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The colonization of land by plants shaped the terrestrial biosphere, the geo-

sphere and global climates. The nature of morphological and molecular

innovation driving land plant evolution has been an enigma for over

200 years. Recent phylogenetic and palaeobotanical advances jointly demon-

strate that land plants evolved from freshwater algae and pinpoint key

morphological innovations in plant evolution. In the haploid gametophyte

phase of the plant life cycle, these include the innovation of mulitcellular

forms with apical growth and multiple growth axes. In the diploid phase of

the life cycle, multicellular axial sporophytes were an early innovation priming

subsequent diversification of indeterminate branched forms with leaves and

roots. Reverse and forward genetic approaches in newly emerging model sys-

tems are starting to identify the genetic basis of such innovations. The data

place plant evo-devo research at the cusp of discovering the developmental

and genetic changes driving the radiation of land plant body plans.

This article is part of the themed issue ‘Evo-devo in the genomics era,

and the origins of morphological diversity’.
1. Introduction
Land plants (embryophytes) originated around 470 million years ago among a

crust-forming terrestrial microbiome of bacteria, cyanobacteria, algae, lichens

and fungi [1–3]. Land plants emerged from the charophyte lineage, and char-

ophyte algae have unicellular ancestral forms and life cycles in which meiosis

immediately follows zygote formation (figure 1) [4,5,13]. Through time, there

was a general trend towards the evolution of more complex multicellular

algal forms with specialized cell and tissue types but no further elaboration

of the diploid life cycle stage (figure 1) [5,6]. This pattern of life cycle pro-

gression was superseded by life cycles with alternating mulitcellular haploid

(the gametophyte) and diploid phases (the sporophyte) in land plants [7].

The relative dominance of each phase shifted from the gametophyte (as in bryo-

phytes) to the sporophyte (as in vascular plants) during evolution, and land

plant forms have diversified following independent trajectories in each life

cycle stage [7,14]. The major extant lineages of land plants were established

by ca 360 million years ago including hornworts, liverworts, mosses, lyco-

phytes, monilophytes and spermatophytes (figure 1) [15,16]. The evolution of

these groups drove soil formation, increased primary productivity, and

impacted on weathering and global climates [10,16,17].

The distinct morphologies of each land plant group reflect their use of diver-

gent developmental and genetic programmes in generating form [18]. The basic

building blocks of plant form typically include shoots, branches, leaves and

roots whose relative arrangement and growth generate diversity [19]. The absence

of these organ systems in fossil and living relatives of the earliest vascular plants

and their progenitors has led to alternative interpretations of modular growth and

left open questions about the nature of transitions in form occurring during evol-

ution [8,15,20–25]. Many of the most ancient plant groups have a sparse fossil

record [13,16], so we can only infer the sequence and nature of change
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Figure 1. Gametophytic (grey bars) and sporophytic (black bars) innovations in the radiation of plant body plans. The earliest plant forms were unicellular fresh-
water algae, and land plants emerged from a grade of charophyte algae [4,5]. Multicellularity (1), plasmodesmatal cell to cell connections (2), specialized apical cell
fates (3) and rhizoids (4) were evolutionary innovations preceding the origin of land plants, and 3D apical growth (5) evolved concomitantly with land plants [5 – 9].
Spores and dessication-resistant spore coats (6) are thought to have evolved prior to multicellular sporophytes (7). Although the earliest sporophyte forms were
uni-axial terminating in sporangium formation, subsequent forms bifurcated (8) and this innovation preceded the origin of indeterminate axial forms (9) in vascular
plants. A shift to sporophyte life cycle stage-dominance (10) emerged with vascular plants, and roots (11) and leaves (12) evolved independently in vascular plant
lineages [9]. An axillary branching pattern evolved in spermatophyte precursors [10] and in liverwort and moss gametophytes [11,12]. Photos from left to right:
Erymosphaera sp., Mesostigma viride, Chlorokybus atmophyticus, Klebsormidium flaccidum, Chara braunii, Coleochaete pulvinata, Spirogyra sp. kindly provided by
Chuck Delwiche. Photo of Folioceros glandulosus kindly provided by Li Zhang. Photos of Polytrichum commune, Marchantia polymorpha, Huperzia phlegmaria,
Equisetum hymale and Ortholobium frutescens by Jill Harrison (not to scale).
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underpinning the radiation of plant forms by comparing the

characteristics of their living descendants. Phylogeny and

evo-devo approaches to the evolution of plant form are starting

to illuminate the nature of developmental and genetic change

driving the radiation of form [15,18,21–25]. This review aims

to give an overview of recent developmental and genetic find-

ings relating to innovations driving the evolution of land plant

form in a contemporary phylogenetic framework.
2. Contemporary views of plant phylogeny
Comparison of plant form in a phylogenetic framework

provides rigorous testable hypotheses of evolutionary

change. Over the last 30 years, phylogenetic approaches have

shifted from using morphological datasets to single-gene
molecular datasets and later to multigene and genomic datasets,

and reconstruction methods have shifted from favouring parsi-

mony to likelihood [4,26]. Hypotheses of relationship within

streptophyte algae and basal land plant lineages have been

particularly labile given these changing methodologies

(figure 2) [4]. Three lineages of charophyte algae are postulated

to have a close relationship to the monophyletic land plant

clade: Charales, Coleochatales and Zygnematales [4,27–40].

The four currently supported hypotheses of sister relationship

to land plants are shown in figure 2a. Within the land plants bryo-

phytes are basal, but among bryophytes there are five currently

supported hypotheses of sister relationship to the monphyletic

vascular plant group (figure 2b) [4,27,30–36,38–44]. These

alternative arrangements bear on interpretation of the direction

of change in morphological evolution, but do not preclude identi-

fication of the key characteristics contributing to the radiation of
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Figure 2. Currently supported sister group relationships between (a) charophyte algae and land plants and (b) bryophytes and vascular plants.
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land plant forms. While many of the innovations contributing to

land plant evolution were metabolic or physiological [22,45,46],

this review specifically focuses on innovations contributing to

the evolution of plant form (figure 1).
3. Innovations prior to the colonization of land
(a) Multicellularity, filaments and apical growth
The first innovations occurred in charophyte algae prior to the

colonization of land. Whereas charophyte forms are varied

including unicells (e.g. Mesostogma viride), unbranched filaments

with no apical growth (e.g. Klebsormidium flaccidum), branching

filaments with apical growth (e.g. Coleochaete pulvinata) and

thallose forms (figure 1) [5], bryophyte gametophytes have

branching filaments with apical growth (e.g. Physcomitrella
patens) or are thallose (e.g. Folioceros glandulosus, Marchantia
polymorpha). Thus, elements of morphology were maintained

when plants colonized land. Transitions between ancient uni-

cellular and multicellular forms can be driven in both

directions in the laboratory. In the unicellular chlorophyte

alga Chlamydomonas reinhartii (Chlamydomonas), heterologous

expression of the retinoblastoma cell cycle regulator from the

colonial alga Gonium pectorale can induce the formation of colo-

nial morphs [47]. Experimental evolution experiments can

drive the acquisition of multicellular form when a selection

pressure for settling (sedimentation) is imposed, again

pointing to small genetic changes in the evolution of multi-

cellularity [48]. Reverse genetic approaches in the moss

Physcomitrella patens (Physcomitrella) can drive morphology in

the other direction. The protein prenylation-defective ggb and

plp mutants are unable to attain the usual filamentous form.
Instead they have small, round aggregated cells that lack

polarized growth, oriented division and apical growth, and

mutants resemble some charophytes [49,50]. Genome sequence

of the freshwater alga Klebsormidium flaccidum is similar

to land plant sequences and supports the notion that the

genetic distance between charophyte algae and land plants is

small [51]. These data demonstrate that transitions between

unicellular, clustered and filamentous forms with apical

growth can involve small genetic changes in both green

algae and bryophytes, and they point to potentiating develop-

mental changes for the radiation of land plant forms in their

algal ancestors.
4. Innovations in the transition to land
(a) Three-dimensional apical growth
Plant cells are bounded by a cell wall, so overall plant form

reflects cell division plane orientation and growth during

development. While algae are typically constrained to filamen-

tous or mat-like planar (two-dimensional (2D)) forms, land

plant forms can initiate (three-dimensional (3D)) growth in

multiple axes (figure 1), and this evolutionary switch arose

by the innovation of rotating division plane orientations in

stem cells in plants’ growing tips [8]. The evolutionary tran-

sition from 2D to 3D growth is recapitulated during the

normal development of modern moss gametophytes, which

undergo a filamentous growth phase (like algae) prior to the

onset of 3D leafy shoot growth [52]. During the 2D growth

phase, stem cells at the primary filament tip elongate by tip

growth [53]. New growth axes initiate as foci of tip growth in

sub-apical cells, and the new cells formed can either become
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secondary filaments (95%) or leafy shoots (5%) [54]. These

differences in fate are sometimes evident at the single-celled

stage due to a cylindrical (2D fate) or swollen (3D fate) cell

appearance [52,54]. APB transcription factors belonging to

the AP2 family promote the acquisition of 3D fate, and are

necessary for leafy shoot formation. APB genes are expressed

in primary filaments and new secondary outgrowths. If APB
expression is lost in a secondary outgrowth, the new cell goes

on to form a secondary filament, undergoing divisions perpen-

dicular to the main growth axis. If APB expression is retained,

the newly formed cell swells and undergoes an oblique

division, marking the onset of 3D growth [54]. Although

APBs seem to act as a molecular switch to specify 3D fate,

the mechanisms regulating stem cell division planes at the

onset of 3D growth are unknown. The calpain protease

DEK1 orients cell division planes slightly after the onset of 3D

growth, and DEK1 feeds back onto the 3D growth initiation pro-

cess [55–57]. A transcriptomic analysis of 3D growth induction

in Physcomitrella identified homologues of genes that regulate

asymmetric cell division and shoot patterning in flowering

plants [58], and downstream regulators include PpCESA5, a cel-

lulose synthase [59]. These results mean that we are now poised

to solve the problem of how 3D growth arises in Physcomitrella
gametophytes, whose development exemplifies the 2D to 3D

growth transition occurring in land plant evolution.

(b) Spores, sporopollenin and sporangia: meiotic
changes preceding sporophyte evolution

The innovations above occurred prior to or during the coloni-

zation of land in plants with gametophyte phase-dominant

life cycles. The nature of morphological and developmental

transition driving the evolution of multicellular sporophyte

forms is not yet clear due to a thin fossil record. The earliest

evidence of land plants comes from fossilized spore monads,

dyads and tetrads that date back ca 470 million years [2,60].

The affinity of such ‘cryptospores’ is uncertain, but their wall

structure is similar to the layered wall structures of some

embryophyte fossil spores and living liverwort spores [2,60].

The earliest land plant macrofossils comprise sporangial

fragments dating back around 450 million years [61].

The desiccation-resistant sporopollenin-coated spores that

characterize land plants are thought to have evolved prior to

the evolution of multicellular sporophytes [62]. Sporophytic

multicellularity is proposed to have arisen by the interpolation

of mitotic divisions into the meiotic developmental pro-

gramme, and variation in fossil spore aggregation patterns

and morphology suggests an early phase of evolutionary

change in the timing of meiotic cell division relative to sporo-

pollenin deposition [60,63–65]. Variation in spore form is

sparsely reflected in living bryophytes, but the liverworts

Haplomitrium gibbsiae and Sphaerocarpus michelii have perma-

nent spore dyads and tetrads, respectively, and may represent

a relictual state [66,67]. Sporopollenin production pathways

are partially conserved within the land plants, and recent

reverse genetic studies have determined that sporopollenin

is required for spore viability [68–71].

(c) Alternating gametophyte and sporophyte
generations

Genetic evidence suggests that early variability in meiotic div-

ision pathways and multicellularity in the earliest sporophytes
could have been linked. In the unicellular chlorophyte alga,

Chlamydomonas reihardtii, plus and minus mating identities

are conferred by the TALE class homeodomain transcription

factors GSP1 (a BELL protein) and GSM1 (a KNOX protein),

respectively [72]. After mating, protein heterodimers form to

activate zygote development, and ectopic co-expression of

GSM1 and GSP1 is sufficient to trigger zygotic gene expression

and meiosis [72]. BELL and KNOX proteins were inherited by

land plants and their ancestral role in life cycle progression

is preserved in bryophytes [73,74]. Knockouts and over-

expressors in Physcomitrella show that PpBELL1 activity is

necessary and sufficient for sporophyte development [74]. A

KNOX duplication occurred prior to the colonization of land

giving rise to KNOX1 and KNOX2 classes [75,76]; the KNOX1
gene MKN2 regulates sporophyte development [77,78]

and KNOX2 genes suppress filament development in sporo-

phytes [73]. PpBELL1 can heterodimerize with all five moss

KNOX proteins, and heterodimerization with MKN2 may be

responsible for the activation of sporophyte development

when PpBELL1 is ectopically expressed [74]. PpBELL1 and

MKN2 act downstream of the POLYCOMB REPRESSIVE

COMPLEX 2 (PRC2) components PpFIE and PpCLF, and

Ppfie and Ppclf mutants activate aspects of development charac-

teristic of sporophytes in the gametophyte generation

[74,79,80]. KNOX1 and KNOX2 genes also affect sporangium

development in Physcomitrella. In combination, data implicate

KNOX and BELL genes in life cycle progression, meiosis and

multicellular development at either side of the transition

to land.

Further genetic mechanisms involved in the appearance

of multicellularity and 3D growth in sporophytes are largely

unknown because perturbations to bryophyte gametophyte

development impair fertility, so separate mutants must be

generated in each life cycle stage to study the function

of the same genes. The Physcomitrella transcription factors

PpLFY1/PpLFY2 and PpWOX13LA/PpWOX13LB are necess-

ary for multicellular development [81,82] and polar auxin

transport by PIN auxin transporters also regulates fertility

and sporophyte development [83,84]. Recent progress has

identified sporophyte-specific promoters that could be used

to generate conditional mutants to dissect the function of

these regulators of sporophyte development [74,85].
(d) Uni-axial forms
While there is no fossil record of the earliest multicellular

sporophyte forms, phylogeny suggests that uni-axial sporo-

phytes terminating in sporangium formation are basal

(figure 3d ). Uni-axial forms are retained by living bryo-

phytes, but the pattern and extent of development differs

between bryophyte lineages, so it is not yet clear which

pattern is ancestral. Although axial elongation in hornworts

occurs from a ‘basal’ intercalary proliferative region that

extends the apical basal axis and maintains spore production,

liverwort sporophytes elongate principally by cell expansion

(figure 3f ) [11,65]. Mosses have transitory apical and basal

cells that divide to form an embryonic axis, and an intercalary

proliferative region in the middle of the axis later serves

to elongate the stem and raise the sporangium out of the

parent plant (figure 3f) [65,88]. Surgical decapitation

experiments in mosses suppress axial elongation [89] and cyto-

kinin can compensate for decapitation, suggesting that apically

produced cytokinin promotes elongation. If applied to intact
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sporophytes, cytokinin can also induce extensive (sterile) axial

elongation by prolonging activity of the intercalary prolifera-

tive region [89]. These data suggest that mosses have a latent

capacity for proliferation that is normally suppressed by hor-

monal interplay between the apical cell, the intercalary zone

and the sporangium.
5. Innovations in the origin of vascular plants
(a) Bifurcation
While bryophyte morphology suggests that the most ancient

sporophyte forms were uni-axial and terminated in sporan-

gium formation, vascular plant forms are multi-axial and

have shoot tips that proliferate indeterminately without termi-

nating in sporangium formation (figure 3d). Morphological

innovations at the bryophyte to vascular plant divergence are

hard to unravel because the morphology of living bryophytes

and vascular plants is disparate, and this disparity has led to

much speculation about the nature of change [15,21–23,

25,90–93]. Some of the earliest plant macrofossils share charac-

teristics with bryophytes and vascular plants and point to

developmental changes at this juncture (figure 3g) [60]. Their
simple bifurcating forms terminate in sporangium formation,

but inference of apical or proliferative activities during devel-

opment has not yet been possible. The potential to use moss

sporophytes as a ‘bottom up’ entry point to understanding

the innovation of bifurcating forms is demonstrated by rare

natural moss variants and mutants that bifurcate with axes ter-

minating in sporangium formation [83,85,94]. Reverse genetic

work in Physcomitrella has shown that perturbation of polar

auxin transporter (PINB) or TCP transcription factor (TCP5)

function can induce single or multiple bifurcations with each

resultant axis terminating in sporangium formation, but the

developmental basis of mutant phenotypes is not yet clear

[83,85]. Modern lycophytes and monilophytes offer the possi-

bility of ‘top down’ insights into mechanisms of bifurcation

as their meristems have one to a few stem cells, a state thought

to be ancestral within the vascular plants. A clonal analysis in

the lycophyte Selaginella kraussiana showed that bifurcation

involves amplification and segregation of stem cells in the

shoot tips, and suppression of genetic pathways for prolifer-

ation [95–97]. Bifurcation in the fern Osmunda regalis is

thought to involve stem cell division, and the development

of fern genetic models opens the possibility of mechanistic

insights [98–100].
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(b) Indeterminacy and the displacement of sporangium
formation away from shoot tips

Although bifurcating forms with terminal sporangia are preva-

lent in early vascular plant fossils, forms with spatially distinct

proliferative and reproductive activities are also represented,

having lateral sporangia or sporangia on leaves [101,102].

This mix of characteristics suggests that the displacement of

sporangial development pathways away from shoot tips was

pre-requisite to the evolution of indeterminate meristem func-

tions. There is some evidence from either side of the bryophyte

to vascular plant divergence that KNOX1 and KNOX2 genes

could have contributed to the evolution of indeterminacy and

sterilization. Physcomitrella KNOX1 genes are first expressed

in the apical half of the embryo before expression narrows

down to a spot subtending the sporangium (MKN2) or a

band whose position coincides with the position of the inter-

calary proliferative region (MKN4/5; figure 4) [78]. MKN2

activity is necessary for axial elongation, perhaps by modu-

lating intercalary proliferative activity [78]. Axial elongation

following cytokinin application [89] and suppression of
elongation in mkn2 mutants [78] suggests a potential link

between cytokinin and KNOX1 activities, which is significant

given that a KNOX-cytokinin regulatory loop promotes inde-

terminacy in Arabidopsis [103,104], and expression analyses

in a lycophyte show that KNOX1 genes are conserved regula-

tors of indeterminacy in vascular plants [95]. The possibility

of roles for KNOX genes in sterilization is raised by knox1
and knox2 mutant phenotypes in Physcomitrella. KNOX1 and

KNOX2 expression patterns are somewhat complementary in

sporophytes (figure 4), and while the KNOX1 gene MKN2
promotes sporangium development, the KNOX2 genes mkn1
and mkn6 are necessary for sporangium development [73,78].

KNOX1 and KNOX2 genes have antagonistic functions in

other plants [105], and KNOX1 and KNOX2 genes may

act antagonistically to regulate sporangium development in

Physcomitrella. MKN function links proliferative and reproduc-

tive activities in moss sporophytes, and a key point for future

research will be to understand how KNOX evolution may

have teased these activities apart during the evolution of

sporophytic indeterminate meristem functions.
6. Innovations in vascular plant diversification
(a) Meristems
Morphological changes in the evolution of land plant forms

correlate with changes in meristem function through time,

and indeterminate meristems have evolved independently

in bryophyte and fern gametophytes and vascular plant spor-

ophytes (figure 3) [7]. While gametophyte meristems comprise

a single apical stem cell, vascular plant meristems have one to

many stem cells capping a more rapidly proliferative zone

(figure 3c,f ) [11,106–108]. The intercalary proliferative zones

of bryophyte sporophytes may be homologous to the prolifera-

tive zones of vascular plant meristems, but the mechanisms by

which apical stem cell activity originated in sporophytes are

unknown. The juxtaposition of stem cell and proliferative

zones may have preceded the origin of indeterminacy in vascu-

lar plants (figure 3f). Molecular work suggests that there has

been no large-scale co-option of genes regulating meristem

function from the gametophyte to the sporophyte stage of

the life cycle [78,82,109], and transcriptomic work suggests

that vascular plant meristems may have evolved indepen-

dently in lycophytes, monilophytes and spermatophytes

[25,110]. PIN genes are an exception and PIN-mediated auxin

transport drives meristem function in both life cycle stages

in a moss [83].

(b) Leaves
A primary function of indeterminate meristems is to iterate

leaves in regular patterns around the stem to optimize light

interception during photosynthesis [19]. Phylogeny shows

that leaves had at least five independent origins, evolving

in liverwort and moss gametophytes, and also in lycophyte,

monilophyte and seed plant sporophytes (figure 3b,e) [86].

Steps in the evolution of vascular plant leaves are represented

in the fossil record, and leafless precursors in each lineage

point to non-homology of sporophytic leaf types, a subject

that is well reviewed elsewhere [86,111]. Non-homology of

leaf types is also supported by widely divergent patterns of

leaf development in each group. Liverwort and moss phyllids

develop from a single cell, and with the exception of the
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midvein in mosses, comprise a single cell layer [11]. Lyco-

phyte microphylls can develop from two juxtaposed

epidermal cells, with inner tissue layers established by

division of the adaxial epidermis after medio-lateral and

proximo-distal axes of symmetry are established [96]. Monilo-

phyte fronds have a shoot-like nature, developing from a

single apical cell [112], and seed plant leaves develop from

a pool of cells recruited from the flanks of the multicellular

shoot apical meristem [106]. Axes of leaf symmetry are

largely inherited from the parent meristem [19].

In line with these divergent leaf morphologies and patterns

of development, transcriptomic analyses have identified lar-

gely divergent genetic pathways for leaf development in each

vascular plant lineage [110]. However, reverse genetic studies

have identified three pathways that have been co-opted mul-

tiple times to regulate leaf development during evolution.

PIN-mediated auxin transport is a key determinant of leaf

initiation patterns and development in flowering plants, and

PIN-mediated auxin transport was independently co-opted

to regulate phyllid initiation and outgrowth in moss and

probably also lycophyte microphylls [83,113,114]. ARP tran-

scription factors are a second key driver of leaf initiation and

development in flowering plants, and their action in down-

regulating KNOX expression was independently co-opted to

regulate lycophyte microphyll development [95,115]. HD-zip

transcription factors regulate leaf polarity and vascular devel-

opment in flowering plants, and HD-zip genes have been

independently recruited to regulate different aspects of leaf

development in mosses and lycophytes [109,116–118]. Each

of these gene families has undergone lineage-specific

duplications during evolution, and the genetic networks regu-

lating leaf development are likely to be lineage-specific

[95,117–119].
(c) Axillary branching
Shooting forms in land plants are further characterized by

extensive branching, which confers fitness advantages allow-

ing increase in size, plastic growth responses, persistence over

long time frames and amplification of reproductive pathways

[120]. While bifurcation is likely to be the ancestral branching

pattern in gametophytes and sporophytes, axillary branching

arose independently in moss and liverwort gametophytes

and seed plant sporophytes (figure 3a,d,g) [121]. Most of our

understanding of branching has been gained from studies in

flowering plants in which branches initiate as a result of a

drop in the levels of auxin and a rise in the levels of cytokinin

in cells at the base of leaf primordia [122,123]. Cells that attain

branch fate in this manner can activate branch outgrowth in

response to hormonal cues integrated across the plant later in

development [121,124]. Shoot apices and young leaves play a

major role in regulating branch outgrowth patterns as they pro-

duce auxin that is then transported away from the shoot tips

via the polar auxin transport stream to suppress branching,

and cytokinin antagonizes the action of auxin [124]. Strigolac-

tone is a third hormonal regulator of branching, inhibiting or

promoting branch outgrowth depending on the auxin trans-

port status of the plant [125–127]. The mechanisms driving

the evolution of lateral branching are largely unknown. How-

ever, lateral branches in Physcomitrella gametophytes arise by

respecification of epidermal cells in leaf axils to apical cell

fate [12]. Although this process is modulated by an interplay

between auxin, cytokinin and strigolactone, the auxin
transport route is non-polar and likely to involve plasmodes-

mata, and branch activation is likely to directly reflect

downstream outputs of hormone signalling [12].
7. Underground innovations
(a) Rhizoid-based rooting systems
The earliest rooting systems originated prior to the coloniza-

tion of land and were rhizoid based, comprising unicellular

or multicellular projections that function in anchorage and

mineral uptake [128,129]. The genetic mechanisms regulating

rhizoid development predate the origin of land and are con-

served with mechanisms regulating root hair development in

flowering plants [130,131]. RSL Group VIII bHLH transcrip-

tion factors are positive regulators of rhizoid development

that underwent an early duplication to form Class 1 and

Class 2 clades [130,132,133]. Each class is represented by a

single gene in the liverwort, Marchantia polymorpha, and

loss- and gain-of-function mutations in RSL1 have revealed

that it is necessary for and promotes the formation of all epi-

dermal cellular projections, a role that is conserved with

mosses [130]. RSL copy numbers in both classes have been

maintained at low levels through to a total of 7 in mosses

to 8 in lycophytes and a maximum of 10 in flowering

plants [134]. LRL Group XI bHLH transcription factors ampli-

fied from a base number of 1 in charophytes via two vascular

plant-specific duplications to form 3 classes through time

[131]. While liverwort and moss LRLs promote rhizoid devel-

opment, Arabidopsis LRLs can either promote (Class I) or repress

(Class II) root hair development, and both RSL and LRL regulat-

ory networks have increased in complexity during plant

evolution [131,134–136]. These networks have been repeatedly

deployed to allow rhizoid or root hair development on different

parts of plants during evolution indicating deep homology;

the use of conserved genetic networks in the development of

non-homologous structures [137].

(b) Roots
Although vascular plants from the fossilized Rhynie Chert

assemblage had rhizoid-bearing subterranean stems that per-

formed a rooting function, true rooting systems diversified

after shoot systems [138]. The features that distinguish roots

from earlier axial forms are growth from a meristem with a

root cap and gravitropism, and roots had independent ori-

gins in lycophytes and euphyllophytes (monilophytes and

spermatophytes) or each euphyllophyte lineage [138]. Some

of the earliest root systems fossilized from the ancient lyco-

phyte forests that formed coal. These comprised bifurcating

shoot-like axes (rhizomorphs) that initiated bifurcating root-

lets in a spiral phyllotaxis and had root hairs [139,140].

Roots in living lycophytes comprise a system of bifurcating

axes with hairs that either originate laterally during embryo-

genesis or initiate from modified aerial axes (rhizophores)

during post-embryonic growth [138–141]. The developmental

affinity of lycophyte rhizophores to roots or shoots is a long-

standing debate in which the most recent evidence from

shared protein abundance and KNOX gene expression points

to shoot-like affinity [141–143]. The earliest euphyllophyte

roots fossilized from extinct cladoxylopsid plants that resemble

tree ferns, and their root systems comprised bifurcating axes

initiating from the swollen stem base [129,144,145]. In living
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ferns, roots initiate either basally during embryogenesis or

post-embryonically from the stem base, stems or rhizomes; lat-

eral roots initiate from an endodermal cell layer [141,146]. The

progymnosperm fossil relatives of seed plants had shrub or

tree form with woody tissues and bifurcating (aneurophytes)

or laterally branching roots (archaeopterids) as in living seed

plants [147,148].

Trends in root architecture evolution somewhat mirror

trends in the evolution of shoot architecture, and euphyllo-

phyte rooting systems are hypothesized to have a shoot-like

origin [7,149,150]. Although there is a good understanding of

the molecular mechanisms regulating root architecture in flow-

ering plant models [151], knowledge transfer to identify the

mechanisms underpinning root evolution is limited. The hom-

ology of lcyophyte, monilophyte and spermatophyte roots is

supported by an analysis of WOX gene function showing

that root stem cell expression is conserved [152]. The distinct

origin of lycophyte and monilophyte and spermatophyte root-

ing systems is supported by a phylogenetic analysis showing

that lycophytes lack the AS2/LOB domain genes that act down-

stream of auxin to regulate root development in monilophytes

and spermatophytes [153].
8. Themes
(a) Gene duplication and antagonistic functions
Genomic approaches to plant evolution have shown that most

of the gene families with important roles in generating flower-

ing plant form are conserved to algae, and that gene copy

numbers have amplified through time [51,154]. This ampli-

fication provides a source of genetic diversity, and has led to

long-standing ideas about the contribution of gene duplication

and diversification in function to the radiation of diverse forms

[155,156]. A recurring theme to emerge from more recent

studies in basal land plant lineages such as liverworts and

mosses is that antagonistic gene functions arise following dupli-

cation. For instance, through time the ancient KNOX to KNOX1
and KNOX2 duplication lead to antagonistic functions for these

gene classes in leaf development [105], and bHLH and HD-
ZipIII duplications have given rise to antagonistic functions in

root hair development and axillary meristem development,

respectively [131,157]. The mechanisms by which such antag-

onistic transcription factor functions emerge are not yet clear

but are accessible to experimental interrogation.
(b) An upward outlook for the genetics of plant form
A second theme from recent plant evo-devo approaches is that

models with low genetic redundancy but conserved gene
families are bringing new findings that are broadly relevant

across the plant tree of life. For instance, Marchantia rsl mutants

have not only a rhizoidless phenotype but also defects in the

initiation of other epidermal projections such as glandular

hairs, which are ubiquitous in land plants [130]. This discovery

lead to the identification of conserved roles for RSLs in regulat-

ing epidermal cell outgrowth in Physcomitrella, and may be

taken further up the plant tree of life into vascular plants in

the future [130]. Unpublished data from other laboratories

are pointing in the same direction and are identifying new

roles for conserved gene families that can be taken up the

plant tree of life. These data demonstrate the potential of for-

ward genetic approaches in bryophytes for gene discovery in

gene regulatory network and signalling pathway analysis.

They are relevant in the light of knowledge transfer to flower-

ing plants where redundancy has previously masked gene

function, and application of new knowledge to modify crop

form may improve yields in future work.
(c) Small genetic changes for major innovations
A third theme to emerge from developmental and genetic

studies spanning the base of the plant tree of life is that

single-gene mutations can induce discrete changes relevant

to major evolutionary innovation [49,56,72,83]. While the

morphological distance at the alga to land plant and bryo-

phyte to vascular plant divergence points is wide, new

fossils and mutants have started to generate intermediate

forms [49,83]. In some instances, such forms can be inter-

preted in the light of stem and crown group morphologies

to suggest stepwise body plan changes. In other instances

the forms generated are clearly maladaptive, and potential

transitions in form remain elusive [55,56]. Nevertheless, the

advent of forward genetic approaches that have gone from

phenotype to genotype in Marchantia and Physcomitrella
brings opportunity for significant and imminent advances

in testing the limits of plant forms in early diverging land

plant lineages [130,158]. Mutant phenotypes arising are

likely to be informative about the nature of morphological

transition occurring in plant body plan evolution during

the colonization of land, and genotyping will identify key

genes for architectural change.
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