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ABSTRACT
Apolipoprotein B mRNA Editing Catalytic Polypeptide-like 1 or APOBEC1 was discovered in 1993 as the
zinc-dependent cytidine deaminase responsible for the production of an in frame stop codon in apoB
mRNA through modification of cytidine at nucleotide position 6666 to uridine. At the time of this
discovery there was much speculation concerning the mechanism of base modification RNA editing which
has been rekindled by the discovery of multiple C to U RNA editing events in the 30 UTRs of mRNAs and
the finding that other members of the APOBEC family while able to bind RNA, have the biological function
of being DNA mutating enzymes. Current research is addressing the mechanism for these nucleotide
modification events that appear not to adhere to the mooring sequence-dependent model for APOBEC1
involving the assembly of a multi protein containing editosome. This review will summarize our current
understanding of the structure and function of APOBEC proteins and examine how RNA binding to them
may be a regulatory mechanism.
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Historical preface: What if any distinction is there
between RNA editing and RNA modification

Throughout the 3 domains of life there are over one hundred
ribonucleotide modifications and several deoxyribonucleotide
modifications identified in various classes of RNA as well as in
genomic and organellar DNAs1-4 (Fig 1). The identification of
RNA modifications and associated phenotypic studies predates
the first use of the term RNA editing.4,5 Rob Benne introduced
the term ‘RNA editing’ in the 1980s in reference to Trypano-
some guide-RNA dependent, insertion and deletion of uridines
within mitochondrial mRNAs (reviewed in6). Editing through
numerous U insertions and deletions into mitochondrial tran-
scripts precisely timed during the life cycle of the organism cre-
ated the initiation codons, sense codons and open reading
frames for many mitochondrial proteins and enabled mito-
chondrial function (reviewed in6,7). Subsequently, adenosine to
inosine (A to I) and cytidine to uridine (C to U) base transi-
tions through deamination in mRNAs of plants, insects and
mammals became known as mRNA editing as these too created
translation start codons, sense changes, nonsense codons as
well as premRNA splice junctions (reviewed in8,9).

Adenosine deaminase active on RNA (ADAR)10,11 and
adenosine deaminase active on tRNA (ADAT)12 are responsi-
ble for A to I editing and have deaminase domains that are
structurally related to, but distinct from, those of apolipopro-
tein B mRNA editing catalytic subunit (APOBEC) family of

cytidine deaminases13,14 responsible for C to U editing.8

ADAR1 and ADAR2 were first shown to edit mRNAs encoding
glutamate and kainate receptor gated ion channels in excitatory
tissue.6,7,15,16 In different excitatory tissues and through the
brain mRNAs encoding ion channel subunits may not all be
edited, nor are they edited at the same sites. The resulting pro-
tein heterogeneity in subunits comprising the multi subunit ion
channels for Ca2C and KC enables regional control of plasticity
in ion conduction rates and ion gradient recovery rates. APO-
BEC1 (A1) editing of the mRNA encoding apolipoprotein B
created protein variants that are required for serum transport
and tissue uptake of fats and cholesterol. ApoB protein variants
have markedly different half lives in the blood and therefore
have different implications in the production of low density lip-
oproteins (LDL) and atherogenic diseases.8,17

Both ADAR and APOBEC catalytic domains known as the
zinc-dependent deaminase domain (ZDD) require a protein
fold that coordinates zinc through histidine and cysteine resi-
dues and places a glutamic acid for proton shuttling proximal
to the adenosine/cytosine targeted for deamination.13,18-23 The
structure of APOBEC3F (A3F) C-terminal deaminase domain
in the absence of zinc suggested that metal chelation is not
essential for the general fold of the ZDD.23 ADAR1, ADAR2
and ADAT1 contain one or more double stranded RNA
binding domains with selective affinities for imperfect RNA
duplexes that contain the target adenosine to be edited; and
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hence edit different RNA substrates.10,11,24 ADAT2 and
ADAT3 have no recognizable double-stranded RNA binding
domains. In contrast, A1 has weak affinity for RNA25 and is
moored to the RNA editing site through its interaction with the
RNA binding protein A1CF that recognizes a cis-acting, 11
nucleotide RNA recognition element (the mooring sequence)
30 of the edited cytidine26,27 (reviewed in14,28). As will be
discussed below, APOBEC deamination of dC in ssDNA may
not require auxiliary proteins as they bind ssDNA with nano-
molar affinity using residues surrounding catalytic cleft and
residues along exposed surfaces adjacent to the catalytic
domain.18,20,29-32

By 1997 ADARs and A1 became the mammalian paradigms
of editing enzymes as a growing list of examples of A to I and C
to U mRNA editing sites emerged from studies in plants, proto-
zoa, insects and viruses.9 Since that time, numerous non-
genomically encoded A to I and C to U transitions have been
identified through advances in computation biology and RNA
and DNA sequencing technology.33-39 Although the ADAR
and APOBEC editing enzymes are likely to be responsible for
transcriptome and genome wide A to I and C to U transitions,
the functional significance of editing these nucleotides is usu-
ally not apparent. Sequence analyses show that under in vitro
conditions ADAR and APOBEC family members can edit
numerous sites within RNAs (and DNA in the case of AID/
APOBEC) as long as they satisfy the nearest neighbor nucleo-
tide and/or secondary structure requirements; so called ‘hot
spots’. And yet the vast majority of sites that qualify as ADAR
or APOBEC editing sites are not edited in vivo. So while under
defined in vitro conditions the cis-acting requirements for
ADAR and APOBEC editing site selection can be readily

described, we do not understand why nucleotides predicted to
be editing sites are or are not utilized in vivo.

It has become increasingly difficult to think of all of the sites
affected by ADAR or APOBEC in the historical strict definition
of a nucleic acid editing site; namely as a form of nucleotide
modification that enables phenotypic diversity. One might
speculate that most of these modifications are determined by
random access of the enzymes to RNA or ssDNA regions of the
genome made single stranded during RNA transcription and
DNA replication. But this cannot entirely be true as the chemi-
cal nature and frequency of particular DNA and RNA sequen-
ces harboring these nucleotide modifications are known to vary
with changes in physiologic or disease states,16,33,34,40-44

reviewed in.14 Alternatively, if there is a clear phenotype associ-
ated with a modification, then there probably was an underly-
ing regulatory process for modifying that site; hence it may be
considered to be an editing event even though the function of
other nucleotide modifications that occur simultaneously might
not be clearly purposeful.

As case in point, the APOBEC field discovered early on that
overexpression of editing enzymes for experimental purposes
can lead to high levels of editing at physiologically relevant sites
but also hyperediting of multiple RNAs that otherwise would
not have been significantly edited45 and promiscuous editing of
multiple cytidines proximal to the native editing site.46 Activa-
tion induced deaminase (AID) in the APOBEC family
(described in greater detail below) is responsible for the diver-
sity of antibodies that can be produced as part of the acquired
immune system.47 Upon B lymphocyte activation, AID induces
numerous dC to dU transitions within genomic DNA encoding
the variable region of the immunoglobulin locus and within the

Figure 1. RNA Modifications Unique and Common to the Three Orders of Life. The Venn diagram shows the known modifications of ribonucleotides (indicated by stan-
dard abbreviations) found in naturally occurring RNAs in Archea, Bacteria and Eukarya. Nucleotide modifications common to 2 or all orders of life are indicated in the over-
lapping areas. Abbreviations for the modification are provide in.4 Figure modified from Figs. 4 and 6 in reference 4 (Landes BioSciences).
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immunoglobulin class switch region.47-49 In each activated B
cell the deoxycytidines deaminated to deoxyuridine are
repaired to any one of the 4 bases. This leads to a large diversity
of new functionalities in immunoglobulins expressed within the
activated B cell population in germinal centers throughout the
body.47,50-52 While there are potentially numerous nucleotide
modifications within some of the activated B cells that do not
enable expression of functional immunoglobulins, AID modifi-
cation of DNA produces diversity in the proteome and there-
fore arguably is DNA editing. Moreover, despite exquisite
regulation of this process, there are numerous mutations within
genomic DNA with AID/APOBEC signature nearest neighbor
preferences.33,53 In some instances these ‘hyperediting’ sites
lead to alterations in protein expression and are associated with
particular cancers and cancer progression (reviewed in14,54,55).

Broadening the inclusivity of the RNA editing nomencla-
ture, the functionality of several tRNAs is enabled by A to I
transitions catalyzed by ADAT affecting codon structure,
codon usage or tRNA availability.1,56 In addition, A to I transi-
tions catalyzed by ADARs disrupts base pairing in RNA sec-
ondary structure such as those required for recognition and
processing of microRNAs (miRNA) by the RISC com-
plex.24,40,57 Therefore RNA editing also might be an appropri-
ate nomenclature for the reduction of miRNA abundance by
ADARs leading to altered gene expression through chromatin
modification and condensation40,58-60 as well as reduction in
the capacity of cells to produced miRNA that silence
mRNA.24,40,61 ADAR colocalization with long noncoding (lnc)
RNAs and unspliced HIV RNA in nuclear para speckles cata-
lyzes A to I transitions in lncRNA secondary structure. This
may be RNA editing as well based on the hypothesis that it is
essential for controlling nuclear export of unspliced HIV RNA
to the cytoplasm for translation of viral proteins and viral pack-
aging.62,63 Future research no doubt will show that there are
additional instances where nucleotide modifications in RNA
(or DNA) lead to a gain or loss of function. Should these
nucleic acid modifications be thought of as RNA editing once
their functional consequences have been identified? For the
moment, the field has taken a ‘middle of the road’ position in
adopting the moniker ‘editing and modification’ when referring
to all of these nucleotide transitions in RNA and DNA.

Development of the APOBEC field through the
discovery of new genes and new editing mechanisms

In the decade spanning the discovery of apoB mRNA C to U
editing and APOBEC1 (A1) as the enzyme responsible for this
base modification editing, a question frequently posed by the
scientific community was why would an apparently dedicated
enzyme like A1 be conserved in mammalian evolution given
that it catalyzes a single editing event in only one mRNA? If the
truncated protein product expressed from edited mRNA is
important, why over time has the C to U change responsible
for the nonsense mutation not have been selected in the apoB
gene? The answer put forth then and still in use today is that
editing affords tissue-specific flexibility in protein expression
and the ability to regulate the proportion of the ApoB proteins
translated from edited and unedited mRNA; and consequently

modulate serum lipid transport through metabolic and devel-
opmental regulation (reviewed in8,17).

A broader role for A1 in regulating protein diversity,
mRNA expression and stability was suggested in the discov-
ery of A1-dependent editing of the mRNAs encoding the
tumor suppressor NF164 and the translation repressor factor
eIF4G45 along with numerous C to U edits within the 30
UTRs of RNAs36 (see other predicted mRNA substrates
in65,66). The biological role of APOBEC proteins has come
under the spotlight again following the discovery that A1 is
one of 11 proteins in a family of cytidine deaminase active on
nucleic acids.14,67 Many of proteins in the APOBEC family
have essential deaminase activity-dependent and deaminase
activity-independent functions in determining innate and
acquire immunity, host cell antiviral defense65,68 and if unreg-
ulated could become oncogenic33,34,48,54,55,69,70 or potential
reduce cancers by enabling immune surveillance.71

The ability to bind to nucleic acids and to catalyze dC to dU
base modification on single stranded DNA is a family charac-
teristic that many but not all of the APOBEC family members
have in common,53,67,72,73 reviewed in.74 The reader is referred
to recent reviews for the structures and functions of the APO-
BEC family13,14,34 as this review will provide only a brief over-
view of the APOBEC family for context in establishing the
hypothesis that RNA binding to APOBEC proteins regulates
their deaminase activity.

There are 11 known members in the human APOBEC
family

A1 and AID are both encoded on human chromosome 12. A1
expression is most abundant in mammalian small intestine and
liver.75 Expression of mammalian AID is highly regulated in B
lymphocytes within germinal centers in response to foreign
antigens. Its tissue-specific expression and ssDNA mutagenic
activity of the immunoglobulin gene locus are essential in
determining adaptive immunity through class switch recombi-
nation (CSR), somatic hypermutation (SMH) and gene conver-
sion.47-49 Deletion of A1 has a weak phenotype in lipid
metabolism in mice76 but loss of AID function leads to an auto-
somal recessive, immune disorder known as hyper-IgM syn-
drome (HIGM2) where IgM accumulates in the blood because
class switch recombination cannot be performed.77 APOBEC2
(A2) and all 7 APOBEC3 proteins (A3A, A3B, A3C, A3D, A3F,
A3G and A3H) are encoded on human chromosomes 6 and 22,
respectively.67 A3 proteins have diverse deaminase activities on
RNA and ssDNA; mostly related to the control of retroviruses
and endogenous retroviral elements (13,39 and reviewed in14).
APOBEC4 is encoded on chromosome 1.78 A2 and APOBEC4
(A4) have no known catalytic functions.78-80

AID and A2 may have been the ancestral genes from which
all other APOBEC were derived. This may have occurred
through gene duplication and divergence over the course of
»500 million years of vertebrate evolution. AID ssDNA deami-
nase activity emerged with jawed fish and its DNA mutagenic
activities would have been selected for in overcoming infec-
tions, immune surveillance in controlling cancer cell prolifera-
tion and maintaining homeostasis.53,70,81-84 For the A3
proteins, the leading hypothesis is that the driving force for A3
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gene expansion and diversification was selective pressure on the
innate immune system through the genotoxic effects resulting
from infection with rapidly mutating retroviral genomes and/
or transpositions of endogenous retroviral-like elements within
the genome,38,84-92 reviewed in.14 This is an intriguing hypothe-
sis considering present day diversification within the human
APOBEC family, notably polymorphisms in A3C,93,94 the loss
of A3B expression in various human populations55,93 and the
expansion of alternatively spliced variants of AID in the pro-
gression of cancer95,96 and of A3H that have different capacities
to suppress HIV infections88,97,98 or contribute to cancer.99 The
importance of A3 in host cell defense is evident in that HIV-1
and -2 encode the accessory protein known as viral infectivity
factor (Vif) whose primary function is to suppress the antiviral
activity of A3C, 3D, 3F, 3G and 3H by mediating their ubiquiti-
nation and proteosomal degradation.68,88,94,97,100-102

APOBEC have a conserved catalytic domain

All APOBEC proteins can be identified through database
searches by their signature zinc-coordinating deaminase
domain (ZDD) motif (H x E—X25–30—PC X2–4 C) (Fig 2).

8 The
underlined residues are an absolute requirement for APOBEC
binding to and use of zinc as a Lewis acid for a nucleophylic
attack of the C4 position of cytidine or deoxycytidine during
hydrolytic deamination.23 The ZDD is found within the tertiary
fold comprising the cytidine deaminase catalytic domain that is
composed of a 5-stranded mixed b-sheet that is stabilized by a
helices packing against both faces of the b sheet due to their

sequential arrangement as a1-b1-b2-a2-b3-a3-b4-a4-b5-a5-
a6 in the primary sequence (Fig 2). This organization is con-
served in the crystal structure of the yeast homolog of AID/A1
known as Cdd1 that has both RNA and ssDNA editing activ-
ity103,104 and with very little variation, is a key structural land-
mark observed in all known crystal or NMR structures of
mammalian APOBEC.13,19,20,23,30,32,105-108 AID, A1, A2, A3A,
A3C, A3H and A4 are single ZDD whereas A3B, D, F and G
are dual deaminase domain proteins. With the possible excep-
tion of A3B and D, there is only one catalytically active deami-
nase domain in proteins with 2 ZDD. There is no explanation
for the structural or catalytic advantage that single versus dual
ZDD-containing proteins have although ssDNA substrates
bind to residues in both domains in APOBEC with dual
ZDD23,31,108,109 and both N- and C-terminal ZDD are required
for robust ssDNA editing.109,110 The structure of APOBECs
have the greatest divergence within the primary sequence and
secondary structure of loop domains outside of the ZDD as
well as their quaternary interactions such as homo multimeri-
zation, interaction with other cellular or viral proteins and
nucleic acid binding that affects APOBEC oligomerization and
subcellular distribution.14,74

Most APOBEC have deaminase activity on ssDNA
substrates

Nucleic acid binding is common to all APOBECs and with the
exception of A2 and A4, all APOBEC will support in vitro
deamination of deoxycytidine (dC) to deoxyuridine (dU) in

Figure 2. Structural Organization of Zinc Dependent Deaminase Domains and the Catalytic Fold for the APOBEC3 family. (A) Cartoon of the occurrence and position of
evolutionarily related ZDD (color coded in orange, blue and green) in APOBEC3 a through H. Regions where the HIV Vif protein binds to A3 proteins is indicated. (B) Three
dimensional fold of the A3 Z1 showing the distribution of a helices and b sheets relative to the catalytic zinc atom. (C) Primary amino acid sequence alignment of each
individual ZDD domain in the A3 family showing the locations of conserved residues (in red vertical stripes) and homologous residues (in red text). Amino acids sequences
forming a helices and b sheets are indicated about the text. Reproduced with permission from reference 13.
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ssDNA.67,72 Within single stranded DNA stretches of 25
nucleotides or longer dC’s are targeted and deaminated do dU
with apparently very lax nearest neighbor sequence preferen-
ces.111-114 The resultant dU’s are repaired, first by rendering
them to abasic sites and then through low fidelity of DNA
repair converting them to dA, dC, dG or T.47,48,52 AID muta-
genic activity targeting to the variable region and class switch
region of transcriptionally active immunoglobulin genes may
be facilitated through a mechanism that involves cofactor bind-
ing to DNA, AID post-translation modification or DNA struc-
ture restrictions.51,52,115-122

A3D, F, G and H provide host defense against retroviral
infection by hypermutating proviral ssDNA during reverse tran-
scription,72,101,123,124 reviewed in.125 Paleo-DNA databases reveal
numerous dG to dA mutations throughout primate genomes
with nearest neighbor target preferences characteristic of modern
day A3 family deaminases.86,90,92 Evolutionary models predict
that A3 proteins, especially A3G and A3F, have served a signifi-
cant role as antiviral vanguards, in many species, for millions of
years by mutating retroviral genomes and impairing their pro-
ductive replication and retrotransposition.86,92,100,126-128

Crystal and NMR structures are only available for single ZDD
APOBEC and for individual ZDD from double domain APOBEC.
These have been modeled for ssDNA binding to A3B, 3F and 3G
along a shallow groove on the protein surface punctuated with
patches of positively charged (basic) and aromatic (hydrophobic)
residues that respectively accommodate the negative charge on the
backbone of nucleic acids backbone and enabling their stacking
with the nucleic acid bases.13,20,29,30,109,129-131 In this regard the first
crystal structures of A3B C-terminal half with bound dCMP130 and
A3G N-terminus half with mono and oligo deoxynucleotides
bound108 have begun to suggest the residues required to restrain
nucleic acid in proximity to the catalytic site. A3B, 3F and 3G have
greater processivity in deaminating multiple dC along ssDNA
compared with A3A and this may be the result of a greater number
of contacts made with ssDNA by their ZDD.109,132 Modeling sug-
gests that single deaminase domain A3 such as A3A with fewer
contacts with nucleic acid andmay bend ssDNA substrates to posi-
tion the targeted dC into the catalytic pocket.32 In this regard it is
interesting that a rare S188I mutation in A3C expressed in a subset
of Africans was shown to increase RNA bridged multimerization
of the single domain A3C and activate of the mutant protein’s
deaminase activity onHIV-1.94

Mass spectroscopy of tryptic peptides from full length A3G
cross linked to ssDNA 25 nt to 99 nt in length revealed that
ssDNA binds to peptides within the C-terminus where the cata-
lytic domain resides as well as to peptides within the N-termi-
nus, containing the pseudo catalytic domain.31,133 Cross-
linking coupled with mass spectroscopy peptide analysis sug-
gested A3 residues that were bound to nucleic acid and corrob-
orated biochemical studies suggesting that residues in the loop
domains of both ZDD in dual deaminase domain A3 such as
A3F were required for ssDNA binding and robust deaminase
activity.109

APOBEC proteins commonly form homo multimers

The relative contribution of ssDNA in bridging APOBEC
monomeric proteins to one another as higher-order oligomers

vs. protein-protein interactions remains to be determined.
Protein-protein interactions may alone be sufficient for homo-
dimerization of A167,134,135 and A3F and A3G109,136-138 as
these APOBEC bind to ssDNA as such multimers.109,114,139

Consistent with these data, in-cell fluorescence fluctuation
spectroscopy demonstrated that A2, A3A, and A3C were
monomeric in cells whereas A3B, A3D, A3F, A3G, as A3H
were multimeric.50 The prerequisite of a homo oligomeric
state for AID/APOBEC to recognize target dC and bind to
ssDNA remains an area of active research.94,106,107,140-147 We
do not known whether both subunits of a homodimer are
directly bound to ssDNA or in fact whether the catalytic activ-
ity of holoenzyme complexes require more than one active
site; in other words, how many ZDD are engaged to edit a sin-
gle dC? What is more certain is that full length A3G mono-
mers has approximately >100-fold higher affinity of ssDNA
than does the C-terminal ZDD half molecule alone.29,109,141,148

The date suggest that APOBEC binding to ssDNA, the recog-
nition of dC to be deaminated and movement of APOBEC
along the ssDNA to adjacent editing sites requires more than
the catalytic ZDD and the interaction with more than one
APOBEC protein monomer.31,112-114,145

RNAs bound to APOBEC have important functions even
when the RNAs are not substrates for deamination

After several years of controversy homomultimeric and hetero-
meric complexes of AID/APOBEC proteins have been accepted as
critical for regulating APOBEC subcellular localization and their
activity on nucleic acid substrates (reviewed in14,74). Almost every
member of the AID/APOBEC family interacts with a variety of
RNAs that bridge APOBECmonomers together to formmegaDal-
ton sized ribonucleoprotein particles (RNP) that also contain a
variety of other RNA binding proteins involved in RNP structure
and processing RNAs.31,94,149-158

Dual deaminase domain APOCECs were once thought to
bind to RNA through their non-catalytic N-terminal
CDA18,128,141,150,155,159-161 based on an early report suggesting
that RNA and ssDNA bound to different termini.110 MS analy-
sis of full length and native A3G cross linked to nucleic acid
cross revealed that RNA bound to both N- and C-terminal pep-
tides31 (Fig 3). RNA bound to the sites within the C-terminus of
A3G that ssDNA also bound to. The N-terminal sites in A3G
cross-linked exclusively to RNA were part of a continuous
groove extending to the C-terminus and proximal to those that
bound to both RNA and DNA in the C-terminus (Fig 3). The
MS data and model in Fig. 3 were supported by data demon-
strating that RNA displaced ssDNA from A3G and inhibited its
deaminase activity in an RNA concentration-dependent man-
ner.31,151 Given that RNA can bind to A3G at sites were ssDNA
does not bind, the model suggested that in addition to being a
competitive inhibitor, RNA ligands may noncompetitively
inhibit ssDNA deaminase activity or have alternative structural
or regulatory functions. It remains to be determined whether
RNA and ssDNA can bind simultaneously to an APOBEC
monomer or multimer.

A1 must interact with RNA binding proteins AC1F27,162-164 or
RBM47165 for site-specific editing of apoBmRNA but A1 itself, has
a low affinity for binding to RNA and is nonselective.25 A1
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predominantly is a cytoplasmic protein125,166 sequestered with
A1CF and apoB mRNA as editing-inactive 60S complexes along
the exterior of the rough endoplasmic reticulum.27 Hormone regu-
lated, reversible phosphorylation of A1CF enables nuclear import
of A1164 and de novo assembly of 27S active editing complexes
containing A1CF27 bound to unedited but spliced apoB
mRNA.66,167 AID also must be imported to the nucleus for
CSR and SHM125,168-170 and then is rapidly exported and
degraded171,172 to control its mutagenic and potentially onco-
genic activity.53,54,173,174 Regulation of AID occurs at many lev-
els including alternative splicing173,174 and retention of AID in
the cytoplasm through its interactions with HSP90,168,175 and
cytoplasmic RNAs176 and binding to replication protein A.120

A3 proteins also form high molecular mass homo- and hetero-
oligomers94,154,155,157,177-179 within the cytoplasm of cells. A3 com-
plexes bridged by RNA form soon after A3 protein translation.179

This has led many in the field to conclude that A3 binding to
RNAs only serves to inhibit A3 antiviral properties including their
deaminase activity and assembly with viral particles.157,177-181 With
additional studies the functional significance of A3 RNP formation
became more nuanced. A3 binding to cellular coding and

noncoding RNAs is now thought to be critical to maintaining their
antiviral activity against HIV.150,153-156,182,183 Other studies have
confirmed these interactions but concluded that A3 binding to
HIV genomic RNA alone94,153,158,184 or with HIV p24 Gag pro-
tein185-188 is the most critical RNP for the assembly of A3D, F, G,
and H with nascent viral particles. It remains unclear which resi-
dues within theN- andC-terminus bind to RNAbut regional selec-
tivity for RNA binding to A3G is supported by data showing that
bulk cellular RNA and noncoding hY1 and hY3 RNAs required
A3G residuesW94 andW127 and to a lesser degree, S28 and Y124
but binding toAlu and 7SL RNAs did not require these residues.128

It is also apparent that A3 interaction with cellular RNAs is
dynamic and reversible177,178 and upon viral infection can become
more selective for HIV RNA and noncoding RNAs leading to their
redistribution to cellular sites of viral particle assembly.153

Prospective on the APOBEC frontier

As the field pushes forward for structural characterization of
APOBECs and their interactions with substrates and other
macromolecules, an overarching focus has become the search

Figure 3. RNA and ssDNA Binding Surfaces on A3G. (A) Tryptic peptides of A3G bound to RNA or ssDNA were identified by mass spectroscopy following cross linking of
native and full length A3G to short nucleic acids. (B) Peptides that only bound RNA (black) or bound to both RNA and ssDNA (gray) were mapped relative to the C-termi-
nal ZDD catalytic domain and the N-terminal ZDD catalytically inactive pseudo-catalytic domain. (C) Grey scale coded RNA binding peptides and RNA and ssDNA binding
peptides were mapped onto the NMR structure for the N-terminal ZCC and the crystal structure of the C-terminal ZDD of A3G shown as a ribbon diagram (top) and pro-
gressively rotated (top to bottom) space filling models. Black star and open star mark the location of the the catalytic and pseudo-catalytic ZDD, respectively. Reproduced
with permission from reference 31.
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for regulatory processes that limit or enhance APOBEC expres-
sion and their functions (reviewed in43,52,53,68,101). Given that
the evolutionary forces leading to present day APOBEC pro-
teins may be difficult to prove, a priority will be to understand
the function of the present day APOBEC family. If we do come
to appreciate the strengths and potential limitations of this
family of proteins, there may be opportunities to use these
enzymes in cell engineering and for the development of thera-
peutics for disease intervention.

From this perspective, there is a need to keep in mind what the
native and biological context of APOBEC proteins and their enzy-
mology is when inferring their functions from experimental sys-
tems. It can be very informative to overexpress cDNAs encoding
APOBEC ormutants thereof in cells or animals to assess theirmax-
imum potential to deaminate viral or host cell genomic DNAs or
bind to RNAs in cells. It is not appropriate to infer a proof of their
biological role or activity in situ on nucleic acid substrates when the
experimental expression of protein far exceeds that observed natu-
rally. Promiscuous and hyperediting of substrates and the induc-
tion of neoplasia by overexpressing A1 has been known since 1996.
The natural expression of A1 in small intestine is below western
blot detection limits but edits 100% of the apoB mRNA produced
in enterocytes. Following this analogy, many of the proposed anti-
viral roles for overexpressed A3 proteins and variants thereof that
are naturally expressed at an intracellular abundance much lower
than A3F andA3Gmay have to be reconsidered.

Many laboratories are pursuing computational methods and
sequencing of genomic DNA and transcriptomes from cell
types where AID/APOBEC are not only expressed but where
changes in their expression or alternative apobec mRNA splic-
ing correlate with phenotypic changes. These are important
studies but beyond cataloging mutations, greater efforts need to
be made in quantitative biology. Detecting APOBEC C to U
editing in a particular RNA is undoubtedly of interest. What
becomes biological significant is going on to quantify the pro-
portion of edited RNAs in the transcriptome, determining
whether the function of edited RNA and its translation product
is altered and demonstrating how the frequency of editing site
utilization varies in response to or drives cell phenotype.

How do APOBEC recognize editing sites in RNA and
ssDNA? Other than the mooring sequence for A1 editing of
RNA substrates, most of what we know suggests that AID/
APOBEC prefer editing cytidine or deoxycytidine within single
stranded regions of RNA or DNA with only lax requirements
for the sequence immediately flanking the editing site. An area
for future research will be to determine what are the intrinsic
structural features of AID/APOBEC monomers of multimers
that determine the selection of editing sites. We also will need
to identify cellular auxiliary proteins, RNAs or post-transla-
tional modifications that determine selection of RNA and
DNA substrates and editing site preferences. There is ample
evidence that what every these control mechanisms are, they
can be disrupted, and for AID, A1 and A3 proteins lead to dis-
ease-associated promiscuous editing within known targets and
hyperediting of novel RNAs and chromosomal sites.

APOBEC enzymology, with few exceptions, is an underdevel-
oped area of research. The structural features of AID/APOBEC
are being cataloged but high resolution structural determination
of enzyme-substrate complexes and of full length APOBEC with

2 ZDD has not been achieved. There are conflicting reports as to
whether AID/APOBEC monomers or multimers form before or
after binding to nucleic acid substrates. An error in the past has
been to conclude functionality of monomers or multimers of
AID/APOBEC without reassessing the complexes that formed
once the proteins had been added to nucleic acid substrates in a
test tube. Holoenzyme complexes and the structural constraints
they impose on the enzyme-substrate interactions are an impor-
tant area for future enzymology research. While recent data for
most APOBEC, particularly A3, are consistent with homomultim-
ers being required for enhanced deaminase activity on ssDNA,
addition studies will be required to determine the role of RNA
binding and protein-protein interactions in multimerization.

New opportunities for discoveries exist in the area of the func-
tional significance of RNAs that bind to AID/APOBEC as ligands
that are not used as editing substrates. AID/APOBEC bound to a
variety of coding and noncoding RNAsmay have deaminase-inde-
pendent functions in regulating endogenous retrovirus-like ele-
ments, redistributing A3 to the viral particle assembly process and
sequestering RNAs in P-bodies and stress granules during a cellular
response to changing environmental signals. Current data suggest
that APOBEC interactions with non substrate RNAs inactive cata-
lytic capability. Given that A1 employs an RNA binding protein to
‘find’ apoB mRNA within the vast abundance of cellular RNAs,
RNA inhibition of AID/APOBECmay be driven by mass action of
cellular RNAs that bind to these proteins but do not have appropri-
ate editing sites.

Recent research has suggested that A3 binding to RNAs may
not be nonspecific and that there may be competitive and non-
competitive interactions with RNAs that determine A3 oligomer-
ization, RNP formation and the subcellular redistribution of A3
to sites of retroviral particle assembly. That later interaction with
RNA must have been a critical feature of A3 antiviral activity in
host cell defense for millennia. High resolution studies coupled
to functional studies will be necessary to define the amino acid
residues and protein folds of AID/APOBEC that bind to RNA
and the RNA sequences that are bound to them. It is apparent
from the literature that these interactions are not static and
change during cell differential and development and in response
to hormone stimulation, cell stress and viral infection. Here
again, our understanding of RNA ligand binding to APOBEC
will only be complete when the functional consequences of these
interactions and their regulation has been revealed.
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