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Alzheimer disease (AD) is a heterogeneous neurodegenerative disorder characterized by (1) progressive loss of synapses and
neurons, (2) intracellular neurofibrillary tangles, composed of hyperphosphorylated Tau protein, and (3) amyloid plaques.
Genetically, AD is linked to mutations in few proteins amyloid precursor protein (APP) and presenilin 1 and 2 (PS1 and PS2).
The molecular mechanisms underlying neurodegeneration in AD as well as the physiological function of APP are not yet known.
A recent theory has proposed that APP and PS1 modulate intracellular signals to induce cell-cycle abnormalities responsible
for neuronal death and possibly amyloid deposition. This hypothesis is supported by the presence of a complex network of
proteins, clearly involved in the regulation of signal transduction mechanisms that interact with both APP and PS1. In this review
we discuss the significance of novel finding related to cell-signaling events modulated by APP and PS1 in the development of
neurodegeneration.

1. Introduction

Alzheimer disease (AD) is a neurodegenerative disease clini-
cally characterized by progressive dementia, and, neuropath-
ologically, by loss of synapses and neurons, gliosis, and the
presence of both amyloid plaques and neurofibrillary tangles.
The main amyloid components of plaques are a family
of short peptides (Aβ) of 40 or 42 amino acids, in the
most common forms, derived from the proteolysis of the
type I protein, amyloid β precursor protein (AβPP), upon
sequential cleavage by β- and γ-secretases [1]. γ-secretase
has been characterized as a multiprotein complex in which
presenilins 1 and 2 have a regulatory role [1]. Familial
AD forms (FADs) are caused by the overexpression or
by mutations in the AβPP gene, or by mutations on the
presenilins (presenilins 1 and 2).

The molecular mechanisms underlying the development
of AD are not yet known, and also the physiological role of
AβPP is still unclear [2].

In particular, it is still debated whether presenilins (PSs)
familial mutations cause gain or loss of function in the γ-
secretase complex. PS mutations have been presumed to
cause FAD by enhancing production of the more toxic Aβ42
over the Aβ40 isoform, thereby conferring a toxic gain of
function [3]. However, a number of recent studies have
shown that clinically relevant PS mutations impair Aβ40
production without affecting Aβ42 production, leading to
the revised view that pathogenic PS mutations consistently
shift the cleavage specificity of the mutant protein to favor
production of Aβ42 at the cost of Aβ40 [4, 5]. On the other
hand, it has been recently suggested that, at least, some FAD-
associated PS mutations can cause a nearly complete loss of
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Figure 1: Schematic representation of AβPP processing, the adaptor proteins interacting with its intracellular domain and the pathway
leading to ERK1/2 activation. In the left panels is reported the transmembrane protein APP, before and after ITS sequential beta secretase
(BACE) and gamma secretase cleavage, with its final products, AICD, APP ectodomain, and beta amyloid peptide (1–40/1–42). In the right
part of the figure are indicated the protein interacting with APP intracellular domain, upon or independently from tyrosine phosphorylation.
The adaptor proteins Shc and Grb2 through their phosphotyrosine-binding domain (PTB) and src homology domain (SH2) are able to
directly bind tyrosine-phosphorylated APP, resulting in the recruitment of the components of the MAP kinase cascade (SoS, ras, Raf, MEK)
leading to ERK1/2 activation. Grb2 may participate in this pathway either by direct binding to APP or being recruited by Shc. Alteration in
ERK1/2 activity induced in this way may contribute to neurodegeneration in AD. Transduction pathway adaptors (X11, disabled, Fe65, JIP1,
and Numb) that bind APP in the absence of tyrosine phosphorylation depicted are also shown.

the mutant protein’s ability to support γ-secretase activity
rather than an absolute or relative overproduction of Aβ42
[6]. Hence, a loss of function can be associated to a shift
of the cleavage specificity (Aβ42 at the cost of Aβ40), or to
another unknown target substrate of the γ-secretase activity.
In this case, the loss of PS function may be a primary event, in
the adult mammalian brain, triggering a putative pathogenic
cascade which leads to neurodegeneration in AD [7].

Several studies suggest a relevant role for AβPP in main-
taining active synapses, and recent evidence has indicated
the presence of AβPP in the postsynaptic density, where it
may interact with NMDA receptors, thus supporting the
observation that NMDA receptors regulated trafficking and
processing of AβPP, although via a controversial mechanism
of action [8].

Moreover, recent findings have also suggested that AβPP,
through an NPTY motif located in its cytodomain, and
PSs form functional complexes with different signaling
protein, supporting the hypothesis that AβPP and PS1 are
at the centre of a complex network of interactions, likely
involved in multiple cell-signaling events which are still
unknown (Figures 1 and 2) [9, 10]. Even apolipoprotein E
(ApoE), which is the most relevant risk factor for developing
late-onset AD, rather than being a mere Aβ chaperone,
might be involved in complex-signaling pathways through
its multiple receptors (LRPs), such as those bearing to
the low-density lipoprotein receptor family (LDLR) (for
review see [11]). LRPs participate in neuronal functions

modulating neurotransmission and thus synaptic stability
[12], and several data indicate that LRPs could modulate
AβPP processing through the regulation of its endocytic
trafficking, implying a possible association between LRPs
activity and AD onset (Figure 3) [13]. Taken together, these
data suggest a model that links the functions of AβPP, PSs,
and LRPs in physiological and pathophysiological conditions
as relevant actors in neuronal intracellular signaling.

This review will focus on the involvement of AβPP in
cell signaling, exploring the possibility that posttranslational
modifications on its C-terminal domain may modulate,
together with PSs and LRPs, intracellular pathways involved
in cell-cycle progression that in postmitotic neurons may
induce neurodegeneration.

2. APP Processing, Interacting Proteins,
and Intracellular Signalling

The main amyloid components of senile plaques result from
the proteolytic processing of AβPP by β-secretase (BACE1),
leading to the formation of C-terminal fragments (CTFs)
that are subsequently cleaved by the “γ-secretase-complex”
which is responsible for the formation of Aβ (40 or 42 amino
acids in length) and the AβPP intracellular domain peptide
(AICD) of 58 or 56 amino acids (Figure 1) [1].

These amyloid peptides are considered mainly respon-
sible for the neurodegeneration that occurs in AD. Thus,
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Figure 2: Schematic representation of the intracellular pathway by which AβPP and PS1 control the activation of the MAPK/ERK1/2 cascade
and their final biological effects. In the figure is specified the interaction between APP intracellular domain and PS1 C-terminus, with the
adaptor protein Grb2. Grb2 can bind simultaneously to APP and PS1 (as measured in FRET experiments) leading to the MAPK ERK1/2
cascade activation. In AD an aberrant activation of ERK1/2 induced by APP and/or PS1 can determine the tentative activation of the cell
cycle that, in postmitotic neurons, may induce cells to undergo apoptosis.
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Figure 3: Role of LPR8 activation in normal brain functioning and in neurodegeneration during AD. In the figure are indicated the different
roles in which LRP8 transmembrane protein is involved, in the healthy brain and AD pathogenesis.

the “amyloid hypothesis” sustains that the first step during
AD development is the accumulation and the subsequent
deposition of Aβ peptides [1, 2, 10, 14–23].

The generation of Aβ40/42 peptides, by the sequential
proteolytic activity of β- and γ-secretases, is enhanced by
mutations in AβPP and PSs, and it may be prevented by
the action of a third protease, the α-secretase, that cleaves
AβPP within the Aβ region, thus resulting in the formation
of a different subset of CTFs (α-CTFs) that upon γ-
cleavage generate shorter and nonamyloidogenic fragments
[24].

However, from the point of view of the signaling activity
of CTFs, it is still unclear whether α- and β-stubs or the
AICD fragments generated by γ-secretase might represent
protective or pathologically related molecule [25].

As far as AICD fragments are concern, it was reported
that, after binding Fe65 (Figure 1), an adaptor protein
mediating assembly of multimolecular complexes through
a variety of protein-interaction domains, and the histone

acetyltransferase Tip60, AICD translocate into the nucleus
where it acts as gene transcription regulators [24, 26–29].
However, this latter event is still debated, because AICD
displays a very short half-life and a poorly characterized in
vivo transcriptional activity [30].

Recent data have demonstrated that AβPP may signal to
the nucleus also using a β-secretase-independent mechanism
that involves membrane sequestration and phosphorylation
of Tip60 [31].

More recently, Stante et al. have suggested that the
presence of Fe65 into the nucleus may have a protective role,
and that its translocation depends on AβPP. They propose
that DNA repair defects could significantly contribute to
the neurodysfunction and neurodegeneration observed in
AD, and that an involvement of the Fe65-APP complex in
the response of the cells to DNA damage and in the DNA
repair machinery could represent a possible mechanism
contributing to neuronal degeneration observed in AD
pathology [32].
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Indeed, new data suggest that, during embryonic devel-
opment, AICD release, triggered by extracellular signals acti-
vating the β-secretase-dependent cleavage, may be involved
in the control of neurogenesis [33]. Conversely, Vogt and
Coll showed that the overexpression of AICD in mice
caused abnormal neuronal networks and increased seizure
susceptibility [34]. Other studies demonstrated that AICD
may induce the expression of neprilysin, an enzyme known
for its specific Aβ-degrading activity, through a direct
modulation of its promoter [35].

At the same time, it is noteworthy that the C-terminal
portion of AβPP and in particular the last 20 amino acids
in the cytoplasmic tail which contains the well-known
YENPTY (Figure 1) motif present in several receptor tyrosine
kinase (TK) is a docking site for different intracellular
proteins involved in signal transduction. Traditionally, this
sequence was described as internalization motif, while now
it has been recognized to play a central role also in the
regulation of multiple interactions with intracellular proteins
[9, 36]. In particular, in receptor TK, tyrosine residue can
be phosphorylated to generate the NPXpY motif, which
represents a docking site for several intracellular adaptor pro-
teins through the phosphortyrosine-binding domain (PTB).
Similarly, the adaptor proteins Shc and Grb2 can bind AβPP
(or its CTFs) in the presence of phosphorylated tyrosine in
this motif (Figure 1). However, AβPP (or its CTFs) and the
AβPP-related proteins, APLP1 and APLP2, can also interact
with several other signalling proteins, including X11 [37],
Fe65 [37, 38], mDab [39], c-Abl [40], JIP-1 [41], and Numb
[36, 41], (Figure 1) independently of the phosphorylation
of the tyrosine residue within the YENPTY motif. From a
functional point of view, the interaction between the neuron-
specific adaptor protein Fe65 and AβPP via the second
PTB domain of Fe65 [37, 38] was shown to modulate
AβPP processing, favoring the generation of Aβ and AβPP
trafficking, in several cell lines [26, 42]. Another adaptor
that binds to AβPP is mDAB. It is a protein related to the
reelin pathway and interacting with YENPTY motif through
a PTB domain. mDAB is active during embryogenesis, where
it regulates the position of neurons in the brain laminar
structure [43], and mDAB binding increases the amounts
of mature AβPP and Aβ formation [44]. On the contrary,
X11 stabilizes AβPP conformation in membrane, inhibiting
Aβ secretion in cultured cells [45], likely impairing AβPP
trafficking to sites containing active γ-secretase complexes
[46]. JIP’s are member of JNK-scaffolding family proteins
kinases, implicated in different signal pathway, including
neuronal apoptosis. JNK-interacting proteins JIP1b and JIP2
bind to the cytoplasmic tail of AβPP. The expression of
JIP1b stabilizes immature AβPP and decreases the AβPP
ectodomain, Aβ40/β42 and CTFs abundance [47].

All these observations suggest that some of these protein-
protein interactions may play a role in the modulation of
the amyloidogenic pathway and thus might have a role in
neurodegeneration.

The role of Aβ peptides as unique cause of neuronal tox-
icity and AD is highly debated, and recent data have chal-
lenged the “amyloid only” hypothesis, questioning the role
of APP and PSs as mere amyloid productors. The central

role of APP and PSs in the genesis of AD is unquestion-
able; however, phenotypical heterogeneity among patients,
and even among familial patients with the same genetic
mutation, is commonly observed, implying that other genes
might have a role in regulating the onset and severity of the
neurodegeneration in FAD and, likely, in sporadic AD. For
these reasons, considering that APP and PSs are key players
in a complex network of interactions with many different
intracellular adaptors, it is tempting to hypothesize that, in
parallel to amyloid formation, APP and PSs may induce
neurodegeneration through specific alterations in neuronal
signaling pathways [48].

In this context, it was reported that other two adaptor
proteins, which have been involved in the regulation of the
amyloidogenic pathway, ShcA and growth factor receptor-
bound protein 2 (Grb2) are able to interact with the cy-
todomain of AβPP in the presence of specific tyrosine
682 phosphorylation in the YENPTY motif of AβPP cy-
todomain [36, 49]. ShcA (or ShcC) adaptors connect growth
factor receptors to specific signaling pathways (typically
Ras/ERK1/2 pathway but also PI3K/Akt signalling) and are
involved in cell proliferation differentiation and apoptosis
and neuronal development [50, 51]. Also the role of Grb2 in
Ras-signaling pathway is well known as well as its involve-
ment in the activation of the mitogen-activated protein
kinase (MAPK) pathways cascade (Figures 1 and 2) [50, 52–
54]. It is worth noting that ERK1/2 activity is increased in AD
brains [55–57] and that activated MAPKs have been involved
in the abnormal hyperphosphorylation of Tau in AD [58].

The pathogenic correlation between Shc/Grb2 binding
to AβPP during AD development is supported by the
observation that the complexes AβPP (or CTFs)/ShcA or
Grb2 are significantly increased in AD brain as compared
to controls [55]. The increased phosphorylation/activation
of ERK1/2, often described in AD brain, is also observed in
thrombin-activated astrocytes [55], suggesting that, in this
model, ERK1/2 may be activated by AβPP through ShcA.
These data give prominence to the biological importance of
AβPP phosphorylation for its functions and the regulation
of intracellular adaptor binding as events responsible for
the induction of glial-associated mitogenic pathway. Fur-
thermore, ERK1/2, activated by Aβ in vitro, plays a role
in AβPP processing and phosphorylates Tau in a PHF-
Tau similar manner [59]. However, it is conceivable that a
different signaling Aβ-independent might as well activate tau
phosphorylation by ERK1/2 via the intracellular signaling
regulated by the AβPP/CTFs-Shc-Grb2 pathway (Figure 1).

AβPP cytodomain also interacts with other proteins
directly linked to signal transduction mechanisms. In partic-
ular, AβPP binds to the heterotrimeric GTP-binding protein
Go [60–63] that comprises up to 1% of all membrane-
associated proteins in the developing nervous system [55].
There is evidence that AβPP cytodomain binds proteins
involved in cell-cycle regulation such as AβPP-binding
protein 1 (APP-BP1) [64] and p-21-activated kinase 3
(PAK3) [65] which is a serine/threonine kinase involved
in DNA synthesis and neuronal apoptosis. These data are
consistent with a model in which AβPP is a component of
a Go multiprotein complex, including PAK3, to transduce
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extracellular signals to the cytoplasm. In this model, the
FAD APP-mediated pathway, leading to tentative neuronal
cell-cycle activation (see below), consists of the APP-Go-
PAK3 formation, followed by the activation of the AβPP-BP1
through JNK [25].

Considering all these aspects, it is possible to hypothesize
that posttranslational modifications of AβPP, or in its CTFs,
such as a selective phosphorylation, might couple them,
to different cellular pathways. These observation supports
the hypothesis that AβPP may act as a receptor/transducer
molecule in multiple cell-signaling events, the comprehen-
sion of which may have implications either for the normal
biological function of AβPP, for its processing and for its
pathological role in the genesis of AD [66–68].

3. Presenilins Modulation of
Intracellular Signaling

Presenilins 1 and 2 are multitransmembrane proteins that,
associated to nicastrin, APH-1 and PEN-2, form high-
molecular γ-secretase complex, involved in Aβ production
via intramembrane cleavage of AβPP (Figures 1 and 2) [69–
71]. These proteins are highly expressed in brain but have
been detected also in several different tissues. Amount of PSs
are localized in the nuclear membrane, kinetochores, and
centrosomes [72, 73]. At present more than 182 different
mutations (and some deletions) in PS1 have been associated
with inherited early onset AD (Alzheimer disease and
Frontotemporal Dementia Mutation Database 2006) [56, 74,
75] while only 13 mutations have been found in PS2 that are
definitively linked to FAD [15, 16, 76].

Besides their involvement in Aβ formation, PSs regulate
the cleavage of other signaling receptors and transducers
such as Notch-1, ErbB4, DC44, and LDL-receptor-related
proteins and cadherins [1, 69, 77–79]. PSs also affect different
other signaling molecules, such as wingless-type MMTV
integration site family (Wnt) signal transduction pathway,
which is evolutionary conserved and controls many events
during the embryogenesis [80]. At cellular level, this pathway
regulates morphology, proliferation, and motility of the cell.
Wnt pathway plays a central role during tumorigenesis,
and the inappropriate activation of this pathway has been
observed in several human cancers [81]. It has been shown
that Wnt-ligand-mediated signaling leads to the accumu-
lation of cytosolic β-catenin. Cytosolic β-catenin will then
translocate into the nucleus to bind to members of the T-
cell factor (Tcf)/lymphoid-enhancing factor (Lef) family of
DNA-binding proteins leading to the transcription of Wnt
target genes. In the absence of Wnt ligand, axin recruits
CK1 causing the initiation of the β-catenin phosphoryla-
tion cascade by glycogen synthase kinase-3 β (GSK-3β).
Phosphorylated β-catenin is recognized by β-transducin
repeat-containing protein (β-TrCP) and degraded by the
proteosome, reducing the level of cytosolic β-catenin. It
was reported that β-catenin interacts with PSs, and that
PS1 promotes β-catenin degradation regulating phospho-
rylation by cyclin-dependent kinase 5 (CDK5) and GSK-
3β [82–84]. Importantly, GSK-3β was implicated in various

neurological disorders, including AD [85]. Gosal and Coll
showed that AICD-overexpressing transgenic mice may have
an abnormal activation of GSK-3β. These mice exhibit
AD-like characteristics, including hyperphosphorylation and
aggregation of tau, neurodegeneration, and working mem-
ory deficits that are prevented by treatment with lithium
[86].

In cultured cells expressing PSs FAD mutants, the intra-
cellular trafficking of β-catenin is altered, while in cells from
PS-null animals cytosolic β-catenin levels and β-catenin-
mediated Lef/Tcf signaling are increased [83], thus resulting
in the activation of the downstream target cyclin D1 and
accelerated entry into the S phase of the cell cycle [87].

Another relevant role for PSs is Notch processing. Notch
signaling is involved in cell fate regulation, cell differenti-
ation, proliferation, and apoptosis as well as neurodegen-
eration [88, 89]. Notch is a membrane receptor whose C-
terminal domain (NICD), upon interaction with appropriate
ligands, translocates into the nucleus where it activates
the CSL family of transcription factors. NICD formation
depends on γ-secretase complex as the AICD fragment of
AβPP [78].

PSs play a role in apoptosis, since FAD mutants cause cell
death or induce secondary events that may lead to apopto-
sis [90]. Animals, in which PS1 and PS2 genes are deleted,
show deficit in learning, memory, synaptic function and
neuronal death [91]. The processes beneath these effects
are unknown, but the findings that PS1 interacts with anti-
apoptotic member of Bcl-2 family might indicate a possible
mechanism [92, 93].

PS1 is also essential for efficient N-cadherin trafficking
from ER to plasma membrane. Cadherins, including E-
cadherin and neuronal cadherin (N-cadherin), are a family
of type I transmembrane proteins that mediate Ca2+-
dependent cell-cell adhesion, and recognition [94, 95]. PS1-
mediated delivery of N-cadherin to the plasma membrane is
important to exert its physiological function, including the
control of the state of cell-cell contact [96].

PS1 is involved in the intramembrane cleavage of CD44,
a cell surface adhesion molecule for the extracellular matrix
components which is implicated in a wide variety of physi-
ological and pathological processes including the regulation
of tumor cell growth and metastasis [70].

Recently, also the low-density receptor-related protein
(LRP) has been shown to be cleaved by a γ-secretase-like
activity [97]. It is important to note that LRPs receptors are
activated by apolipoprotein E, a well-known risk factor for
the developing of late onset AD in carriers of the ε4 alleles
[98, 99]. It is, however, still unknown if the processing by
γ-secretase and the apolipoprotein E-mediated signaling on
neuronal LRPs might modulate a single pathway, and which
is the physiological significance for these processes.

PS1 also modulates basal level of ERK1/2 activity through
a ras-Raf-MEK-dependent pathway activated by a direct
binding with the SH2 domain of Grb2 (Figure 2) [100–102].
ERK family is one of the most ubiquitous cellular signaling
mechanisms, whose activation links extracellular stimuli to
cell proliferation, survival, and differentiation, but also cell
death and apoptosis [103–105]. In this respect, it is worth of
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note to observe, as mentioned above, that ERK1/2 pathway is
also modulated by AβPP (Figures 1 and 2).

Taken together, these data suggest that PS1 and/or
AβPP are able to modulate different intracellular signalling
pathway through a plethora of intracellular mediators; when
the signaling activated by PS1 and AβPP become dysfunc-
tional in neurons, in particular the activation of the cell
cycle-machinery induced by ERK1/2, the neurodegenerative
process may be activated (Figure 2).

4. AβPP, Presenilins, and Cell Cycle

The hypothesis that cell-cycle abnormalities and aberrant
neuron cell-cycle reentering may cause neuronal death in
AD is supported by different experimental findings including
AD patients brain analysis and data obtained by in vitro
experiments.

Chromosome missegregation and trisomy 21 mosaicism
have been associated with mutations in AβPP and PSs [72].
Aberrant expression of cell-cycle proteins and tetraploidy in
neurons from AD patients have been described [106]. In
AD brains, the activation of several cell-cycle components
has been detected, including cdc2, cdk4, p16, Ki-67, cyclin
B1 and cyclin D, p25 (the regulatory subunit of cdk5) [107,
108], as well as the increased expression activity of genes
encoding for cell-cycle proteins [109]. It was observed that
hippocampal pyramidal and basal forebrain neurons, in AD
brain show markers of DNA replication [110], and it was
speculated that the state of tetraploidy is lethal to neurons
[110].

Increasing observations suggest that aberrant activation
of cell cycle may affect the formation of neurofibrillary
tangles with hyperphosphorylation of Tau protein in AD
brain. It is well known that p25/cdk5 complex hyperphos-
phorylates Tau and reduces its ability to associate with
microtubules [107]. On the other hand, cell-cycle activation
can lead to apoptosis [108], and several studies showed the
activation of caspases in AD brain [111–113]. Finally, cell-
cycle defects represent a major neuropathological feature also
in transgenic animal models of AD [108, 110, 114, 115].

As previously discussed [73], AβPP regulates ERK1/2
levels, its phosphorylation/translocation to the centrosome,
and cell proliferation rate.

Additionally, in the same study, we showed that also
PS1 interacts with Grb2 in the centrosomes and modulates
ERK1/2 signaling. Thus, the proposed hypothesis is that both
AβPP and PS1 participate in the same signaling pathway
through Grb2 binding. Since many regulatory molecules are
found at centrosomes, it was postulated that centrosomes
might serve as signaling machinery modulating different
cell functions [98]. In particular, since Grb2, AβPP, PS1,
and pERK1/2 are all detectable in mitotic centrosomes, it
is conceivable that these structures might anchor signal
transduction pathways, integrate signals, and facilitate its
conversion, into cellular functions (Figure 2).

In this scenario, it was proposed that PS1 and AβPP may
determine the activation of ERK1/2 that, in turn, was respon-
sible for the initiation of the cell cycle [73]; when

these events occur in postmitotic neurons, the impossibil-
ity to complete cell division leads inevitably to neuronal
apoptosis.

5. AβPP, Presenilins, and LRPs

Low-density lipoprotein receptors (LDLRs) are type I inte-
gral membrane proteins currently composed of 10 members.
LDLR possesses a wide array of ligands with different func-
tions from cellular cholesterol uptake in the liver to cell spec-
ification and neuronal positioning during embryogenesis.
ApoE, complexed in HDL and VLDL, is the major ligand
for these receptors, and, being the ε4 allele of APOE gene,
the most relevant risk for the development of late-onset AD,
several studies support a role for these receptors in the patho-
genesis of AD [116]. Although the molecular mechanisms
underlying the association between ApoE alleles and AD
development have not yet been completely elucidated, ApoE,
along with its receptor-LDLR and LDL-receptors related
protein (LRP), was reported to modulate Aβ production and
clearance. Lack of LDLRs increased amyloid deposition and
impaired cognitive behavior in AD transgenic mice [117].
ApoE colocalizes in amyloid deposits in brain parenchyma
[118], and its lipidation state affects the ability to bind Aβ
[119].

Beside its role as Aβ chaperone, ApoE might modulate
specific internalization and signaling events via binding to its
receptors. Some of them possess shared adaptors with AβPP;
in particular Fe65 and JIP1 bind to LRP8, LRP1, and megalin.
Indeed γ-secretase cleavage regulates the intramembrane
proteolysis of LRP8, LRP1, and of SOR-1/LRP11. It is
tempting to speculate that LRPs could affect AβPP processing
and signaling (and vice versa) through γ-secretase and ApoE-
mediated stimuli.

LRPs possess at least one NPxY motif in their cytoplasmic
tail (except SOR-1/LRP11), and this motif, present in AβPP
as well, is critically required for receptor interaction with
adaptors proteins and for internalization. It has been recently
demonstrated that several LRPs family members modulate
AβPP processing by affecting different aspects of AβPP
trafficking [120]. For example, LRP8 is a member of the
LDLR family that is highly expressed in the brain [121]. It has
been recently proposed that the physiological role of LRP8
might include the regulation of signal transduction pathways
rather than endocytosis of lipoproteins and other ligands
[116]. It is known that LRP8 interacts with AβPP, enhancing
the level of AβPP at the cell surface, and reducing its
internalization [122, 123]. Overexpression of LRP8 induces
an increase in AβPP association with lipid rafts and decreases
AβPP-CTFs levels [116].

ApoE was reported to induce Dab1 phosphoryla-
tion and ERK1/2 activation and JNK inhibition via LRPs.
This pathway depends on the presence of Ca++ influx
through the NMDA receptor, but it is independent of Dab1
[124].

Overall these data indicate a likely involvement of LRP8
as modulator of AβPP processing, by affecting its endocytic
trafficking and the proportion of AβPP present in lipid
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rafts. These events may have consequence on the γ-secretase-
mediated cleavage of AβPP and on its neurodegeneration-
related signaling activity.

Upon binding, LRP8 transduces reelin signaling during
neuronal development [125], and recent evidence has indi-
cated that it interacts with the NR2A and NR2B subunits of
NMDA receptor [126], being involved in neuronal functions
such as maturation of NMDA receptor composition in the
hippocampus, and the regulation of long-term potentiation
[127]. Importantly, it has been determined that LRP8 ligand
reelin is found in neuritic plaques of transgenic mice
overexpressing AβPP [128], suggesting a possible association
with AD. Subsequently, a novel interaction between reelin
and AβPP was discovered, leading to increase in the cell
surface levels of AβPP and affecting AβPP processing and
Aβ production [8]. It was shown that reelin signaling in
excitatory synapses can restore normal synaptic plasticity,
which is impaired by oligomeric Aβ peptides at concen-
trations within the range detectable in the brains of AD
patients. At high concentrations of Aβ peptides, reelin can
no longer overcome the Aβ-induced functional suppression,
and this condition coincides with a complete blockade of
the reelin-dependent phosphorylation of NR2 subunits in
NMDA receptors. This reversal requires the LRP receptor-
dependent activation of tyrosine kinases of the Src family. It
was proposed a model in which Aβ, reelin, and LRP receptors
modulate neurotransmission and thus synaptic stability as
opposing regulators of synaptic gain [12]. A schematic
representation of potential roles of LRPs in normal brain
function and in neurodegenerative processes is depicted in
Figure 3.

6. Small Nuclear RNA in AD

Recent discoveries in molecular genetics of mammalian
genome have shed light on a widespread transcription of
noncoding regions, devoted to the regulation of the protein-
coding genome expression. The mechanisms of action of
these transcripts are various and different in nature, although
all of them are devoted to the regulation of fundamental
genetic pathways involved in the determination of the cell
phenotype [129–132].

Alternative splicing is a central component of human
brain complexity whose regulatory mechanisms are still
largely unclear. The recent discovery of factors that control
alternative splicing might contribute to clarify the molecular
basis of physiological and pathological processes [133]. In
two recent works, we described the discovery of two novel
RNA polymerase III-dependent, noncoding RNAs (ncRNA)
transcripts, named 17A and 38A. In particular, it was shown
that the expression of 17A induces an alternative splicing
of GABA-B2 receptor leading to the formation of a non-
functional protein. The ncRNA 17A is normally expressed
in the human brain but is highly upregulated in the brain
of AD patients. The stable expression of 17A in SH-SY5Y
neuroblastoma cells enhances the secretion of Aβ and the Aβ
x-42/Aβ x-40 peptide ratio. Indeed the synthesis of 17A is
upregulated in response to inflammatory stimuli, suggesting

that it may be induced by AD-related inflammation and that
it could contribute to neurodegeneration in AD [134].

In the other study, we found that IL1-α-dependent up-
regulation of another ncRNA, named 38A, drives the synthe-
sis of an alternatively spliced form of the potassium channel-
interacting protein (KCNIP4). The alternative KCNIP4 iso-
form cannot interact with the γ-secretase complex, resulting
in modification of γ-secretase activity, AβPP processing, and
increased secretion of β-amyloid enriched in the more toxic
Aβ x-42 species.

This alternative splicing shift is observed at high fre-
quency in tissue from AD patients, suggesting that RNA pol-
ymerase III transcribed ncRNA may be upstream determi-
nants of alternative splicing of significantly proteins involved
in the brain homeostasis and that their inflammation-
dependent overexpression may induce alterations in the Aβ
production contributing to the neurodegeneration during
AD development [135].

In this context, a more detailed investigation of ncRNA
functional mechanisms might allow to identify new molec-
ular connections with neurodegenerative diseases like those
identified in AD.

7. Environmental Factors and AD Pathoetiology

In recent years, several data have showed evidence that
environmental and/or nutritional factors may play a causal,
disruptive, and/or protective role in the development of AD
although the initiating molecular events are not entirely
known. While a direct causal role for aluminum or other
transition metals (copper, zinc, and iron) in AD has not
yet been definitively demonstrated, epidemiological evidence
suggests that elevated levels of these metals in the brain
may be linked to the development or progression of the
neurodegenerative processes during AD [136].

Aluminum role in AD has been investigated for decades.
Recent studies have identified aluminum in early neurofibril-
lary tangle (NFT) of hippocampal CA1 neurons from brains
of aged patients [137]. However, aluminum contribution to
AD remains controversial, lacking physiological mechanistic
role.

Iron deposition in the brain is another important
proposed mechanisms in the pathophysiology AD. Excessive
iron can contribute to the formation of free radicals, leading
to lipid peroxidation and neurotoxicity, which can result in
cell membrane damage and cell death [138]. Recently, it has
been shown that iron concentration in AD patients brain was
significantly higher than those of nondemented controls. In
particular iron deposition in parietal cortex and hippocam-
pus at the early stage of AD were positively correlated with
the severity of patients cognitive impairment [139].

Also zinc was reported to accelerate the aggregation of the
Aβ peptides and to play a role in the control of inflammatory
responses. Inflammation clearly occurs in pathologically
vulnerable regions of the AD brain with increased expression
of acute phase proteins and proinflammatory cytokines
which are hardly evident in normal brain and that could
participate in the induction of neuronal death. In particular,
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cytokine expression may be regulated by zinc availability,
so influencing inflammatory network phenotypic expression
[140].

New lines of study show that lead exposures in early life
has been implicated in subsequent progression of amyloido-
genesis in rodents during old age. This exposure resulted in
an increase in proteins associated with AD pathology: AβPP
and Aβ peptide [141].

Recent work has shown that in vitro metal ligands such
as clioquinol (CQ) increase the intracellular level of copper.
The increase in intracellular copper was correlated with a
dramatic and rapid decrease in levels of extracellular Aβ
including Aβ1–40 and 1–42 [142]. It has been previously
reported that CQ/copper complexes trigger the activation of
PI3K and its downstream modulator Akt and the inhibition
of glycogen synthase kinase 3 that in turn potentiated
ERK1/2 phosphorylation [143, 144].

It is not clear if and how environmental factors take
part to pathway discussed in this review, in which both
AβPP and PS1 participate in the same signaling pathway
leading, through Grb2 binding, to ERK1/2 activation and
neurodegeneration. However, we may speculate that ERK1/2
activation by copper may contribute to the signal transduc-
tion system activated by AβPP, and PSs.

8. Concluding Remarks

The toxicity of Aβ peptides, eventually triggered or mod-
ulated by environmental or genetic factors, is a central
dogma in AD genesis, which has been recently challenged
by new achievements [48]. In particular, AβPP and PS1
participate in a plethora of protein-protein interactions and
signaling pathways, suggesting that beside their implication
for amyloid formation might also modulate specific cell
signaling events involved in neuronal homeostasis that in a
pathological context may lead to neurodegeneration.

In this scenario, it is under investigation the possible
contribution of other receptors, such as LRPs, which interact
with AβPP, could modulate its processing, are often target of
γ-secretase cleavage, and share with AβPP relevant adaptors
such as Fe65 and JIP1. It is tempting to hypothesize that
the role of ApoE isoform 4 in AD, rather than being linked
only to Aβ formation and clearing, might be also due to
a specific receptor-mediated function which hampers AβPP
physiological signaling and homeostatic control. In this
vision, a unique pathway in which ApoE isoform 4, LRPs,
AβPP, and PSs share common signal transduction events may
represent the keystone that may explain Aβ formation and
neurodegeneration.

We would like to underline that, among these events,
AβPP and PSs may affect ERK1/2 signaling through ShcA/
Grb2 transduction system, with a net relevance for cell-cycle
regulation that in postmitotic neurons may lead to cell death.
Also some LRPs, as possible modulators of AβPP processing
by affecting its endocytic trafficking and the proportion of
AβPP present in lipid rafts, as well as the activity of the
γ-secretase complex, could modulate ERK1/2 signaling via
ShcA/Grb2 or through parallel pathways.

A parallel and complementary issue is given by the brain
complexity and by the largely unexplored world of noncod-
ing genome. The tip of the iceberg hides potentially rele-
vant genomic control systems that may explain the wide-
spread phenotypic variability, even among familial patients,
observed in AD.

A more deep understanding of these complexes mecha-
nism is necessary, in order to open new prospects for thera-
peutic applications in neurodegenerative disorders.
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