly affect the

dynamics.

In this work, we demonstrate that properly dividing an epidemic event sequence into multi-

ple segments and fitting a simple epidemic model to each segment greatly helps describe and

predict the epidemic propagation concisely and accurately. For example, in Fig 1(a) and 1(b),

the entire sequence of events regarding COVID-19 in Italy is fitted to two epidemic models

with different numbers of parameters. On the other hand, in Fig 1(c), the sequence is split into

multiple segments, and then a simple model is fitted to each segment. As seen in Fig 1(d), the

segmentation leads to 8.09× smaller fitting error with fewer parameters than using a single

model for the entire sequence.

Then the following questions naturally arise: Given a sequence of epidemic events, where

should we divide it? How many segments should we divide it into? We propose a segmentation

scheme that greedily decides where to split. It also decides the number of segments by balanc-

ing the fitting error and the sizes of the models for all segments, based on the Minimum

Description Length (MDL) principle.

We validate our approach using event sequences regarding recent Coronavirus Disease-19

(COVID-19), specifically the numbers of active cases, recoveries, and deaths in 70 countries.

COVID-19 was recognized as a pandemic by the World Health Organization. By early April

2021, 129 million confirmed cases and 2.8 million deaths were reported worldwide. Our exper-

iments reveal that our segmentation scheme enhances three epidemic models in explaining

and predicting the propagation of COVID-19.

The strengths of our approach are summarized as follows:

• Automatic: It does not require any user-defined parameters, such as the number of

segments.

• Model-agnostic: It is applicable to any ODE-based epidemic models without being

restricted to certain models.

• Effective: Applied to the COVID-19 datasets, it significantly reduces the fitting error (up to

14.29× with fewer parameters) and forecasting error (up to 31.54×) of three epidemic

models.
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Using the proposed segmentation methodology, we expect that real-world surveillance ser-

vices of COVID-19 can be assisted in following manners:

• Policy verification: The point where the segmentation occurs indicates the rapid changes in

dynamics, which policymakers should be aware of. Thus, segmentation of the sequence

assists examining the impact of policies (e.g., lockdowns or mandatory mask-wearing) after

they are deployed.

• Future prediction: As shown in the experiments section, future epidemics can be estimated

more accurately using our segmentation scheme. Accurate prediction can improve social

policy decisions.

Reproducibility: The code and datasets used in the paper are available at https://github.

com/geonlee0325/covid_segmentation.

Fig 1. Proper segmentation helps concisely and accurately describe the spread of COVID-19 in Italy. Dividing the event sequence (i.e.,

the numbers of active cases, recoveries, and deaths) properly into multiple segments and fitting a simple epidemic model to each segment

leads to a more concise model with a better fit than fitting a complex model to the entire period. See the experiment section for details.

https://doi.org/10.1371/journal.pone.0262244.g001
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2 Related work

We briefly review previous work on two related topics: epidemic models and time-series analy-

sis models.

2.1 Epidemic models

A variety of epidemic models have been proposed to understand and predict the spread of

infectious diseases [4]. In the SI model, the population is divided into two different groups:

susceptible and infectious; and the size of each group changes based on predefined differential

equations. Taking realistic conditions, such as reinfection, recovery, immunity, population

change, and exposure, into consideration, the SI model has been extended to SIS, SIR [5], SIRS

[6], SIRD [7], SEIR [8], and many more. The spread of COVID-19 has been analyzed using

modified SIRs: Li et al. [9] take human mobility into account, and Dandekar et al. [10] con-

sider quarantine controls. These models are intuitive, explainable, and simple since they are

based on human knowledge. However, they show weakness in capturing long-term dynamics

of epidemic events especially when the dynamics heavily depend on external factors.

2.2 Time-series analysis models

Mining and modeling time-series data is a building block of many analytical and predictive

tasks, such as pattern discovery [11, 12], disaggregation [13], and forecasting [2, 3, 14, 15], in a

variety of fields, including social media [16, 17], web [14], and medical science [18]. Especially,

ordinary differential equations (ODEs) have attracted much attention, due to its simplicity

and expressiveness, and several studies focus on learning ODEs from data [19–22]. Recently,

Chen et al. [19] introduce a generative model to solve ODEs using neural networks.

There have been several studies on learning to segment temporal data. Most of them [2, 3,

15, 23] focus on detecting repetitive patterns in activities (e.g., sensor data and motion events),

while we focus on segmenting epidemic data, where dynamics suddenly change due to external

factors, eventually better modeling and forecasting the spread of COVID-19.

Recently, Jiang et al. [24, 25] propose piecewise linear quantile models that detect multiple

change-points, where an SN-based test statistic is above the properly chosen threshold, for cap-

turing the ever-changing growth rate of daily new cases of COVID-19. Note that our segmen-

tation scheme has two distinct advantages over those used in these models: (a) automatic: it

does not require any prior hyperparameters and (b) model-agnostic: it can be applicable to

any ODE-based epidemic models, including non-linear fitting models. Our segmentation

scheme belongs to the class of binary segmentation [26]. While existing binary segmentation

schemes are known to cause loss when detecting non-monotonic changes [27, 28], we demon-

strate that our MDL-based segmentation scheme accurately divides the sequences and fits a

model to each segment. Specifically, as shown in the experiment section, our segmentation

scheme detects splitting points 3.59× more accurately and leads to 3.23× smaller fitting error

(with the same number of parameters) than the non-binary the segmentation method inspired

by [2].

3 Preliminaries

In this section, we introduce some notations and three main epidemic models that are used in

the paper. Refer to Table 1 for the frequently-used notations. We first review the Susceptible-

Infectious-Recovered (SIR) model, which is one of the most classical compartment models.

Then, we introduce two latent dynamics models that are based on linear and non-linear

dynamics of latent variables.
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3.1 Susceptible-Infectious-Recovered (SIR) model

The SIR model is one of the most classical epidemic models. Given a group of individuals of

closed population P, each individual is assigned to one of the three states: S (susceptible), I
(infectious), and R (recovered). Here, we use S(t), I(t), and R(t) to denote the number of indi-

viduals at the three states, respectively, at timestamp t. The model assumes that each individual

goes through two types of transitions: infection and recovery. That is, the state to which an

individual belongs changes from S to I and then from I to R. Additionally, the model assumes

that the probability of a susceptible individual to get infected at each time t is proportional to

the number of infected individuals with a coefficient β, and the model assumes that the proba-

bility of an infected individual to become recovered at each time t is γ. These dynamics can be

expressed as the following three differential equations, where β and γ are model parameters:

dSðtÞ
dt
¼ �

b

P
� SðtÞIðtÞ;

dRðtÞ
dt

¼ g � IðtÞ;

dIðtÞ
dt
¼
b

P
� SðtÞIðtÞ � g � IðtÞ:

Note that these equations imply S(t) + I(t) + R(t) = P.

3.2 Non-Linear Latent Dynamics (NLLD) model

This model [2] consists of two multi-dimensional event sequences: a k-dimensional latent (i.e.,

unobservable) event sequence w(t) and a d-dimensional observable event sequence v(t). The

observed events v(t) are assumed to be determined by the following non-linear dynamical

Table 1. Frequently-used notations and symbols.

Notation Definition

x(t) observed epidemic event at time t
v(t) estimated epidemic event at time t

X = (x(1), � � �, x(n)) observed epidemic event sequence

V = (v(1), � � �, v(n)) estimated epidemic event sequence

n length of X
d dimension of x(t)
β infection rate

γ recovery rate

S(t) susceptible population at time t
I(t) infected population at time t
R(t) recovered population at time t

P population of the region

w(t) latent factors at timestamp t
k number of latent factors

Cost(M) description cost of model M
Cost(X|M) encoding cost of data X given model M

Cost(X) total cost of X
f solver for an epidemic model

r number of segments

Xs1 :e1
� � � � � Xsr :er

segmentation of X into r segments

https://doi.org/10.1371/journal.pone.0262244.t001
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systems of the latent factors w(t):

dwðtÞ
dt
¼ pþ Q� wðtÞ þ A� ðwðtÞ � wðtÞÞ; ð1Þ

vðtÞ ¼ uþ V � wðtÞ; ð2Þ

where� denotes the Hadamard product (i.e., the elementwise product); and p 2 Rk
,

Q 2 Rk�k
, and A 2 Rk

describe the linear, exponential, and non-linear dynamics between

latent factors. In addition, u 2 Rd
and V 2 Rk�d

are used to project the latent factors to the

observed events. The model parameters are p, Q, A, u, V, and the initial condition w(0) = w0 of

the latent factors.

3.3 Linear Latent Dynamics (LLD) model

We also consider a special case of the NLLD model, where the d-dimensional observed event

sequence v(t) is assumed to be determined by the following linear dynamical systems of k-

dimensional latent factors w(t):

dwðtÞ
dt

¼ pþ Q� wðtÞ;

vðtÞ ¼ uþ V � wðtÞ:

The NLLD and LLD models can naturally be used as epidemic models if we regard I(t) and R
(t) (i.e., the numbers of infected and recovered individuals) in the SIR model as the 2-dimen-

sional observed event sequence v(t). Unlike the SIR model, the latent dynamics models are

fully data driven, and thus they capture the temporal patterns in the event sequences without

any prior knowledge of epidemics. Moreover, they describe the dynamics of the observed

events using latent factors, which are not directly observed. Many real-world events are known

to be largely affected by latent factors, and as shown in the experiment section, the latent

dynamic models predict the spread of COVID-19 significantly more accurate than the SIR

model.

3.3.1 Remarks. Our segmentation scheme described in the following section is model

agnostic. That is, it can be applied to any epidemic or time-series analysis models, including

but not limited to the three considered ones.

4 Proposed method

In this section, we present our approach for deciding the number of segments and their loca-

tions automatically without user-defined parameters. We first define the description length of

an event sequence. Then, based on the definition, we describe how we adapt the Minimum

Description Length (MDL) principle to evaluate segmentation. Then, we propose a search

algorithm for finding the best segmentation.

4.1 Description length

Given a sequence X and a model M, the description length (in bits) of X, denoted by Cost(X),

is defined as:

CostðXÞ ≔ CostðMÞ þ CostðXjMÞ

where the model cost Cost(M) is the number of bits required to describe the model M, and the
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data cost Cost(X|M) is the number of bits to encode X given M. The model cost and the data

cost are described below.

4.1.1 Model cost. To measure the model cost Cost(M), we examine the parameters of the

model M and their sizes in bits. Below, we consider the three aforementioned epidemic mod-

els. Note that the model cost of any other models can be measured in a similar way.

• SIR Model: The infection rate β and the recovery rate γ are two real numbers, and encoding

each requires CF bits (we set CF to 8 by convention). Thus, the model cost required to

describe the SIR model in bits is (we ignore the cost required to encode the population P
since it is required only once regardless of the number of segments):

CostðMÞ ¼ 2 � CF:

• Non-linear Latent Dynamics (NLLD) Model: This model is described by a set of six param-

eters: w0, p, Q, A, u, and V (see Eqs (1) and (2)). They contain to k, k, k2, k, d, and kd real-val-

ued parameters, respectively. Thus, the model cost in bits required to describe the NLLD

model is:

CostðMÞ ¼ ðk2 þ ð3þ dÞ � kþ dÞ � CF: ð3Þ

• Linear Latent Dynamics (LLD) Model: The model cost required by the LLD model is:

CostðMÞ ¼ ðk2 þ ð2þ dÞ � kþ dÞ � CF:

Note that the cost in bits required to encode A is subtracted from Eq (3).

Algorithm 1: SEGMENT: MDL-based Greedy Segmentation Search
Input: (1) epidemic event stream X1:n

(2) epidemic model solver f
Output: segmented event stream Xs1:e1

� � � � � Xsr :er

1 if n � 2 then return X1:n ⊳ Base Case
2 C  Cost(f(X1:n)) + Cost(X1:n|f(X1:n))
3 i�  arg min

i2f2;���;n� 2g

CostðX1:i � Xiþ1:nÞ ⊳ Eq (4)

4 C�  Cost(X1:i� � Xi�+1:n)
5 if C� � C then return X1:n
6 else return SEGMENT(X1:i�, f) � SEGMENT(Xi�+1:n, f) ⊳ Recursive Calls

4.1.2 Data cost. The data cost Cost(X|M) is the number of bits required to describe X
given M. We assume the Huffman coding [29] to encode the difference between the observed

event sequence X and the event sequence V estimated by the model M. Then, the number of

bits required is the negative log-likelihood under a Gaussian distribution N ð0; s2Þ as follows:

CostðXjMÞ ¼ � logPðX � VÞ

¼ � log
Qn

t¼1

Qd
i¼1

1
ffiffiffiffiffiffiffiffiffiffi
2ps2
p e�

ðxiðtÞ� viðtÞÞ
2

2s2

where xi(t) and vi(t) are the i-th dimension of actual and estimated events at time t. We fix σ to

the standard deviation of the elements of X − V during the period of each segment.

4.1.2.1 Optimization. In order to fit M to X, we use the Levenberg-Marquardt (LM) algo-

rithm to minimize the mean square errors between the given data sequence and the estimated

sequence. Specifically, the LM algorithm adaptively varies the parameter updates to be

interploated between the Gauss-Newton update or the gradient descent update, by adopting a

damping parameter. The lmfit library we used in our implementation requires two argu-

ments xtol and ftol, which are the relative errors desired in the approximation solution
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and the desired sum-of-squares, respectively. That is, termination occurs (a) when the relative

error between two consecutive iterates is at most xtol or (b) when both the actual and pre-

dicted relative reductions in the sum of squares are at most ftol. However, as discussed in

Section 5.5.1, our segmentation scheme is insensitive to these parameters, and thus we consis-

tently use the same values throughout experiments. For the NLLD model, we split into the lin-

ear parameter set (p, Q, u, and V) and the non-linear parameter set (A) and separately

optimize them using the expectation-maximization (EM) algorithm, as suggested in [2]. This,

in practice, accelerates convergence, compared to simultaneously optimizing the entire

parameters.

4.2 Segmentation evaluation

We adapt the Minimum Description Length (MDL) principle [30] for segmentation evalua-

tion. Consider an event sequence X(= X1:n) and a solver f of an epidemic model. We denote

the division of X into r segments where each i-th segment starts at time si and ends at time ei

by

Xs1:e1
� � � � � Xsr :er

;

where s1 = 1, er = n, and ei + 1 = si+1 for each i 2 {1, � � �, r − 1}. Let f(Xi:j) be the epidemic model

fitted to the segment Xi:j. Then, the description length in bits of Xs1:e1
� � � � � Xsr :er

is:

CostðXs1:e1
� � � � � Xsr :er

Þ ¼ ðr � 1Þ � log
2
ðnÞ

þ
Xr

i¼1

ðCostðf ðXsi:ei
ÞÞ þ CostðXsi :ei

jf ðXsi :ei
ÞÞÞ;

ð4Þ

where (r − 1) � log2(n) is the cost in bits required to encode r − 1 splitting points (i.e., s2, � � �, sr).

Since each splitting point is an positive integer smaller than n, the number of bits required to

encode it is log2(n). The description length (i.e,. Eq (4)) balances the fitting error and the size

of the parameters required to encode the epidemic models for all segments, and we use it to

evaluate segmentation. Specifically, based on the MDL principle, we prefer the segmentation

that minimizes Eq (4), and in the following subsection, we discuss how we search for such a

segmentation.

4.3 Segmentation search

Given an event sequence X, how can we find the segmentation that minimizes the description

length (i.e., Eq (4))? Since there are 2n ways to segment a length n sequence, naïvely trying all

possible segments is computationally prohibitive. Thus, we propose to greedily segment the

sequence, as described in Algorithm 1, throughout which we make the length of each segment

at least two. Given an event sequence X1:n, we find a splitting point i� 2 {2, � � �, n − 2} where

the description length (i.e., Eq (4)) of the corresponding segmentation is minimized (Line 3).

If splitting X1:n at time i� strictly decreases the description length, we divide X1:n into X1:i� and

Xi�+1,n, and then recursively divide each segments (Line 6). Otherwise, we stop segmentation

(Line 5).

5 Experiments

In this section, we review our experiments designed to answer the following questions:

• Q1. Effectiveness of Segmentation: Does segmentation help understand the spread of

COVID-19? Does it give a better trade-off between model complexity and fitness?
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• Q2. Effectiveness of our Segmentation Scheme: How well does our greedy segmentation

algorithm based on the MDL principle work? Does it yield small fitting error with the same

number of segments than baseline?

• Q3. Accuracy of Forecasting: Is segmentation beneficial for accurately predicting the spread

of COVID-19? Is it beneficial regardless of epidemic models used?

5.1 Experimental settings

• Machines: We conducted all the experiments on a machine with AMD Ryzen 9 3900X CPU

and 128GB RAM.

• Datasets: We considered the 70 countries with the most confirmed cases as of the end of

March, 2021. We used the number of active cases as I(t) and the number of recoveries and

deaths as R(t) in each of the 70 countries from March 1, 2020 to March 30, 2021. The dataset

is publicly available at [31]. Since the number of recoveries in the US is not available, we

used the number of deaths as R(t).

• Implementations: We implemented the SIR model, the LLD model, and the NLLD model

in Python. We used the lmfit library for the optimization (see https://lmfit.github.io/

lmfit-py/ for details).

• How to choose k: For the LLD and NLLD models, we chose the number of latent factors k
between 1 and 6 so that the description length (i.e., Eq (4)) is minimized.

5.2 Q1. Effectiveness of segmentation

We measure how segmentation by Algorithm 1 affects the model complexity and fitting error

of the three considered epidemic models. As seen in Fig 2, segmentation leads to significantly

better trade-offs between the model cost (in bits) and the fitting error (in terms of RMSE),

regardless of the epidemic models used. For example, in the India dataset, the NLLD model

with segmentation yields 11.54× smaller fitting error with smaller model cost than the same

model without segmentation. Fig 3 show the input and estimated event sequences when the

description length is minimized. The description length is minimized when a simple epidemic

model with few latent factors is used with an enough number of segments. Simple epidemic

models with segmentation provide more concise and accurate description of the spread of

COVID-19 than complex models without segmentation. The results in the other countries

can be found in the supplement.

We further qualitatively analyze the splitting points detected by our segmentation scheme in

the dataset collected in Japan. Specifically, in the dataset our segmentation scheme detects three

splitting points: (1) May 14, 2020, (2) August 25, 2020, and (3) January 13, 2021. As shown in

Fig 4, these dates coincide with the periods when the state of emergency (SOE) was declared or

lifted by the Japanese Government. The result indicates that there is a close correspondence

between the segmentation derived by the proposed scheme and the deployed policies.

5.3 Q2. Effectiveness of our segmentation scheme

We demonstrate the effectiveness of our greedy segmentation scheme based on the MDL prin-

ciple by comparing it with the incremental method inspired by [2]. The incremental method

goes through the sequence from the start and initiates a new segment whenever the fitting

error within the current segment exceeds a given threshold �. As in [2], we set the
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threshold proportional to the L2 norm of the current segment Xc with a coefficient α. That is,

� = α � ||Xc||2. Note that smaller α is expected to yield more segments. As seen in Fig 5, where

we fix k to 2 and vary α from 0.05 to 0.5, our proposed segmentation scheme significantly out-

performs the incremental method. Specifically, our scheme gives up to 3.23× smaller fitting

error with the same model cost, which is proportional to the number of segments, than the

incremental segmentation. The results in the other countries can be found in the supplement.

Furthermore, to numerically evaluate the accuracy of the segmentation, we generate syn-

thetic sequences with randomly selected splitting points where each segment is generated by a

different set of random parameters of the NLLD model. We carefully sample parameters based

on the model parameters fitted to real-world sequences. Specifically, we sample −0.1<

p< 0.1, −0.1< Q < 0.1, −0.001< A< 0.001, −0.1< u< 0.1, −1.0< V< 1.0, and −1 < w0 <

1 uniformly at random. Then, we compare the detected splitting points, i.e., timestamps where

the segmentation occurs, and the ground-truth ones by measuring F1 scores. When measuring

F1 scores, for robust evaluation, we consider a detected splitting point is correct if it is within δ
time units from a ground-truth one. As shown in Table 2, splitting points detected by our seg-

mentation scheme match the ground-truth splitting points closely, and especially, our segmen-

tation scheme is more accurate than the incremental method.

Fig 2. Segmentation leads to better trade-offs between model complexity and fitting error. For the LLD and NLLD models without segmentation, k
varies from 1 to 10.

https://doi.org/10.1371/journal.pone.0262244.g002
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5.4 Q3. Accuracy of forecasting

We examine the effect of segmentation on the the accuracy of future prediction using the three

considered epidemic models. To this end, we divide each sequence into the training sequence

Fig 3. Simple models with multiple segments are preferred over complex models without segments. The true and estimated event sequences when

the description length in bits is minimized.

https://doi.org/10.1371/journal.pone.0262244.g003

Table 2. Our segmentation scheme accurately (in terms of F1 score) detects ground-truth splitting points in syn-

thetic sequences.

Methods δ = 0 δ = 1 δ = 2

Proposed Method 0.400 0.700 0.700

Incremental Method (α = 0.05) 0.000 0.195 0.328

Incremental Method (α = 0.10) 0.000 0.100 0.266

Incremental Method (α = 0.15) 0.000 0.100 0.100

Incremental Method (α = 0.20) 0.000 0.100 0.100

Incremental Method (α = 0.25) 0.000 0.000 0.100

Incremental Method (α = 0.30) 0.000 0.000 0.100

Random Splitting Method 0.000 0.000 0.000

https://doi.org/10.1371/journal.pone.0262244.t002
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and the test sequence, which span 327 days and 37 days, respectively. Then, we fit the epidemic

models to each training sequence with and without segmentation and predict the event

sequence during the test period. When segmentation is applied, we ensure that the last seg-

ment is at least as long as the test period, and we use the model fitted to the last segment of the

training sequence for prediction. We can ensure this by modifying Algorithm 1 so that it never

splits the training sequence during its last 37 days. That is, it searches for splitting points dur-

ing the first 290 days. This constraint is helpful for forecasting, as shown experimentally in Sec-

tion 5.5.2. For the LLD and NLLD models without segmentation, we vary the the number of

latent factors k from 1 to 6.

In Table 3, we compare the prediction error (in terms of RMSE) of the three epidemic mod-

els with and without segmentation. When the LLD model or the NLLD model is used, among

7 different settings, our segmentation scheme leads to the most accurate prediction in 32 and

33 (out of 70) countries, respectively. The second best one, which is the LLD model with k = 2

and no segmentation, is most accurate only in 9 countries. When the SIR model is used, seg-

mentation increases the prediction accuracy in 70 (out of 70) countries. Moreover, prediction

without segmentation is unstable with unreasonably large RMSE in some countries, while it is

stable with segmentation in all countries. To sum up, segmentation tends to improve the

prediction accuracy of all three considered epidemic models.

Fig 4. Our proposed segmentation scheme captures policy changes. Splitting points detected by our segmentation scheme coincide with the periods

when the state of emergency (SOE) was declared or lifted by the Japanese Government. Note that such events happened 12 times in total during the

considered period, and all of them are marked in the figure.

https://doi.org/10.1371/journal.pone.0262244.g004

PLOS ONE Segmentation of epidemic event sequences

PLOS ONE | https://doi.org/10.1371/journal.pone.0262244 January 12, 2022 12 / 18

https://doi.org/10.1371/journal.pone.0262244.g004
https://doi.org/10.1371/journal.pone.0262244


Note that with segmentation, only the last segment, not the entire sequence, is used for pre-

diction. Despite the fact, segmentation increases the accuracy of prediction by letting epidemic

models focus on the part that represents the current epidemic dynamics while ignoring the

part before inherent changes in the dynamics.

5.5 Additional experimental results

Below, we present the results of additional experiments.

5.5.1 Insensitivity to two arguments: xtol and ftol. For optimization, we used the

lmfit library provided in Python, which minimizes non-linear least-squares. The leastsq
function, which we used, requires two arguments, xtol and ftol, which are the desired rela-

tive errors in the approximation solution and the sum-of-squares, respectively (see https://

lmfit.github.io/lmfit-py/fitting.html#lmfit.minimizer.Minimizer.leastsq for details.). We tested

the NLLD model in the Japan dataset using eight different xtol and ftol values (10−1 to

10−8) and five different latent factors k (2 to 6). In the 40 considered settings, the splitting

points of the segmentation were exactly the same (71th, 198th, and 324th day), which implies

that the proposed scheme is insensitive to these parameters. Thus, in this work, we do not tune

xtol and ftol but fix them to 10−8 in all experiments in the main paper.

Fig 5. Our proposed greedy segmentation scheme based on the MDL principle yields better segmentation than the incremental method.

https://doi.org/10.1371/journal.pone.0262244.g005
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Table 3. Segmentation is helpful to accurate prediction of the spread of COVID-19.

Country Linear Latent Dynamics (LLD) Non-linear Latent Dynamics (NLLD) SIR

Single Segment (r = 1) Ours Single Segment (r = 1) Ours (r = 1) Ours

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

Argentina 88.2 211.7 52.4 53.0 54.5 53.6 56.2 114.0 382.7 329.7 83.7 236.3 39.6 65.0 1,301.8 107.4

Armenia 43.4 16.3 17.1 16.4 12.8 13.8 3.7 38.5 43.0 30.5 10.2 32.6 12.3 2.2 115.1 2.4

Austria 40.0 45.0 22.8 37.7 20.6 48.6 10.5 39.3 74.0 106.7 26.7 68.7 21.1 10.1 291.9 19.3

Azerbaijan 65.8 125.6 40.2 40.1 40.1 37.4 11.4 41.5 37.2 46.8 43.1 40.5 39.7 12.2 161.4 2.6

Bangladesh 90.3 15.8 10.2 10.2 9.0 11.8 6.6 111.8 19.6 27.6 64.0 98.4 11.7 27.8 350.2 6.5

Belarus 73.4 10.1 10.4 7.8 5.3 5.9 2.1 11.5 49.0 73.4 19.9 6.1 6.8 6.2 177.7 24.2

Belgium 160.0 16.5 71.9 67.6 67.0 73.3 21.0 325.1 29.5 85.5 70.8 65.5 38.6 11.6 - 29.4

Bolivia 14.4 17.3 3.5 4.0 5.2 5.7 53.9 9.8 57.7 3.3 14.8 4.7 8.5 81.0 133.0 30.0

Brazil 289.0 242.8 116.6 120.2 118.5 115.6 177.6 223.9 542.7 621.4 193.6 523.3 215.3 95.0 6,252.0 682.3

Bulgaria 71.3 91.4 91.2 77.5 76.2 76.4 78.4 78.3 130.4 518.3 126.3 100.5 102.1 89.5 144.4 13.5

Canada 65.0 141.2 39.0 120.8 25.5 25.5 50.8 84.6 43.6 98.5 45.2 61.4 52.0 74.2 545.3 68.1

Chile 95.1 211.3 16.2 16.1 16.6 17.7 13.3 188.4 29.8 17.3 26.7 55.3 111.9 40.9 519.6 60.9

Colombia 483.3 94.8 84.8 84.1 82.5 82.1 110.0 365.5 602.0 118.0 93.9 88.9 97.6 158.3 1,470.1 161.5

Costa Rica 23.3 4.4 4.5 10.6 12.6 12.9 13.9 37.1 8.4 6.2 6.7 9.4 11.8 17.2 117.9 9.8

Croatia 61.7 22.3 41.7 26.3 22.6 22.5 2.8 104.5 38.5 64.6 32.1 48.6 39.8 2.4 164.7 7.4

Czech 145.8 69.0 71.6 105.7 110.2 109.6 71.8 114.9 172.0 206.8 110.3 109.6 111.0 118.1 678.2 98.9

Denmark 36.8 22.1 34.2 34.9 33.3 34.7 11.7 32.7 32.6 73.1 37.3 37.5 28.4 19.8 138.3 8.8

Dominican Rep. 9.9 8.4 9.8 9.8 9.9 9.3 17.5 11.0 9.2 10.8 10.8 9.2 11.2 17.5 127.2 21.2

Ecuador 40.0 11.7 10.8 11.0 12.2 11.4 10.0 64.3 11.5 11.9 17.1 11.1 11.4 10.2 167.2 19.3

Egypt 30.4 26.0 7.7 8.3 8.0 9.6 14.7 9.7 26.0 9.9 8.1 11.4 12.8 13.4 103.0 8.4

France 62.8 83.1 76.6 90.3 114.1 95.2 41.8 81.8 98.7 159.4 66.0 73.3 95.8 92.7 - 250.4

Georgia 34.3 26.1 83.4 40.3 29.1 30.1 15.4 45.5 64.1 74.1 59.2 38.2 91.4 6.1 182.1 9.5

Germany 467.4 72.0 71.1 72.5 71.6 72.5 67.8 591.2 98.7 180.5 326.0 160.7 104.6 88.9 1,513.3 174.2

Greece 12.9 14.4 16.3 18.2 17.9 18.7 12.6 13.7 16.6 18.8 15.7 18.4 17.9 10.4 85.6 11.7

Guatemala 38.6 1.0 1.0 1.1 1.1 1.3 3.1 32.6 36.3 16.9 1.0 23.9 1.1 19.4 110.7 9.8

Honduras 5.7 8.7 7.9 7.0 8.1 7.2 16.5 5.1 11.2 10.5 7.9 7.8 7.2 15.4 78.8 12.1

Hungary 119.8 71.0 30.3 30.1 30.6 30.4 53.2 168.9 97.7 46.4 34.8 46.7 39.3 22.9 218.2 25.5

India 3,517.9 145.8 180.3 430.2 590.6 705.5 45.0 1,629.2 142.9 278.4 315.5 242.9 424.0 111.4 7,571.9 171.0

Indonesia 21.2 32.7 30.3 23.3 25.7 27.1 45.5 27.3 51.8 28.9 24.9 24.3 22.7 70.7 719.7 162.4

Iran 271.7 63.5 70.3 70.1 70.4 67.7 48.7 182.4 228.1 1,982.8 81.5 76.7 72.5 65.0 944.9 90.9

Iraq 64.2 50.8 43.1 34.3 31.7 35.1 35.3 84.1 53.4 56.0 42.8 35.8 40.1 27.2 436.2 20.6

Ireland 88.7 55.4 55.3 56.0 17.5 14.6 33.7 71.9 76.3 76.4 13.6 13.5 18.0 2.4 119.4 22.3

Israel 35.3 22.1 21.5 20.3 22.1 26.4 131.7 47.4 121.6 19.6 15.4 19.9 20.9 87.8 451.3 92.2

Italy 459.8 806.5 318.1 362.5 349.1 245.8 60.0 550.8 426.8 320.7 321.7 245.8 362.3 120.7 1,611.9 156.4

Japan 65.1 64.8 53.9 54.1 55.2 56.5 82.6 76.4 74.3 67.1 64.9 61.6 63.3 77.6 261.5 55.8

Jordan 37.0 103.6 183.0 106.6 79.4 84.6 11.8 50.5 107.2 106.2 76.1 81.3 100.4 13.6 232.3 17.9

Kazakhstan 38.8 16.2 15.9 15.9 16.5 15.7 5.0 50.8 15.6 16.4 8.1 10.1 14.2 21.9 156.9 18.5

Kuwait 7.1 7.0 4.5 4.7 5.6 4.8 3.5 22.6 7.5 19.0 11.7 5.8 4.8 4.9 116.8 9.9

Lebanon 33.1 38.0 31.5 38.5 38.1 38.6 94.5 33.8 26.0 35.2 40.8 40.9 41.6 85.2 175.7 64.1

Lithuania 57.9 41.0 40.6 36.4 42.2 42.2 29.1 41.2 55.7 94.7 127.9 55.7 56.1 28.7 122.3 11.1

Malaysia 14.4 14.8 22.1 22.7 24.5 23.3 29.6 35.0 28.2 23.4 25.0 25.1 25.2 21.2 148.1 53.3

Mexico 135.8 75.8 78.2 69.0 69.6 77.8 97.9 144.5 71.8 73.5 76.6 70.7 66.8 81.9 1,192.0 165.0

Moldova 47.6 5.9 5.9 6.1 6.0 6.4 6.4 46.0 6.4 6.6 20.6 6.3 7.5 5.2 112.4 9.0

Morocco 85.3 13.9 14.0 15.1 17.2 16.3 1.3 61.5 62.2 111.7 22.3 19.9 87.1 7.6 328.3 10.6

Nepal 90.3 15.0 15.0 49.7 42.7 41.1 4.9 30.8 40.4 4.4 70.5 47.2 54.5 3.0 190.9 2.8

(Continued)
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5.5.2 The effect of the constraint on the last segment. One might concern that avoiding

segmentation within the last 37 days before the test set may degrade the flexibility of the model

and thus the accuracy of forecasting. Empirically, however, this constraint is helpful for accu-

rate prediction by preventing overfitting. Note that if the length of the last segment is too

short, overfitting easily occurs, resulting in a large generalization (i.e., prediction) error. In

order to demonstrate the effect of the constraint, we compared the forecasting errors of the

NLLD model with (our original setting) and without the constraint in 70 countries. As shown

in Fig 6, without the constraint, NLLD greatly overestimated the numbers of infected and

recovered individuals in some countries (specifically, Lebanon and Lithuania). It should be

noted that the estimates were even larger than the population of the countries. On the other

hand, the constraint helped preventing such absurd predictions, and specifically, NLLD with

the constraint always made predictions within the population of the countries. In addition, out

of the 70 countries, NLLD with the constraint outperformed that without the constraint in 39

countries. The average forecasting error (in terms of RMSE) was also smaller when adopting

the constraint. Specifically, it was 94.3 with the constraint and 116.3 without the constraint

(averaged only the reasonable results in the 68 countries).

Table 3. (Continued)

Country Linear Latent Dynamics (LLD) Non-linear Latent Dynamics (NLLD) SIR

Single Segment (r = 1) Ours Single Segment (r = 1) Ours (r = 1) Ours

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

Netherlands 83.1 102.9 42.9 37.8 39.0 44.1 128.8 108.4 65.7 100.9 115.8 41.6 42.6 140.4 - 55.2

Pakistan 16.6 33.3 13.8 18.0 18.2 18.1 3.5 9.2 33.6 69.3 25.4 27.7 18.2 11.7 374.1 25.0

Panama 28.4 33.5 23.9 23.7 23.7 23.4 47.7 29.9 27.4 28.9 40.2 29.0 26.7 271.4 214.6 23.8

Paraguay 13.0 3.3 3.0 2.5 1.8 1.8 2.8 15.8 3.7 3.9 4.4 10.4 8.1 10.3 86.0 10.9

Peru 49.3 43.3 43.3 43.3 43.3 43.3 53.2 228.7 71.9 162.3 144.9 308.0 39.7 41.5 813.8 93.8

Philippines 157.4 53.1 39.1 38.7 35.6 14.4 11.9 89.2 78.3 119.0 12.5 39.0 24.5 11.9 361.1 26.9

Poland 218.1 119.4 100.9 94.3 89.1 97.6 63.8 168.8 208.6 71.1 79.0 92.3 72.4 50.8 970.4 78.1

Portugal 58.7 78.5 80.4 80.0 79.6 80.2 268.2 54.3 83.0 86.5 78.4 88.4 89.1 165.1 452.8 144.1

Qatar 24.2 10.8 5.6 6.7 5.5 6.9 3.8 34.0 16.6 5.4 5.4 12.8 5.8 3.8 104.8 5.0

Romania 119.4 55.6 71.8 57.9 72.9 74.7 18.2 180.4 142.1 91.6 72.1 120.0 83.4 28.8 505.9 34.0

Russia 443.7 56.9 187.5 182.3 176.9 279.9 36.5 243.0 540.5 56.3 99.1 167.3 924.9 266.1 2,507.5 249.2

Saudi Arabia 86.6 12.2 6.5 6.3 5.8 5.5 3.6 49.4 10.8 16.5 13.3 9.0 5.4 5.2 260.8 4.1

Serbia 224.7 240.3 49.6 169.1 167.0 167.0 78.7 87.5 42.2 24.1 136.6 151.3 138.8 104.8 289.9 22.5

Slovakia 55.2 20.8 30.2 22.1 18.0 19.9 31.4 52.2 17.9 59.2 21.7 54.3 19.2 20.0 172.1 32.1

Slovenia 46.8 4.4 18.5 10.3 26.5 26.7 5.7 19.7 9.2 26.3 21.7 30.1 39.0 5.8 113.6 17.8

South Africa 239.2 187.0 56.1 63.8 64.1 41.3 1,138.3 222.2 175.9 64.6 52.0 65.5 64.5 1,639.5 988.8 76.2

Spain 648.6 86.1 82.6 81.7 81.3 81.2 449.0 568.1 266.8 82.2 72.8 84.7 85.0 162.7 - 379.2

Sweden 57.0 48.4 46.1 46.2 46.0 46.2 133.9 69.8 21.3 44.6 43.1 57.3 56.6 185.9 - 42.9

Switzerland 88.1 84.0 83.2 84.1 84.5 83.2 18.5 66.7 91.6 88.2 82.8 90.6 91.6 15.1 274.1 22.8

Tunisia 22.6 19.5 19.5 19.7 20.5 20.4 27.4 24.0 24.2 22.4 23.2 23.2 22.9 56.4 130.7 26.4

Turkey 220.4 287.0 227.8 418.9 461.3 476.3 144.4 247.4 241.3 209.1 619.6 479.1 509.8 177.2 1,741.9 98.4

UAE 79.8 50.0 27.4 19.0 20.8 18.6 51.4 18.9 47.6 20.0 19.3 14.6 37.1 71.9 224.1 52.8

UK 236.7 363.8 510.5 432.3 360.7 355.7 821.7 236.3 606.8 576.0 785.8 457.7 639.5 963.0 - 377.8

Ukraine 287.4 130.7 105.0 109.9 103.2 108.5 80.2 373.9 186.8 220.0 150.2 106.4 196.2 86.2 813.1 57.6

US 137.8 144.7 134.1 134.4 132.0 90.0 134.9 139.9 117.1 148.0 196.2 160.6 123.7 114.8 - 100.3

No. Rank 1 6 9 6 4 5 8 32 5 6 6 7 6 7 33 0 70

https://doi.org/10.1371/journal.pone.0262244.t003
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6 Conclusions

In this work, we propose to divide epidemic event sequences into multiple segments and fit a

simple model to each segment. To this end, we propose a greedy algorithm based on the MDL

principle to decide where to split the sequences. Through extensive experiments using the

COVID-19 event sequences from 70 countries, we demonstrate that our methodology has the

following advantages:

• Automatic: All parameters are tuned automatically based on the MDL principle without

relying on users.

• Model-agnostic: Any ODE-based epidemic models can be used with our segmentation

scheme.

• Effective: The fitting error and prediction error of three epidemic models decrease up to

14.29× and 31.54×, respectively, with our segmentation scheme.

Reproducibility: The code and datasets used in the paper are available at https://github.

com/geonlee0325/covid_segmentation.

Supporting information

S1 Appendix.

(PDF)

Fig 6. Ensuring the length of the last segment in the training set to 37 days is helpful for accurate prediction. NLLD without the

constraint sometimes greatly overestimates the numbers of infected and recovered individuals, and the constraint helps prevent such

absurd predictions. Moreover, the constraint was beneficial in 39 countries out of the 70 countries. The countries are indexed in the

order of the forecasting error of NLLD with the constraint.

https://doi.org/10.1371/journal.pone.0262244.g006
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