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Abstract

X-ray crystallography is experiencing a renaissance as a method for probing the protein 

conformational ensemble. The inherent limitations of Bragg analysis, however, which only reveals 

the mean structure, have given way to a surge in interest in diffuse scattering, which is caused by 

structure variations. Diffuse scattering is present in all macromolecular crystallography 

experiments. Recent studies are shedding light on the origins of diffuse scattering in protein 

crystallography, and provide clues for leveraging diffuse scattering to model protein motions with 

atomic detail.

Introduction

With over 100 000 X-ray structures deposited in the wwPDB [1], improvements in data 

processing pipelines, and the advent of completely unattended data collection, it seems hard 

to imagine that there are any aspects of protein X-ray crystallography that remain to be 

optimized. However, only about half of the X-rays scattered by the crystalline sample are 

currently being analyzed —those in the Bragg peaks. The weaker, more smoothly varying 

features in diffraction images, known as diffuse scattering, are largely ignored by current 

practices. While the analysis of diffuse scattering is an established method in the fields of 

small molecule crystallography [2] and materials science [3], there are only very few 

foundational studies of diffuse scattering in macromolecular crystallography [4–15,16•,

17,18]. However, the relative scarcity of diffuse scattering studies is poised to change as 

activity in the field has recently increased.

A small group of researchers (including MEW and JSF) met in 2014 to discuss the 

challenges and opportunities of investigating macromolecular diffuse scattering [20]. Our 
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attention was drawn to several key developments in the field of macromolecular 

crystallography that motivated and enabled assessment of the diffuse signal. First, structural 

models obtained using traditional methods appear to be reaching a plateau in quality, as R 

factors remain relatively high compared to what can be achieved in small-molecule 

crystallography. The origin of this ‘R-factor gap’ is likely due to the underlying inadequacies 

of the structural models refined against crystallographic data [23]. These inadequacies can 

only be overcome if we can improve the modeling, including, for example, conformational 

heterogeneity (especially in data collected at room temperature [24]), solvation, and lattice 

imperfections that break the assumptions of ‘perfect crystals’ used in data reduction and 

refinement. Second, new detectors were enabling collection of data with lower noise, higher 

dynamic range, and highly localized signal. Third, new light sources were emerging with 

very bright, micro-focused beams (e.g. X-ray free-electron lasers). Collectively, these factors 

made us optimistic that diffuse scattering data both was needed and could be measured 

accurately enough to improve structural modeling. In early 2017, many of us met again to 

discuss the progress of the field with respect to each of these challenges identified in 2014 

[25]. In this review, we provide our perspective on this progress and the status of the field, 

informed in part by our observations at that meeting and advances covered by Meisburger et 
al. [26••]. While there have been exciting developments in recent years, there are still major 

challenges ahead, include modeling atomic motions in protein crystals using diffuse 

scattering data with accuracy comparable to the Bragg analysis, and utilizing these models 

of protein motions to distinguish between competing biochemical mechanisms.

Data collection

Extraction of diffuse scattering data from conventional protein crystallography experiments 

is becoming straightforward thanks to the increased accessibility of photon-counting pixel 

array detectors (PADs, e.g. Pilatus detectors). These detectors have greater dynamic range 

and do not suffer from ‘blooming’ overloads that obscured diffuse signals near Bragg peaks 

on conventional charge-coupled device (CCD) detectors. (An early CCD detector was 

programmed to drain excess charge away from over-flowing pixels to enable measurement 

of diffuse scattering data [18,27]; however, this feature was not implemented in commercial 

detectors.) Additionally the use of PADs has led to changes in data collection strategies, 

such as the use of fine phi angle scans, that facilitate analysis of Bragg peaks and diffuse 

features from the same set of images [19••]. A second major advance is the measurement of 

diffuse scattering using an X-ray free-electron laser (XFEL) in a serial femtosecond 

crystallography (SFX) experiment [28••]. Using an XFEL enables collection of radiation-

damage-free room temperature data, as well the potential to examine time-resolved changes 

in the diffuse scattering signal.

Despite these advances in collection of diffuse scattering data, minimizing background 

scattering remains the most important obstacle to collecting high quality data. While it is 

possible to remove some background scattering during data processing, the cleanest 

separation requires one to remove scattering extraneous to the crystal during the experiment. 

Factors to consider during collection of single crystal datasets include the thickness and 

orientation of the loop (for relevant mounting schemes), the volume of liquid surrounding 

the crystal, and the amount of airspace between the crystal and the detector. Background air 
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scatter can be also reduced by a Helium or vacuum path between sample and detector. 

Collection of SFX data adds additional complexity, as the injection stream and crystal size 

will vary. Ayyer et al. [28••] addressed this challenge by selecting only the frames with the 

strongest diffuse scattering signal, in which the size of the crystal was expected to be 

comparable to the width of the jet. As the landscape of sample delivery devices for SFX and 

conventional crystallography continues to evolve, mounted sample delivery on materials 

such as graphene [29•] provides a promising route for minimization of background 

scattering.

Data integration

Early studies of protein diffuse scattering focused on explaining features in individual 

diffraction images. The introduction of methods for three-dimensional diffuse data 

integration enabled quantitative validation of models of correlated motions [18]. Several 

approaches to 3D data integration now have been implemented [27,28••,30,31••,32]. These 

approaches differ in several key ways: the scaling of intensities when merging the data; the 

handling of intensities in the neighborhood of the Bragg peak; and the strategy for sampling 

of reciprocal space. In the Lunus software for diffuse scattering (https://github.com/mewall/

lunus) we have chosen:

1. To use the diffuse intensity itself to scale the diffuse data (as opposed to using 

the Bragg peaks, as in Ref. [31••]). This choice avoids artifacts due to potential 

differences in the way the Bragg and diffuse scattering vary with radiation 

damage and other confounding factors. The response of these signals to damage 

requires further study before a definitive scaling strategy can be chosen.

2. To ignore or filter intensity values in regions where the variations are sharper 

than the 3D grid that will hold the integrated data. This can include masking halo 

intensities too close to a Bragg peak, and kernel-based image processing to 

remove Bragg peaks from diffraction images. These steps avoid the mixing of 

signal associated with sharp features into the signal associated with larger-scale, 

cloudy diffuse features. The sharply varying features (e.g. streaks) are an 

important component of the signal; however, to avoid artifacts in analysis, we 

prefer to measure them on a grid that is fine enough to resolve them [17]. If the 

sampling is finer than one measurement per integer Miller index, but still too 

coarse to resolve the halos, and if the halo intensity is nevertheless included (as 

in Ref. [31• •]) then the measurements at integer Miller indices may be 

segregated from the rest of the data and analyzed separately.

3. To sample the data on a grid that includes points at Miller indices (corresponding 

to where the Bragg peaks are located), and, for finer sampling, points 

corresponding to integer subdivisions of Miller indices. Sampling strategies that 

are not tied to the reciprocal lattice also are valid (as used in Refs. [28••,30]); 

however, on-lattice strategies enable leveraging of existing crystallographic 

analysis and modeling tools for diffuse scattering.

Efforts are now underway to decrease the burden of diffuse data integration and make 

diffuse data collection accessible for any protein crystallography lab. Recent algorithmic 
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improvements have led to scalable, parallelized methods for real-time processing of single-

crystal synchrotron data, decreasing the time required to extract a diffuse dataset from 

diffraction images. These improvements aim to keep pace with real-time analysis of Bragg 

data at high frame rates, such as those expected at LCLS-II and euXFEL. Initial tests 

mapped staphylococcal nuclease diffuse data onto a fine-grained reciprocal lattice, using two 

samples per Miller index [33•]. This implementation of the Lunus software is capable of 

processing thousands of diffraction images within a few minutes on a small computing 

cluster.

In addition to improving the scalability of diffuse scattering data processing, efforts are 

underway to create a pushbutton diffuse data processing pipeline. The Sematura pipeline 

(https://github.com/fraser-lab/diffuse_scattering) was inspired by the user-friendly 

environment provided by software for analyzing Bragg peaks, such as xia2 [34]. To ensure 

portability the project was built upon the CCTBX framework [35], with future work 

focusing on developing Sematura as a CCTBX module for ease of access.

Building and refining models of protein motions

Liquid-like motions

After early experiments on tropomyosin [15], the liquid-like motions (LLM) model became 

a key tool in interpreting diffuse features in diffraction images [4,6]. In the LLM model, the 

crystal is treated as a soft material. All atoms are assumed to exhibit statistically identical 

normally distributed displacements about their mean position. The correlation between atom 

displacements is a decreasing function of the distance between the atoms, usually an 

exponential decay. A LLM was used to interpret early 3D diffuse data sets, refined using a 

correlation coefficient as a target function [18]. Successful refinement of a LLM model was 

used to demonstrate that interpretable diffuse data-sets can be extracted from Bragg 

diffraction experiments, when data collection is not specifically targeted at measuring the 

diffuse signal [19••]. Peck et al. [31••] recently found the ability of the LLM to include 

correlations across unit cell boundaries was essential for modeling the diffuse signal in 

several 3D datasets. This result is intuitive, as many atoms in a typical protein crystal are 

within 5–10 Å of symmetry related molecules. Overall the LLM model has proven to be a 

simple means of explaining the general features of the data with a straightforward 

interpretation, and therefore remains an important first approach to analysis of protein 

diffuse X-ray scattering data.

Normal mode analysis and elastic network models

Beyond the LLM model, normal mode analysis (NMA) of elastic network models (ENMs) 

can provide insights into the soft modes of protein dynamics in more detail, helping to reveal 

mechanisms that bridge protein structure and function [36]. In an ENM, the atoms of the 

crystal structure are connected by springs, and the resulting network is coupled to a thermal 

bath. NMA then yields the covariance matrix of atom displacements. The diagonal elements 

of the covariance matrix correspond to the crystallographic B factors. ENMs are often used 

to predict B factors, which come from the Bragg analysis through the crystal structure 

model. However, Riccardi et al. [37] showed how to renormalize the entire covariance 
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matrix using the crystallographic B factors. Importantly, this renormalization enables any 

ENM to be entirely consistent with the Bragg data, while preserving differences in diffuse 

scattering. Diffuse scattering could help differentiate between these ENMs because the off-

diagonal elements directly influence the diffuse signal. Thus, there is an opportunity for 

carefully measured diffuse data to be used in refinement of ENM models, and subsequent 

refinement of models of protein structure and dynamics.

Indeed, many key elements needed for refinement of normal modes models using diffuse 

scattering already have been demonstrated. Cloudy diffuse features in X-ray diffraction from 

lysozyme crystals resemble the diffuse scattering predicted from simulations of normal 

modes models [9,13]. Similarly, sharper diffuse features in the neighborhood of Bragg peaks 

in ribonuclease crystals can be captured by lattice normal modes [38]. Different varieties of 

ENMs for staphylococcal nuclease give rise to distinct diffuse scattering patterns, even when 

renormalized using the crystallographic B factors [37].

Three-dimensional diffuse scattering data from trypsin and proline isomerase (CypA) 

recently were modeled using ENMs [19••]. The agreement was substantial, considering that 

the models were not refined. On the other hand, Peck et al. [31••] found a low agreement 

between ENM models and diffuse data. How much can refinement improve the agreement of 

an ENM model? Here we provide an example. In our example, the asymmetric unit of PDB 

ID 4WOR was expanded to the P1 unit cell, and an ENM was constructed as in Ref. [19••]. 

The spring force constants between C-alpha atoms were computed as e−rij/λ, where rij is the 

closest distance between atoms i and j, either in the same unit cell or in neighboring unit 

cells of the crystal structure. All atoms on the same residue as the C-alpha were assumed to 

move rigidly as a unit. The initial value λ = 10.5 Å yielded a linear correlation of 0.07 with 

the anisotropic component of the diffuse data, as computed in Ref. [19••]. Powell 

minimization using the scipy.optimize.minimize method was used to refine the value of λ, 

using the negative correlation as a target. The final correlation was 0.54 for a value λ = 

0.157 Å — a substantial improvement, but one that indicates that the direct interactions are 

essentially limited to nearest atomic neighbors. Simulated diffuse intensity in diffraction 

images calculated using the model vs. the data show similarities in cloudy diffuse features 

(Figure 2). Key strategies for improving the model are: extending from a C-alpha network to 

an all-atom network; using crystalline normal modes that extend beyond a single unit cell 

(prior studies used the Born von Karman method to compute these modes [37,38], but did 

not fully include the resulting modes in the thermal diffuse scattering calculation [39]); and 

allowing spring constants to deviate locally from the exponential behavior. Optimizing this 

type of model has applications beyond diffuse scattering validation and model refinement, as 

structures derived from normal modes analysis of network models have been useful for 

providing alternative starting points for molecular replacement [40] and have recently been 

used in an exciting local refinement procedure in cryo electron microscopy [41].

Ensemble refinement

A great promise of diffuse scattering is the potential to validate ensemble or multiconformer 

models of protein structures (Figure 1). As for as with Translation-Libration-Screw (TLS) 

refinement [42•] and ENM models, diffuse signal might differ for ensembles that result in 
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the same average structure. Even if information about atomistic conformations remains out 

of reach, the signal could potentially be leveraged to improve ensemble models derived from 

time-averaged refinement using the scheme by Gros and colleagues [43]. Currently, this 

procedure operates on the rationale that large scale deviations can be modeled using a TLS 

model, and the residual local deviations are then sampled by a molecular dynamics 

simulation with a time-averaged difference electron density term. Our work has revealed that 

diffuse scattering calculated from TLS models of disorder do not match the measured diffuse 

signal, however, indicating that TLS is a poor descriptor of the disorder within the protein 

crystals we considered [19••]. Given the improvements seen when including neighboring 

unit cells in LLM models [31••], the disorder of the crystal environment might be better 

accounted for by a coarse-grained model of intramolecular motion using a NMA model 

refined against the diffuse scattering signal. In addition, due to the limited number of copies 

in ensemble models, they can exhibit artificially long length scales compared to molecular 

dynamics simulations, which contain orders of magnitude more finely time-sliced 

‘snapshots’ of the system [44]. Ensemble models of diffuse scattering data will therefore 

need to include the effect of decoherence corresponding to the finer scale motions that are 

filtered out in conformational selection. Once large-scale disorder is accounted for by NMA, 

local anharmonic deviations from the modes can be explored using MD simulations 

restrained by the X-ray data. As diffuse analysis becomes more sensitive, the selection of the 

final representative ensemble also might be optimized against the diffuse data. This selection 

step could supplement the current practice of selecting an ensemble that matches the Bragg 

data.

Molecular dynamics simulations

In addition to refining models of protein motions, diffuse scattering can be used to validate 

MD simulations [7,9,21,22••,33•,45–47]. Early efforts were hindered by the use of 10 ns or 

shorter simulation durations [7,9,21,45], which lacked sufficient sampling for the 

calculations. Microsecond duration simulations of protein crystals are now becoming routine 

[22••,33•,48,49•]. For staphylococcal nuclease, microsecond simulations overcome the 

sampling limitations for diffuse scattering calculations, while providing insight into ligand 

binding and catalysis [22••].

The agreement of the total diffuse intensity with MD simulations is high for staphylococcal 

nuclease [22,46], yielding a linear correlation of 0.94 for a microsecond simulation [22••]. 

Agreement with the 10-fold weaker anisotropic component is lower [22••,33•], but is more 

sensitive to the details of the simulation, creating opportunities for increasing the accuracy 

of MD models. Expanding the staphylococcal nuclease model from a single periodic unit 

cell to a 2 × 2 × 2 supercell increased the correlation with the anisotropic component to 1.6 

Å resolution from 0.42 to 0.68 for a microsecond simulation [33•].

Even though MD simulations provide a picture of crystalline dynamics at atomic detail, the 

accuracy of the published MD models is not yet high enough to validate the atomic details 

using diffuse scattering. Although we do not know what level of accuracy will be required 

for diffuse scattering to reveal the atomic details of protein motions, the possibility of 

validating the atomic details of protein motions strongly motivates improving the MD 

Wall et al. Page 6

Curr Opin Struct Biol. Author manuscript; available in PMC 2018 August 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



models. Ideas for improving the MD model include: increasing the size of the supercell even 

further, to 3x3x3 or beyond; improving force fields; increasing the simulation duration; and 

introducing crystal imperfections such as vacancies (missing copies of the protein) or 

dislocations. It is also possible that higher quality experimental data would be required to 

improve the model. Additional insights for increasing model accuracy might come from 

solid state NMR (ssNMR) experiments combined with crystalline protein simulations [50–

52], which create opportunities for joint validation of MD simulations using crystallography 

and NMR.

Phasing and resolution extension

In a high-profile publication, the Chapman and Fromme groups integrated the first three-

dimensional diffuse scattering dataset from a serial femtosecond protein crystallography 

experiment at an X-ray free electron laser [28••]. Their analysis focused on the potential for 

phasing and resolution extension of a charge density map of photosystem II (PSII). In this 

study, the method, based on the difference-map algorithm [53], depends critically on the 

assumption that the diffuse signal is proportional to the molecular transform of the PSII 

dimer. In this respect, the work is closely related to that of Stroud and Agard [54] and 

Makowski [55] on phasing using continuous diffraction data. In Ref. [28••], and in a follow-

on study using improved data integration [56], the validity of the method was argued by 

assuming independent, rigid body motions of the dimer.

Using diffuse scattering for phasing and resolution extension might prove to be useful in rare 

cases when diffuse scattering extends to higher resolution than the Bragg diffraction; 

however, many technical questions remain both about the origin of diffuse scattering in PSII 

and the role of diffuse scattering in yielding the resulting charge density. What effect does 

the presence of Bragg peaks have on phasing and resolution extension in the 4.5–3.5 Å 

range, which is where the diffuse intensity was measured? How does the improvement in the 

PSII map compare to what would be obtained by using randomized intensities, due to the 

free lunch effect [57] and solvent flattening [58]? How would the R-factors in the extended 

resolution range reported in PDB 5E79 compare to pseudo-crystallographic refinement [59] 

of using either random intensities or the uniform average intensity in these bins? How robust 

are the improved features of the charge density in Ref. [28••] to omit map analysis [60], 

especially at the solvent/protein interface? Might a LLM model (or a ENM or MD model) 

more accurately describe the diffuse scattering than rigid-body translations of PSII dimers 

(in Ref. [56], the agreement was improved when the intensities were convoluted with a 4 × 4 

× 4 voxel kernel)? Can the model be improved by assuming the rigid units are coupled 

instead of independent [8], or if the model included rotations as well as translations [14] (in 

Ref. [56], the intensities were rotationally blurred, but this does not correspond to rigid-body 

rotations [61])? What is the role of substitution disorder [62] (e.g. unit cells in which one or 

more copies of the PSII dimer are missing) in determining the diffuse signal? Understanding 

the implications of this method for protein crystallography will rely on answering these 

questions and determining whether signals at higher angle than Bragg are commonly 

observed.
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Future perspective

The massive investment in structural genomics in the 2000s dramatically increased the 

robustness of X-ray crystallography data collection, processing, and refinement. The 

resulting technological improvements and standardizations have led to more robust methods 

and instrumentation for data collection that are well-aligned with the requirements for 

diffuse scattering experiments, enabling measurement of diffuse scattering data from 

traditional crystallography experiments [19••,31••]. These advances, along with software that 

makes the data processing and analysis more accessible, will enable diffuse scattering 

studies at any modern beamline, by any crystallography lab. Why should crystallographers 

take advantage of this offering? Diffuse features in protein crystallography can be myriad 

and complex: a mixture streaks, satellite reflections, isotropic scattering, cloudy patterns, 

circles, and others. Sometimes the diffuse signal appears to reflect imperfections in crystal 

packing, and offers a possible explanation for why a structure cannot be solved. In other 

cases, the diffuse signal might be so complicated as to be uninterpretable, or might be so 

weak that it is difficult to learn anything interesting.

Integrating diffuse scattering with Bragg diffraction to improve crystallographic models 

could become a major application [17,32,63]. Although assuming proteins are rigid provides 

the greatest potential for phasing using diffuse scattering data [28••,56], multiple studies of 

both Bragg and diffuse scattering point to a more dynamic picture of crystalline proteins. A 

model with internal motions such as the LLM tends to obscure the molecular transform 

signal and to limit the information to what is available from the crystal transform, at Miller 

indices [31••]. Nevertheless, because the diffuse signal can extend well beyond the resolution 

limit of the Bragg peaks in rare cases, it still allows for the possibility of resolution 

extension. The blurring of the signal implied by the LLM means there is a loss of 

information in the diffuse Patterson function at long distances, so the path to resolution 

extension might require model refinement in addition to, or instead of, direct methods. In 

addition, the apparent success of the LLM [4,6,17–19••,31••] and MD simulations [21,22••,

33•,46,47] in obtaining insights into diffuse scattering data points to a picture in which 

internal motions are important. This opens up the possibility that diffuse scattering can be 

used to reveal atomic models of protein motions, a possibility that is eliminated when 

proteins are treated as rigid units.

Ironically, the strongly diffracting model systems that have enabled experimental 

measurements of diffuse scattering may contain less informative signals than more poorly 

ordered crystals. In the case of poorly ordered systems, multiple significant conformational 

minima may co-exist in the crystal. This disorder would limit the power of Bragg diffraction, 

while the correlations present in the ensemble or the spread of conformations between 

extremes [64] would lead to diffuse signal. However, increased disorder, which may or may 

not be biochemically meaningful, may also present additional challenges in processing the 

diffuse scattering data. Nevertheless, a small but growing number of systems have shown 

simpler patterns of strong diffuse features that appear to be connected to protein motions. 

Modeling of diffuse scattering for such systems has improved substantially in recent years. 

For some models, like normal modes, the agreement with the diffuse signal is still relatively 

Wall et al. Page 8

Curr Opin Struct Biol. Author manuscript; available in PMC 2018 August 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



weak (Figure 2); for others, such as MD, the agreement is stronger [33•], but still lower than 

what is typical in Bragg analysis.

What will be required to take diffuse scattering to the next level and make it an equal partner 

to Bragg analysis? We can look to traditional crystallography for clues. In Bragg analysis, 

using model phases, the details of the atomic structure only are revealed when the model of 

the whole system is sufficiently accurate. As the accuracy is increased, the effect of refining 

the model of small numbers of atoms can be seen in the analysis. When we have a 

sufficiently accurate model for all the diffracted X-rays, diffuse scattering might become 

sensitive to atomic details of correlated variations, with the caveat that the diffuse signal 

might contain less information than the Bragg diffraction, as measurements nearby in 

reciprocal space can be correlated. If atomic details of correlated motions can be revealed for 

the systems that have the clearest diffuse signal, diffuse scattering would then begin to 

provide very interesting information for these systems. As capabilities evolve, more complex 

patterns might be tackled and the analysis methods applied more generally. Meanwhile, it 

will be important to scour the diffraction image repositories such as SBGrid Databank [65] 

or CXIdb [66] and archive raw data from new experiments, identifying cases where the 

diffuse signal is strong and amenable to analysis [67].

Despite being present in all macromolecular diffraction patterns, the origins of diffuse 

scattering in protein crystallography are in many cases still mysterious. Our current short-

term outlook is that, for a small number of cases, whether it is due to long-range [28••] or 

short-range disorder [19••,31••], diffuse scattering will provide valuable information for 

structural modeling. The types of conformational heterogeneity that can be validated and, 

potentially, refined against diffuse scattering data can guide us to define better models of 

protein structure and dynamics. As the structural biology toolkit expands, X-ray scattering, 

including diffuse scattering, still provides unique capabilities to probe conformational 

ensembles over many length scales, as captured in the recent review by Meisburger et al. 
[26••]. Ultimately, the better models of concerted motions will have far ranging impact 

beyond the average structure that is accessible using conventional X-ray crystallography and 

cryo-electron microscopy data, yielding a deeper understanding of biochemical mechanism 

[68].
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Figure 1. 
A typical detector image in X-ray crystallography (from [19••]) (upper, left) records all of 

the X-rays scattered by a protein crystal during a single exposure. Dark pixels correspond to 

high X-ray intensities. A cartoon crystal is depicted (lower, left) that contains a series of unit 

cells, with the contents of any given unit cell adopting one of two conformations (the 

conformations are expected to be more varied in a real protein crystal). Conformation A is 

shown in orange, while conformation B is shown in black (lower panel). During analysis, 

data are reduced by examining only the Bragg peaks (upper, middle), which report on the 

average charge density within a unit cell (lower, middle). The electron density is shown in 

blue, with areas of especially strong charge highlighted in purple. While multiple 

conformations may be modeled into the average density, assigning which conformations 

occur together across residues requires additional information. Current modeling practices 

use geometric constraints to help classify different alternative conformation groups. The 

diffuse scattering left behind during data reduction (upper, right) is an additional potential 

source of such information. Diffuse scattering includes an isotropic component that is 

determined both by protein and solvent scattering [21,22••], and an anisotropic component 

that is dominated by correlated protein motions within the crystal [22••]. Analyzing this 

anisotropic signal might help to distinguish networks of residues that move together (lower, 
right).
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Figure 2. 
Comparison of simulated diffuse intensity in diffraction images computed from (a) a refined 

ENM of staphylococcal nuclease and (b) experimental data from Ref. [18].
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