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Human leukocyte antigen (HLA)-G, a non-classical HLA-class I molecule, has a low

polymorphism frequency, restricted tissue distribution and immunoinhibitory property.

HLA-G expression in tumor cells and cells chronically infected with virus may enable

them to escape from host immune surveillance. It is well-known that the HLA-G molecule

is a novel biomarker and potential therapeutic target that is relevant in various types

of cancers, but its role in cervical cancer has not been fully explored. In this review,

we aim to summarize and discuss the immunologic role of the HLA-G molecule in

the context of HPV infections and the process of cervical cancer carcinogenesis.

A better understanding of the potential impact of HLA-G on the clinical course

of persistent HPV infections, cervical epithelial cell transformation, tumor growth,

recurrence and metastasis is needed to identify a novel diagnostic/prognostic biomarker

for cervical cancer, which is critical for cervical cancer risk screening. In addition,

it is also necessary to identify HLA-G-driven immune mechanisms involved in the

interactions between host and virus to explore novel immunotherapy strategies that

target HLA-G/immunoglobulin-like transcript (ILT) immune checkpoints.

Keywords: human leukocyte antigen G, human papillomavirus, viral infection, carcinogenesis, cervical cancer,

immunotherapy

INTRODUCTION

Cervical cancer ranks as the fourth most common female cancer worldwide, with an estimated
569,847 new cases and 311,365 deaths in 2018 (1). Persistent infection with high-risk human
papillomavirus (hrHPV) is necessary but not sufficient to induce cervical cancer (2). Most HPV
infections are transient and are cleared within months by host innate and adaptive immune
responses (3). Failure to clear the virus leads to infection persistence, and only a minority of
HPV-infected and transformed cells eventually avoid host immune surveillance, which leads to
tumor growth and lymph node metastasis (4, 5). This host-dependent immunological status and
HPV-induced immune escape are reflected in persistent infection and the subsequent progression
of precancerous lesions to invasive cervical cancer, which indicates the complexity of host-virus
interactions. Therefore, the roles of the immune system, not only in viral elimination but also in
tumor antigen recognition, are extremely relevant in the process of cervical cancer carcinogenesis.

Accumulating evidence has supported the idea of a critical role for immunosuppressive
mechanisms in promoting HPV-induced carcinogenesis, either by suppressing the capacity of the
host to overcome HPV infection or by preventing the elimination of HPV-transformed epithelial

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2020.01349
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2020.01349&domain=pdf&date_stamp=2020-06-25
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:aifenlin@yahoo.com
https://doi.org/10.3389/fimmu.2020.01349
https://www.frontiersin.org/articles/10.3389/fimmu.2020.01349/full
http://loop.frontiersin.org/people/961678/overview
http://loop.frontiersin.org/people/559219/overview
http://loop.frontiersin.org/people/930798/overview


Xu et al. HLA-G and Human Papillomavirus Infection

cells (3–7). Human leucocyte antigen (HLA) complex is located
on chromosome 6p21.3. Several HLA molecules with different
functions can be broadly divided into classical HLA-class I (HLA-
A, -B, -C), non-classical HLA-class I (HLA-E, -F, -G), classical
HLA-class II (HLA-DR, -DQ, -DP), and classical HLA-class III
(8). The HLA system influences the host immune response by
mediating antigen presentation (9). HLA-G has been termed
“non-classical” due to its low frequency of polymorphisms,
restricted tissue distribution and immunoinhibitory properties,
which are different from the properties of classical HLA-class
I molecules (10, 11). It has become increasingly evident that
the HLA-G molecule is involved in modulating both innate
and adaptive immune responses and in promoting immune
escape in various types of cancers (10–13) and infectious
diseases (14–16). However, to date, the possibility that HLA-
G gene polymorphisms and/or protein expression affecting
HPV infection persistence and cervical cancer risk remains to
be explored.

MOLECULAR STRUCTURE OF HUMAN
LEUKOCYTE ANTIGEN-G

The HLA-G gene consists of eight exons, seven introns, a
5′upstream regulatory region (URR) that extends at least 1,400
bp from the initial ATG start codon, and a 3′untranslated region
(UTR), with a total length of 6,000 bp (12, 17). It is widely
accepted that the HLA-G primary transcript is alternatively
spliced into seven mRNAs, which encode four membrane-bound
(HLA-G1, -G2, -G3, -G4) and three soluble (HLA-G5, -G6, -G7)
protein isoforms (18, 19). Each unique HLA-G isoform contains
one to three extracellular globular domains (α1, α2, α3) encoded
by exon 2, exon 3, and exon 4, whereas the presence of intronic
sequences are variable (IMGT/HLA Database).

The overall structure of HLA-G1 and that of its soluble
counterpart HLA-G5 is similar to the structure of the classical
HLA-class I antigens, which contain a heavy chain non-
covalently bound to β2-microglobulin (β2m) (18). Peptide is
bound in the antigen-binding cleft formed by the α1 and α2
domains (11, 20), whereas the α3 domain can bind co-receptors
such as CD8 (21). Both HLA-G1 and HLA-G5 isoforms can
also exist as β2m-free antigens (22). Other HLA-G isoforms
lacking one or two extracellular globular domains (α2, or α3,
or both) are smaller than HLA-G1/-G5 isoforms and are not
associated with β2m (23). HLA-G1 to HLA-G4 are membrane-
bound isoforms due to the presence of the transmembrane region
encoded by exon 5 and a short cytoplasmic tail encoded by
exon 6, which contains a stop codon. HLA-G5 and HLA-G6
are soluble isoforms due to the presence of intron 4, which
contains a premature stop codon to prevent the translation of
the transmembrane and cytoplasmic tail. HLA-G7 is a soluble
isoform due to the presence of intron 2, which contains a
premature stop codon and results in the expression of a soluble
protein (18–20). All seven reported HLA-G isoforms contain the
extracellular α1 domain.

In addition to the seven HLA-G monomers reported, the
molecular structure of HLA-G is even more complex. A study

on its crystal structure demonstrated that HLA-G can exist as
a dimer with the intermolecular Cys42-Cys42 disulphide bond
(24). In vitro and in vivo studies have shown that HLA-G dimers
are observed for all isoforms except HLA-G3 (25). Moreover,
β2m-associated and β2m-free dimers of HLA-G1 or HLA-G5
also exist (26–28). Dimer formation affects the specificity of
receptor-HLA-G binding, as dimers exhibit a higher overall
affinity to immunoglobulin-like transcript (ILT)2/4 receptors
than monomers due to significant avidity effects (24, 28, 29).

Notably, unidentified HLA-G isoforms without an α1 domain
were predicted based on RNA sequencing (RNA-seq), and several
previously undescribed HLA-G isoforms have been identified
in renal cancer samples (30). According to the nucleotide
sequence of the HLA-G gene listed in the Ensembl database
(ENST00000376828), this gene may possess a supplementary
exon at the 5′-end, but this is absent from the sequence in
the IMGT/HLA database. A novel HLA-G isoform named
HLA-G1L was predicted by Tronik-Le Roux et al. (30); this
isoform has five additional amino acids (MKTPR) located
at the N-terminal end. Analysis of RNA-seq data indicates
that some sequence reads may be initiated at exon 4, and
thus could predict the existence of novel α1-deleted HLA-
G isoforms that contain α2 and α3 domains or only the α3
domain. Other novel soluble HLA-G isoforms can be generated
by the skipping of exon 6 coding for the transmembrane
domain (30, 31). Lin et al. (32) indicated the existence of
novel α1-deleted HLA-G isoforms containing intron 4 in 11.6%
(44/379) of colorectal cancer lesions that exhibited negative
staining with mAb 4H84 but that exhibited positive staining
with mAb 5A6G7 (4H84neg5A6G7pos). Moreover, patients with
4H84neg5A6G7pos HLA-G isoforms had a better survival than
patients with 4H84pos5A6G7neg, and thus suggests a functional
role for the novel α1-deleted HLA-G isoforms (31). However,
the specific function of these novel HLA-G isoforms remains
to be determined. The development of specific antibodies for
these novel HLA-G isoforms is urgently needed and even
inevitable (33).

HLA-G-MEDIATED IMMUNE
SUPPRESSION

HLA-G expression was initially observed on cytotrophoblasts
at the maternal-fetal interface (34), where HLA-G modulates
the response of maternal immune cells that contribute to
maintenance of tolerance to the fetus (35–37). HLA-G has
a physiological tissue-restricted distribution property, as it
is expressed by cytotrophoblasts (34), cornea (38), thymus
(39), nail matrix (40), pancreatic islets (41), and erythroblasts
(42). However, aberrant upregulated expression of HLA-G
molecules has been detected in pathological conditions such
as malignancies (43–45), infections and inflammatory diseases
(14, 46–49), transplant grafts (50, 51), and autoimmune disorders
(16, 52–54). In malignancies, aberrant HLA-G expression was
preferentially detected in tumor tissues but was rarely detected
in normal or adjacent non-tumorous tissues, which indicates that
HLA-G might play a key role in tumor development (44).
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Functionally, HLA-G has comprehensive immunosuppressive
properties exerted in multiple steps to weaken anti-
tumor immune responses by acting on immune cells
through its inhibitory receptors: ILT2(CD85j/LILRB1),
ILT4(CD85d/LILRB2), and KIR2DL4(CD158d) (11, 12, 55–
59) (Figure 1). HLA-G inhibits the cytolytic function of natural
killer (NK) cells (60, 61), cytotoxic T lymphocyte (CTL)-
mediated cytolysis (62), macrophage-mediated cytotoxicity (63),
allo-proliferative response of CD4+ T cells (64, 65), maturation
and function of dendritic cells (DCs) or B lymphocytes
(66–69), stimulation of antigen-presenting cells (APCs) to
secrete functional cytokines TGF-β and IL-10, and induction
of apoptosis of CD8+ T cells and CD8+ NK cells (70, 71).
In addition, HLA-G-receptor interactions could also exert
long-term immunomodulatory effects by inducing immune
suppressor/regulatory cells, such as regulatory T cells (Tregs)
(72, 73), tolerogenic DCs (tDCs) (74, 75), mesenchymal stem cells
(MSCs) (76), and myeloid-derived suppressor cells (MDSCs)
(77, 78), among others. In addition to the interactions between
HLA-G and its receptors, HLA-G-mediated immunosuppression
by intercellular transfer mechanisms such as trogocytosis,
exosomes, or tunneling nanotubes (TnTs) also represents
another important complementary mechanism through which
cancer cells escape destruction by the host immune system
(11, 12, 79–81).

HLA-G POLYMORPHISMS IN THE
CONTEXT OF HPV INFECTIONS

To date, 69 alleles that encode 19 proteins have been discovered
(IMGT/HLA Database, February 2020). Polymorphic sites along
the HLA-G gene may change the affinity of gene-targeted
sequences for transcriptional or post-transcriptional factors
(82, 83). In particular, the 14bp Insertion/Deletion (Ins/Del)
(rs66554220) in the 3′UTR is associated with HLA-G alternative
splicing andmRNA stability (84, 85). The+3142C/G (rs1063320)
located 167 bp downstream from the 14bp Ins/Del polymorphic
site may be a target for HLA-G-specific miRNAs (86), which
could directly downregulate HLA-G expression through post-
transcriptional regulation (87, 88).

Accumulating evidence has supported the concept that
HLA-G polymorphisms are genetic susceptibility and/or
protection-relevant factors for cervical HPV infections and
viral persistence (89–101). Many studies have primarily focused
on polymorphisms in the 3′UTR of the HLA-G gene (89–95),
while few have assessed its promoter region (96). Studies by
Xu et al. (89, 90) showed that HLA-G 14bp Ins or +3142G
alleles are risk factors for HPV infections, especially hrHPV
infections, compared with the alleles found in healthy women
and that these alleles affect the progression of HPV18-associated
cervical lesions in Chinese women. A similar finding was
reported in a study performed in Brazilian women from
São Paulo, Brazil; this study showed that the HLA-G 14bp
Ins/+3142G haplotype was related to increased risk of high-
grade cervical lesions, especially in smokers (91). Inconsistent
results were obtained in Italy (92) and Taiwan (93), where

increased risk for squamous cell carcinoma (SCC) was found
to be associated with the 14bp del or +3142C alleles, especially
in SCC patients infected with the HPV16 genotype (93).
Moreover, some have focused on the association between
HLA-G 3′UTR polymorphisms and HPV infection among
HIV-positive women who have a higher risk of developing
HPV co-infection. The combination of the +3142CX (CC or
CG) and +3187AA genotypes conferred the highest risk of
HPV-induced aneuploidy in cervical cells among Brazilian
women with HIV/HPV co-infections (94).A SNP (rs1633038) in
the 3′UTR of the HLA-G gene was significantly related to higher
HPV clearance rates among African-Americans with HIV/HPV
co-infection, but this association was not observed in Hispanics
or European-Americans (95).

Further evidence for the role of genetic factors in HPV
infections and the carcinogenic process was provided by studies
that showed an association with specific HLA-G coding region
polymorphisms (96–104). Among the Canadian population, the
HLA-G∗01:01:02 and HLA-G∗01:03 alleles were found to be
related to an increased risk of HPV16 infection and persistent
infections (96), while the HLA-G∗01:01:03 and HLA-G∗01:01:05
alleles were identified as significant predictors of cumulative
coinfections over the follow-up period (97). In the same cohort,
the HLA-G∗01:01:02, HLA-G∗01:04:01 and HLA-G∗01:06 alleles
were related to high-grade cervical intraepithelial neoplasia
(HG-CIN) (98). The HLA-G∗01:01:02, HLA-G∗01:06 and 3′UTR
14bp Ins alleles were associated with disease progression from
preinvasive to invasive cervical cancer among HPV-positive
Canadian women (99). The homozygous HLA-G∗01:04:01
genotype was related to a significantly decreased risk of HPV
infection (98), and the heterozygotic form of theHLA-G∗01:01:01
allele conferred significant protection against cancer (99). Among
Brazilian women, the HLA-G∗01:04/14bp Ins haplotype as well
as HPV16 and HPV18 co-infection were preferentially related
to HG-CIN, while the HLA-G∗01:03 allele was related to
protection against HPV-related cervical lesions (100). Among
HPV-positive pregnant women in Brazil, a protective effect of
the HLA-G∗01:01:02 allele against the occurrence of CIN was
observed in a cohort of HPV/HIV co-infected pregnant women
(101). In a study that focused on the role of host factors in
the vertical transmission of HPV infection from mother to
offspring, the results showed that the HLA-G∗01:01:01/01:04:01
genotype increased the risk of hrHPV infection in both cord
blood and the infant’s oral mucosa; moreover, the mother-child
concordance of HLA-G∗01:01:02/01:01:02 increased the risk of
oral hrHPV infection both in the mother and offspring (102).
In addition, a pilot analysis of HLA-G promoter methylation
and HPV infection status showed no association between HLA-G
methylation and HPV infections in healthy women (103, 104).

Overall, the discrepancy among these studies could be
explained by differences in the study designs, ethnicity, sample
sizes, and cancer types. Current data suggested that HLA-
G gene polymorphisms (mainly located in the coding region
or 3′UTR region) appear to be independent risk factors for
HPV infection and cervical carcinogenesis, which supports the
biological role of HLA-G molecules in shaping the tumor
microenvironment (105).
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FIGURE 1 | Mechanisms of both membrane-bound and soluble HLA-G-mediated immune suppression in tumor immune evasion. NK, natural killer cells; DC,

dendritic cells; MDSC, myeloid-derived suppressor cells; Tregs, regulatory T cells; DC-10, IL-10-differentiated dendritic cells.

HLA-G EXPRESSION IN CERVICAL
CARCINOGENESIS

HLA-G expression may be induced after HPV infection, which
leads to escape from host immunosurveillance. This evidence
is derived from the results of a study that showed that HLA-G
expression was significantly higher in CIN and cancer patients
with HPV16/18 infections than in CIN patients without HPV
infection (106). Several studies have investigated the relationship
between HLA-G isoform expression and clinicopathologic
features in patients with precancerous lesions and invasive
cervical cancer (45, 90, 106–117).

Another study focused on HLA-G mRNA expression in
cervical cancer in Korean patients using RT-PCR (15 normal
tissues and 40 cervical cancer tissues) and found that high
HLA-G mRNA expression was related to the early stages of
cervical cancer (108). These results are consistent with the
report by Rodriguez et al. (109), which showed upregulation
of HLA-G protein expression in the early stages of cervical
cancer in Colombian patients using immunohistochemistry
(IHC) with mAb 4H84 (9 CIN III and 54 cervical cancer
cases). Both studies supported a possible role for the HLA-
G molecule in early cervical carcinogenesis (108, 109). The
results of both studies further showed that Interleukin-10
(IL-10) expression was also significantly increased in cervical
cancer tissues (108, 109), which supports a shift toward a
Th2 cytokine microenvironment; this in turn may promote
local immunosuppression by upregulating HLA-G expression
(111, 118). Consistent with this, the results also revealed
the inverse relationship among HLA-G expression levels and

estimated numbers of tumor infiltrating lymphocytes (TILs) and
CD57+ NK cells, which favors an escape from host anti-tumor
activity (115). Moreover, three independent studies have reported
evidence of a positive correlation betweenHLA-G expression and
cervical carcinogenesis in a Chinese population (45, 106, 107).
The results of all three studies indicated that HLA-G expression
was negative in normal or adjacent non-tumorous tissues but
was significantly increased along with CIN grade and cervical
cancer metastasis. HLA-G expression may play an important
role in determining the risk for cervical carcinogenesis. These
clinical studies also analyzed clinicopathological parameters
and demonstrated significant correlations between HLA-G
expression and unfavorable prognosis, poor overall survival,
and lymph node metastasis. However, inconsistent results were
obtained in only two studies that showed that HLA-G expression
was not related to cervical carcinogenesis (112, 113). Zhou et al.
(112) described that in all normal epithelium, HLA-G expression
was strong and uniform but was statistically down-regulated in
CIN and SCC. Gonçalves et al. (113) reported that HLA-G was
not expressed in any CIN or SCC. Futhermore, in experimental
model of cervical cancer research, Real et al. (119) reported that
low expression of HLA-G in Hela cell line (HPV18 infection).
Thus, the role of HLA-G in malignancies has gained considerable
clinical interest due to the possibility of exploiting it as a novel
diagnostic/prognostic biomarker to identify cervical cancer and
to monitor disease stage.

Additionally, three studies focused on soluble HLA-G (sHLA-
G) isoform expression using different detection technologies
(107, 110, 114). Guimarães et al. (110) analyzed sHLA-G
expression in cervical cancer tissues from Brazilian patients using
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IHC with the specific mAb 5A6G7 (27 with metastasis and
52 without metastasis). Low expression of sHLA-G isoforms
was detected in all HPV-positive tissues, and the sHLA-G
expression level was similar in both groups (110). Zheng
et al. (107) investigated the sHLA-G expression level in the
plasma of patients with cervical lesions using ELISA kit
(sHLA-G, Exbio) with mAb MEM-G/9 (20 normal cervical
tissues, 15 CIN I, 22 CIN II, 35 CIN III, and 80 cervical
cancer tissues). sHLA-G expression levels in the plasma were
significantly increased in CIN II-III and SCC patients, and their
expression levels were also associated with differentiation and
metastasis. Therefore, sHLA-G molecules may have significance
in early cervical cancer screening (107). However, inconsistent
results obtained in the Netherlands (366 cervical cancer)
using ELISA kit (sHLA-G, Exbio) reported that sHLA-G levels
were not associated with clinicopathological parameters or
survival (114).

Overall, the discrepancies in these studies that examined
HLA-G expression in cervical cancer patients are partly due
to tumor heterogeneity (31). In the future, there will be a
need for additional studies to obtain deeper insight into the
association between HLA-G expression levels and advanced
cervical cancer.

HLA-G AS A NOVEL TARGET FOR
IMMUNOTHERAPIES

Cervical cancer accounts for 6.6% of all female cancers and
is thus a major global health challenge, as ∼90% of cervical
cancer deaths occur in less developed countries (1). High-risk
HPV causes almost all invasive cervical cancers, and therefore,
HPV screening and vaccination are needed to improve cervical
cancer control (2). Despite significant advances in effective
screening and preventive vaccination during the past decade,
substantial regional and global disparities in the prognosis
of cervical cancer patients still exist (120). Unfortunately,
∼30% of patients experience recurrence and metastasis after
primary treatment, with an expected 5-year survival of <

10%. Few effective therapeutic strategies have been developed
that specifically target recurrent or metastatic cervical cancer,
particularly advanced-stage disease. Thus, novel therapeutic
strategies, such as immunotherapy, are urgently needed in
clinical settings (121, 122).

In recent years, an improved understanding of the molecular
mechanisms of the interactions between HPV-associated
cervical cancer and the host immune responses has driven
the exploration of immunotherapy as one of the new
therapeutics targeting immune checkpoints (123). HLA-G
has comprehensive immunosuppressive properties that are
exerted in multiple steps to weaken the anti-tumor immune
responses by acting on immune cells through its inhibitory
receptors. Fortunately, HLA-G expression can be downregulated
through RNA interference or antibody blockade, which can
allow recovery of the functions of immune effectors and
prevent tumor reoccurrence. Thus, HLA-G could serve as
a novel immune checkpoint molecule and play a key role

in novel immunotherapy approaches that offer a promising
perspective for tumor progression and advanced- stage
cervical cancer.

It has been confirmed that miR-148a negatively regulates
HLA-G expression by binding to the 3′UTR of the HLA-G
gene (88). The long non-coding RNA HOX transcript antisense
RNA (HOTAIR) may also serve as a competing endogenous
RNAs (ceRNAs) to regulate HLA-G expression by sponging
miR-148a in cervical cancer cells (116). Targeting the HOTAIR-
miR-148a-HLA-G axis or HLA-G-specific miRs could represent
a novel therapeutic strategy in cervical cancer. Intra-tumor
heterogeneity of checkpoint molecule expression in cervical
cancer is related to a poor chemo/radio-therapy response,
lymph node metastasis and tumor recurrence. HLA-G has
been identified as a cervical cancer stem cell (CCSC)-specific
marker, and targeting HLA-G and its related signaling pathways
may offer a novel strategy for CCSC-targeted therapy (124).
Moreover, the HLA-G/ILTs axis has been recently recognized
as a new immune checkpoint in addition to other immune
checkpoints such as programmed cell death 1 (PD-1)/PD-L1 and
cytotoxic T lymphocyte-associated protein 4 (CTLA-4)/B7 (125).
Different responses to checkpoint inhibitor therapy could be a
consequence of heterogeneous intra- and inter-tumor expression
of different types of checkpoint molecules, although data on the
expression status of HLA-G, CTLA-4 and PD-L1 in cancers are
rather limited (13, 125, 126). PD-1 is a major immunotherapeutic
checkpoint target in various cancer types, but until now, few
data have been available on the clinical efficacy of blocking this
checkpoint protein in cervical cancer (2, 126). The expression
of PD-1 was found to be heterogeneous in tumors and could
be co-expressed with the immune checkpoint protein HLA-
G (127). A recent study focused on tumor-infiltrating CD8+
T cells that express the HLA-G receptor ILT2 in renal-cell
carcinoma (RCC), and the results emphasize the potential of
therapeutically targeting the HLA-G/ILT2 checkpoint in HLA-
G+ tumors (127). Overexpression of the immune checkpoint
HLA-G molecule by tumor cells profoundly affects tumor-
specific T cell immunity in the cancer microenvironment. In
this regard, targeting multiple checkpoints, especially potential
antagonists of the HLA-G/ILT-2/4 pathway, is urgently needed
to target the entire tumor.

CONCLUSIONS

Considering the above studies that were reviewed, we propose
thatHLA-G gene polymorphisms have an impact on the immune
response and likely determine those in specific populations
who are at higher risk for cervical HPV infections and viral
persistence. Aberrant HLA-G expression in cervical lesions could
generate inhibitory signals in the cancer microenvironment,
which would ultimately help tumor cells escape from
immunosurveillance and reshape tumor progression and
metastasis. The checkpoint molecule HLA-G with immune
tolerance contribute to cervical carcinogenesis, but HLA-G could
also represent a good immunotherapeutic target for cervical
cancer treatment.
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