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Abstract
Heart failure, coronary artery disease and myocardial 
infarction are the most prominent cardiovascular 
diseases contributing significantly to death worldwide. 
In the majority of situations, except for surgical 
interventions and transplantation, there are no reliable 
therapeutic approaches available to address these 
health problem. Despite several advances that led to 
the development of biomarkers and therapies based on 
the renin–angiotensin system, adrenergic pathways, etc, 
more definitive and consistent biomarkers and specific 
target based molecular therapies are still being sought. 
Recent advances in the field of genomic research has 
helped in identifying non-coding RNAs, including circular 
RNAs, piRNAs, micro RNAs, and long non-coding RNAs, 
that play a significant role in the regulation of gene 
expression and function and have direct impact on 
pathophysiological mechanisms. This new knowledge 
is currently being explored with much hope for the 
development of novel treatments and biomarkers. 
Circular RNAs and micro RNAs have been described 
in myocardium and aortic valves and were shown to 
be involved in the regulation of pathophysiological 
processes that potentially contribute to cardiovascular 
diseases. Approximately 32 000 human exonic circular 
RNAs have been catalogued and their functions are 
still being ascertained. In the heart, circular RNAs 
were shown to bind micro RNAs in a specific manner 
and regulate the expression of transcription factors 
and stress response genes, and expression of these 
non-coding RNAs were found to change in conditions 
such as cardiac hypertrophy, heart failure and cardiac 
remodelling, reflecting their significance as diagnostic 
and prognostic biomarkers. In this review, we address 
the present state of understanding on the biogenesis, 
regulation and pathophysiological roles of micro and 
circular RNAs in cardiovascular diseases, and on the 
potential future perspectives on their use as biomarkers 
and therapeutic agents.

Introduction
Apart from cancer, cardiovascular disease, in partic-
ular heart failure, is still a major health problem 
across the world that contributes to significant 
mortality and morbidity, despite the many advances 
in the understanding of the pathological mech-
anisms and pharmacological developments.1–4 
Inasmuch as the mortality rate for acute heart 
failure in  hospital is 5.6% and 25.7% for 1 year 
from all causes after hospital admission,5 6 there 
is a great need for better drugs and ideally suited 
biomarkers for identifying the disease much earlier.7 

Also, heart failure is the leading cause of hospital-
isation in people over 65 years of age, across the 
globe, with about 1 in 5 adults aged over 40 years 
developing heart failure. This condition has a major 
impact on society in general.8 9 The number of 
people dying from acute myocardial ischaemia each 
year is estimated at  approximately 2  million, and 
25% of these mortalities occur in the USA alone, 
emphasising the great socioeconomic and health 
burden on the society.10

An important precursor event that contributes 
to cardiac problems is the disturbed homeostasis of 
the  formation of the  extracellular matrix (ECM), 
which is necessary as a support structure for the 
cardiomyocytes and vasculature. Excessive deposi-
tion of ECM and associated cardiac fibrosis occurs 
under conditions of myocardial infarction mediated 
cardiac injury, hypertension, etc. Cardiac fibrosis 
leads to disturbed electrical function of the myocar-
dium and also reduces contractility, thus contrib-
uting to disturbed heart function and failure.11 
Transformation of fibroblasts into myofibroblasts, 
which are smooth muscle-like cells with high migra-
tory capacity which secrete large amounts of ECM, 
is an important event in cardiac fibrosis. This trans-
formation is under the control of several signal-
ling pathways. In particular, both canonical and 
non-canonical signalling by transforming growth 
factor-β was found to be critical.12 13 Myofibro-
blasts, in association with inflammatory cells, aggra-
vate the pathogenesis of fibrosis and lead to heart 
dysfunction.

The importance of biomarkers in the diagnosis 
and prognosis of heart failure is studied on several 
fronts, as they provide insight into the underlying 
pathological mechanisms and also help in guiding 
better management of disease. Biomarkers are 
essential not only for the diagnosis of heart failure, 
but also to delineate the causative factors of heart 
failure. Also, some of the biomarkers are useful 
in  evaluating treatment efficacy, in deciding the 
type and dose of treatments to be used, and as prog-
nostic markers.14

Cardiac injury and the resultant heart failure 
can result from the haemodynamic and myocardial 
trophic effects arising from the inappropriate acti-
vation of the renin–angiotensin–aldosterone system 
(RAAS) and sympathetic nervous system. Among 
the various therapeutic measures for treating heart 
failure, pharmacological targeting of the  RAAS 
and cardiac natriuretic peptides, along with other 
neurohormonal systems that regulate cardiovas-
cular pressure/volume homeostasis, have been 
effectively employed to reduce the symptoms and 
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extend life.1 Thus the recently introduced approaches to block 
the RAAS as well as degradation of natriuretic peptides with 
agents such as LCZ 696 (sacubitril/valsartan) has proven effec-
tive in reducing all cause mortality and hospital admissions due 
to heart failure.15 16

It has been recognised that understanding of the molecular 
events and changes in gene expression and their regulation in 
myocardial disease is essential for developing effective therapeu-
tics as well as for identifying the biomarkers that guide therapy. 
Apart from the discovery of many signalling pathways and their 
disturbances, there has been an explosion of research in the area 
of non-coding RNAs, such as micro  RNA (miRNA), circular 
RNA (circRNA) and long non-coding RNA (lncRNA), and 
their role in the control of gene expression and also as critical 
biomarkers for various diseases.17–20 The present review focuses 
on the recent studies on the role of miRNA and circRNA in 
cardiovascular diseases, their development and regulation, and 
as potential biomarkers.

Biogenesis of non-coding RNAs
The classic view of central dogma took a different turn when it 
was revealed that only a fraction of the human genome is tran-
scribed to protein coding mRNAs, and that more than 80% of 
the genome, consisting of non-protein coding regions, intronic 
regions and repeat sequences, is transcribed to non-coding 
RNA. A recent compilation showed that there are about 2000 
different miRNAs and nearly 56 000 lncRNAs coded in the 
human genome.17 21 Much work has shown that many of the 
non-coding RNAs have important regulatory roles controlling 
overall gene expression.17 22–24 Cytosol is the main location of 
miRNAs whereas circRNAs are found both in cytosol and the 
nucleus. Many of the circRNAs and lncRNAs are classified on 
the basis of their orientation, such as sense or antisense, unlike 
the small non-coding RNAs. The presence of circRNAs was also 
detected in the circulation,25 26 indicating their possible signif-
icance as biomarkers for diagnostic and therapeutic evaluation 
for various diseases, including cardiac diseases.27

Biogenesis of miRNAs
miRNAs are about 22 nucleotides (nt) long and inhibit protein 
synthesis by annealing with their seed region of 2–8  nt, with 
the 3’UTR of the target mRNAs, leading to the breakdown of 
mRNAs.28 29  These are found to vary in their expression and 
content in different tissues and circulations, under different 
pathophysiological conditions.1 30 Longer precursor RNAs of 
up to  >10 kb in length, called primary  miRNAs, transcribed 
by RNA polymerase II, give rise to the smaller pre-miRNAs 
of 70 nt, by the action of RNase III, Drosha and its essential 
cofactor DGCR8 protein, encoded by DGCR8 (DiGeorge 
syndrome critical region gene 8). These pre-miRNAs, which 
are formed in the nucleus and have a stem loop structure, are 
transported to the cytoplasm by Exportin-5 and Ran-GTP, where 
they are processed into  ~22 nt double-stranded miRNA by 
Dicer, another RNase III and associated cofactor proteins. The 
small RNA duplex thus produced in the cytosol forms the RNA 
induced silencing complex (RISC), with the participation of 
Argonaute proteins, and other cofactors. As the passenger RNA 
is separated and degraded, the mature miRNA is formed.31 32 The 
RNA induced silencing complex with the loaded single-stranded 
miRNA attaches to the target RNA and directs it for degrada-
tion. Nearly half of the known miRNA genes are located in the 
intergenic regions of the genome. Among the 2000 miRNAs 
coded by the human genome, those with identical seed regions 

are grouped into miRNA families because these families target 
similar groups of transcripts; each miRNA family targets up to 
300 mRNA targets.21 22 33 miRNA genes in the intergenic regions 
occur either in isolation or in clusters, and are under the control 
of their own promoters. Those in the intronic regions may be 
co-transcribed with the host gene or may also have their own 
promoters. On the other hand, exonic miRNA genes overlap 
exon and intronic regions.34 35

Biogenesis of circRNAs
CircRNAs are from 100 nt to a few kilobases in length and are 
generally produced from the exon regions as well as the intron, 
exon-intron and tRNA intron regions of protein coding genes, 
by the exon or intron circularisation of the 3’ and 5’ ends of 
the RNA.36 Recently, nearly 32 000 exonic circRNAs have been 
catalogued.37 There are two models of exon circularisation—in 
the ‘lariat driven circularisation’ model, skipping of exon(s) of 
the transcript leads to a lariat that contains exons, followed by 
spliceosome mediated circularisation38; in the ‘intron pairing 
driven circularisation’ model, pairing between the complemen-
tary motifs present in the intronic regions causes circularisation, 
and this process is facilitated by the complementary flanking 
Alu elements or other inverted repeats.39–41  Recent studies 
also identified exon–intron circRNAs, even though the precise 
mechanisms of their formation is not clear,42 and also circRNAs 
from lariat introns.43 Many circRNAs contain two exons, and 
in the human heart, titin and ryanodine receptor 2 genes were 
found to produce nearly 50 different circRNAs.44

Functions of circRNAs and miRNAs in the heart
Circular RNAs
RNA-Seq studies revealed the presence of a  large number of 
different circRNAs expressed in cardiac tissues from humans 
and rodents.44 45 However, relatively fewer circRNAs have 
been ascribed functions in the heart, and important informa-
tion regarding their functions, genomic information and splice 
sites can be found in circBase.46 A prominent change in failing 
myocardium is a switch to a  fetal gene expression programme 
associated with expression of β-myosin heavy chain, N2BA 
titin variant, etc.47 48 Interestingly, circRNAs which are highly 
expressed in neonatal hearts are also elevated in failing hearts 
although not to the same extent. However, the precise func-
tion of the many altered circRNAs in the dilated heart, such 
as cTTN1, cTTN2, cTTN4 and cTTN5, is not well defined.49 
Among the highly expressed circRNAs, those expressed from 
slc8a1 (ncx1) and rhobtb3 genes, which respectively code for 
SLC8a1 sodium/calcium exchanger and a Rab9 regulated ATPase 
involved in endosomes to Golgi transport, are induced during 
cardiac development.50 Thus altered expression of various 
circRNAs in failing myocardium is likely important in the overall 
function of the heart.51

Altered expression of circRNAs in heart disease
Heart related circRNA (HRCR) was the first circRNA found to 
be repressed in hypertrophic heart and in heart failure in mouse 
models.52 It was observed that HRCR, like a sponge, binds and 
inhibits the miRNA miR-223, which was implicated in cardiac 
hypertrophy.53 miR-223 exerts its effects by blocking the func-
tion of ARC (apoptosis inhibitor with CARD domain). On the 
other hand, HRCR overexpression was found to protect against 
hypertrophy in a mouse model via blockade of miR-223.52 Apart 
from HRCR, CDR1AS circRNA, which was originally observed 
in the brain as a sponge for miR-7, was also found in heart and 
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was elevated following acute myocardial infarction in mouse 
models. Cardiomyocyte apoptosis due to myocardial infarction 
caused by ischaemia was found to be prevented by miR-7 and 
miR-7a, which block expression of proapoptotic proteins PARP 
and also SP1. Importantly, circRNA CDR1AS binds to miR-7 
and miR-7a and aggravates myocardial  infarction mediated 
cardiomyocyte loss.54 However, its role in the pathophysiology 
of the human heart is yet to be defined.51

It was reported that levels of circRNA_081881 are lowered 
by 10-fold in blood samples of patients with myocardial infarc-
tion.55 CircRNA_081881 is proposed to bind with miR-548, 
which targets the mRNA of cardiac protective gene PPARγ. 
Another circRNA, circ-Foxo3, derived from FOXO3 (the gene 
coding for the FOXO3 transcription factor), present in high 
amounts in aged hearts, was found to cause cell cycle arrest at 
G1 to S transition, and lead to cardiac cell senescence. Circ-
Foxo3 was shown to antagonise the alleviating effects of ID1, 
E2F1, FAK, and HIF1α transcription factors on the process of 
ageing.56 57

Atherosclerotic vascular disease was found to be associated 
with single nucleotide polymorphisms near the INK4/ARF locus 
on chromosome 9p21.3. These single nucleotide polymorphisms 
regulate expression of INK4/ARF via changes in the levels of 
circRNA cANRIL, which is an antisense transcript derived from 
the INK4/ARF locus by alternate splicing. Thus cANRIL circRNA 
is implicated in the pathogenesis of atherosclerosis.58 59

In heart muscle, genes coding for titin and ryanodine receptor 2 
express circRNAs in maximal numbers.51 In hypoxic vascular 
endothelium, circRNA cZNF292 was found to be induced and 
similar induction is also suggested in hypoxic myocardium. The 
significance of cZNF292 became evident in experimental studies 
showing compromised endothelial function when expression of 
this circRNA was reduced.60 A recent study described the iden-
tification of 1412 aortic valve specific circRNAs with their host 
genes having valve related functions and signalling pathways, 
including extracellular matrix–receptor interaction, ErbB signal-
ling and vascular smooth muscle contraction.61 

Apart from the changes in the above circRNAs, it was also 
observed that expression of CAMK2D (calcium/calmod-
ulin  dependent protein kinase type II delta chain) circRNAs 
were  reduced in hypertrophic as well as dilated cardiomyop-
athy.49 Involvement of circRNAs in cardiac fibrosis and cardio-
myopathy was also indicated in a mouse model, where it was 
found that circRNA_000203, which is transcribed from myo9A 
gene, is elevated in diabetic mouse myocardium and also in angio-
tensin II  induced cardiac fibroblasts. CircRNA_000203 inter-
acts with miR-26b-5p and compromises its antifibrotic activity, 
by enhancing the fibrotic process via expression of Col1a2 
(collagen, type I, a2) and connective tissue growth factor.62

Exosomal circRNAs as biomarkers
Because of the presence of circRNAs in secreted exosomes, at a 
level that reflects their concentration in cells, exosomal circRNA 
has been considered an important diagnostic tool for various 
diseases.50 Thus circulating exosomal hsa_circ_0124644, which 
is elevated in patients with coronary artery disease,63 was found 
to be a useful biomarker for the disease. Similarly, the circRNA 
MICRA (myocardial infarction  associated circular RNA), 
derived from the exon 1 of ZNF609 (zinc finger protein 609), 
was reported to predict left ventricular dysfunction, following 
myocardial infarction,25 and also to improve risk classification, 
indicating the significance of this circRNA as a novel biomarker 
for myocardial infarction.64

Micro RNAs
Certain miRNA profiling studies conducted between 
2008  and  2015 validated the initially identified heart failure 
related miRNAs from smaller cohorts in larger groups of patients. 
These profiled and validated miRNAs are classified according to 
the biological sample (ie, whole blood, plasma, serum, buffy coat, 
peripheral blood mononuclear cells or cardiac muscle biopsy). 
Even though there was little consensus among these studies 
regarding the miRNA signatures in heart failure, the clusters 
of miRNAs could be used for differentiating heart failure with 
preserved or reduced ejection fraction.65–73 Many functional and 
association studies implicated a variety of miRNAs in the regula-
tion of cardiovascular function, and levels of these miRNAs are 
altered in cardiac remodelling, hypertrophy, fibrosis, apoptosis, 
hypoxia, cardiomyopathy and heart failure.74 75

A number of studies indicated the potential use of different 
miRNAs as biomarkers of heart failure. Elevated levels of miR-1 
in the plasma of heart failure patients with acute myocardial 
infarction,76 miR-195 in the left ventricle biopsy of dilated 
cardiomyopathy patients,72 miR-30a in the serum of patients 
with heart failure with reduced ejection fraction71 and miR-499 
in the plasma of acute heart failure and acute coronary syndrome 
patients,76 were among some of the major changes seen 
(figure 1). A number of miRNAs (eg, miR-1, −124–3 p, −126,–
150, −195,–21, −210, −30a, −342–3 p, −423–5 p, −499–5 p, 
−622 and −92a) were found to be differentially regulated in 
more than one cohort of heart failure patients, and some of these 
miRNAs likely target genes related to cardiac hypertrophy and 
apoptosis (miR-1, miR-30a), cardiac fibrosis (miR-21) and apop-
tosis signalling pathways (miR-195, miR-499–5 p, miR-92a).1 
Therefore, it is possible that some of these differentially regu-
lated miRNAs in heart failure may help in discovering the hith-
erto unknown molecular mechanisms of pathogenesis and the 
genes involved and their products.

Altered miRNA expression affecting lipid metabolism in heart 
disease
Lipid metabolism, in particular cholesterol metabolism and its 
homeostasis, is important in the pathogenesis of atherosclerosis, 
which is one of the main causes of coronary heart disease. It 
is generally believed that a disturbed balance between the low 
density lipoprotein and high density lipoprotein (HDL) associated 
cholesterol plays an essential part in promoting atherosclerosis. 
A critical and rate limiting step in the biosynthesis of cholesterol 
is catalysed by 3-hydroxy-3-methylglutaryl-CoA synthase-1, and 
miR-223 inhibits the expression of this enzyme and thus choles-
terol biosynthesis. This miR-223 is also known to block the 
expression of other sterol biosynthetic enzymes, such as methyl-
sterol monooxygenase 1, and also scavenger receptor BI, involved 
in the uptake of HDL cholesterol.77 ApoB containing low density 
lipoproteins, whose dysregulation contributes to atherosclerosis, 
are produced in the liver and their synthesis/assembly is known 
to be regulated by miR-122, miR-34a and miR-30c.78 Also, 
liver production of HDL is inhibited by miR-33, which blocks 
cholesterol efflux to apolipoprotein A1 by interfering with the 
expression of the adenosine triphosphate binding cassette (ABC) 
transporter.79 Conditions such as hyperlipidaemia stimulate the 
arterial endothelial cells to express different adhesion molecules 
(eg, vascular adhesion molecule-1, intracellular adhesion mole-
cule-1 and E-selectin), which participate in capturing leukocytes 
on their surfaces, and this process along with the formation of 
macrophage foam cells are involved in the formation of athero-
sclerotic plaques. Different miRNAs, such as miR-181b which 
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Figure 1  Some elevated signatures of micro RNAs (miRNAs) and their targets involved in cardiac disease. Several different miRNAs are altered during 
cardiac development and during the pathogenesis of hypertrophy, fibrosis, arrhythmia and eventual heart failure. These changes are proposed to be 
causative or reflective of these pathogenic mechanisms. Here, only some of the elevated miRNAs in normal cardiac development, cardiac hypertrophy, 
cardiac fibrosis, cardiac arrhythmia and heart failure and their corresponding likely targets are shown.

controls the NF-κB pathway and miR-125a which regulates lipid 
uptake by macrophages and foam cell formation, play a role in 
plaque formation.80

Altered miRNAs and peptide hormones in heart disease
Several neurohormone peptides, such as natriuretic peptides, 
endothelin-1  and angiotensin II, and their cognate receptors, 
play an important role in cardiovascular function, and pertur-
bation of their function is implicated in the pathogenesis of 
cardiovascular disease. However, whether miRNAs regulate 
the expression of these peptides and affect their function is not 
clearly established. Some evidence from experimental animals 
indicated that miR-100 targets the 3’UTR of the  NPR3 gene, 
coding for natriuretic peptide receptor 3. Thus elevated levels of 
miR-100 in heart failure patients may help in maintaining circu-
lating levels of the natriuretic peptides.81 Also, a negative asso-
ciation between miR-125a/b-5p, which binds with the 3’UTR 
of mRNA coding for prepro-endothelin-1, and endothelin-1 
expression was noticed.82

In silico gene expression analysis indicated the possible regu-
lation of genes associated with angiotensin  II signalling by 
miR-132/212 in cardiac fibroblasts.83 Also, negative regulation 
was reported for expression of AGTR1 (angiotensin II type I 
receptor) and ANP, by miR-15584 and miR-425,85 respectively, 
by binding to the 3’UTR of the corresponding mRNAs. Another 
component of this system, expression of human CYP11B2 
(aldosterone synthase), was shown to be downregulated by 
miR-766, associated with lowered blood pressure.86 Further 
in silico studies to identify putative miRNA targets in neuro-
hormone signalling pathways implicated in cardiac dysfunc-
tion  revealed that miRNAs mostly appear to regulate these 
pathways by lowering the expression of neurohormone recep-
tors and these include endothelin receptors, mineralocorticoid 
receptor/nuclear receptor subfamily three group C member 2, 

angiotensin II receptors, natriuretic peptide receptors and corti-
cotropin releasing factor receptors.1

miRNAs and cardiac hypertrophy
The heart normally shows compensatory changes in structural 
organisation under stress conditions, such as hypertension, 
ageing and metabolic disturbances, by cardiomyocyte enlarge-
ment (cardiac hypertrophy) and also by enhancing extracellular 
matrix (cardiac fibrosis). Prolonged cardiac hypertrophy leads to 
a life threatening condition, end stage heart failure with reduced 
ejection fraction.87 88 The first pro-hypertrophic miRNA was 
found to be miR-208 in animal studies, showing that deletion 
of this miRNA was protective against hypertrophy and fibrosis 
of the  heart89 whereas overexpression in mouse hearts led to 
arrhythmia and pathological cardiac hypertrophy.90 Interest-
ingly, inhibition of miR-208a by a specific antisense oligonucle-
otide was found to improve cardiac function in a hypertensive 
heart failure rat model91 and also to protect against diet induced 
obesity in mice.92

Even though miR-1 is also implicated in cardiac hypertrophy, 
its precise role remains controversial. On the other hand, 
miR-133a levels in cardiac tissues were found to be inversely 
correlated with hypertrophy in animal models of pathological 
cardiac hypertrophy, exercise induced hypertrophy and also 
in the hearts of patients with hypertrophic cardiomyopathy or 
atrial dilatation (figure 1). Inasmuch as miR-133a is also protec-
tive against cardiac fibrosis, clinical uses of this miRNA became 
obvious.80 The pro-autophagic transcription factor FOXO-3, 
which mediates the cardiomyocyte recycling process, an adap-
tive protective response against pressure overload in the failing 
heart, was found to be a target of miR-212 and miR-132, which 
are overexpressed in murine models of pressure induced cardiac 
hypertrophy.93 94
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Table 1  Circulating micro RNAs as biomarkers for diagnosis, prognosis and treatment response in cardiovascular disease

miRNA Biomarker value Condition
Respective fold change 
vs controls Ref

miR-22, −92b, −320a, −423–5 p Diagnosis Chronic heart failure Up (1.4; 1.3; 1.2; 1.5) 73

miR-30c, −146a, −221,–375 Diagnosis Chronic heart failure Down (0.6; 0.7; 0.4; 0.45) 68

miR-107,–139, −142–5 p Diagnosis Chronic heart failure Down (0.3; 0.2; 0.52) 75

miR-193b-3p, −193b-5p, −183–3 p, −190a, −211–5 p, −494 Diagnosis Chronic heart failure Down (0.4; 0.5; 0.4; 0.5; 0.45; 0.2) 69

miR-423–5 p Diagnosis Acute heart failure Up (2.5) 100

miR-499 Diagnosis Acute heart failure Up (100) 101

miR-106a-5p, −652–3 p, −18a-5p, −27a-3p, −199a-3p Diagnosis Acute heart failure Down (<0.5 fold, for all) 105

miR-30b, −103, −142–3 p, −342–3 p Diagnosis Acute heart failure Down (0.4; 0.6; 0.4; 0.5) 70

miR-30c, −146a Diagnosis HFpEF vs HFrEF Down (0.8; 0.7) 68

miR-221,–328, −375 Diagnosis HFpEF vs HFrEF Up (1.25; 1.7; 1.4) 68

miR-29a Diagnosis Cardiac fibrosis and hypertrophic 
cardiomyopathy

Up (3.1) 102

miR-18a-5p, −652–3 p Prognosis Heart failure, 180 day all cause 
mortality

Down (<0.5 fold, for all) 105

miR-126, −508–5 p Prognosis Cardiovascular death after 2 years Up (1.33; 10.2) 104

miR-30d Prognosis Acute heart failure, 1 year all cause 
mortality

Down (0.33) 106

miR-26b-5p, −29a-3p, −92a-3p, 145–5 p, −30e-5p Treatment response 12 months after effective CRT Up (15.2; 9; 14; 6; 8) 107

miR-1, −208a/208b, −499 Treatment response 3 months after LVAD Down (0.1; 0.03; 0.014) 111

miR-1202 Treatment response 3 months after LVAD Down (0.9) 110

CRT, cardiac resynchronisation therapy; HFpEF, heart failure with preserved ejection fraction; HFrEF, heart failure with reduced ejection fraction; LVAD, left ventricular assist device.

Cardiac fibrosis, which is also a major cause of heart failure and 
myocardial infarction, was found to be associated with elevated 
levels of miR-21 in the cardiomyofibroblasts in rodent models 
and human hearts. Since miR-21 targets sprout homologue-1 
(Spry1), it was suggested that this miRNA enhances growth 
factor secretion and fibroblast survival and proliferation, leading 
to fibrosis.95 Even though some studies showed positive results 
of ameliorating heart function in rodent models by antagomirs 
of miR-21, different results were obtained in other studies.96 
Besides the above described miR-133a, miR-29, which targets 
components of fibrosis, including collagens, matrix metallo-
proteinases, leukaemia inhibitory factor, etc, was also found 
to be cardioprotective and its levels are found to be reduced in 
myocardium under stress conditions.97 98

Micro RNAs in the circulation
Even though the proposed function of miRNAs is within the cell, 
specifically targeting mRNAs, and thus protein synthesis, several 
miRNAs have also been found extracellularly and in the circula-
tion, and were found to be stable and associated with different 
types of carrier proteins or exosomes.99 Inasmuch as these circu-
lating miRNAs were found to reflect their corresponding cellular 
levels, it was proposed that circulating miRNAs can be helpful 
as potential biomarkers (table 1) for diagnosis or treatment effi-
cacy monitoring, for disease conditions including cardiovascular 
diseases.75 Currently, blood levels of B-type atrial natriuretic 
peptides (BNPs) and N-terminal pro-brain natriuretic peptide 
(NT-proBNP) are considered as sensitive and reliable biomarkers 
for heart failure, although not highly specific. It has been reported 
that circulating levels of miR-423–5 p are different in patients 
having dyspnoea due to heart failure compared with those with 
causes other than heart failure.100 Apart from miR-423–5 p, 
changes in other circulating miRNAs have also been described 
and thus plasma levels of miR-103, miR-142–3 p, miR-30b and 
miR-342–3 p were found to be lower in patients with acute heart 
failure68 whereas miR-499 is elevated101 indicating the possi-
bility of combining different miRNAs as panels for the diagnosis 

of heart disease.75 MiR-29a, which was found to be elevated 
in cardiac fibrosis, was also found to be elevated in the plasma 
of hypertrophic cardiomyopathy patients and correlated with 
left ventricular hypertrophy and cardiac remodelling.102 Also, 
elevated level of miR-29a in the  circulation was shown to be 
associated with enhanced interventricular septum size, an indi-
cator of fibrosis as well as hypertrophy.103

Use of circulating miRNAs for disease prognosis
The  prognostic value of circulating miRNAs was evaluated in 
several studies and it was found that decreased plasma miR-126 
is related to  cardiovascular mortality in patients with isch-
aemic heart failure, whereas such a  relationship in non-isch-
aemic heart failure patients was seen with elevated circulating 
miR-508a-5p.104 Reduced plasma levels of miR-18a-5p and 
miR-652–3 p were found to be predictive of 180 day cardiovas-
cular death in hospitalised heart failure patients.105 A recent study 
on 96 acute heart failure patients showed that reduced serum 
miR-30d levels are predictive of 1 year all  cause mortality in 
these patients.106 Besides being useful as prognostic biomarkers, 
miRNAs have also been found to respond to treatments and thus 
reflect treatment efficacy in patients with cardiovascular disease. 
Thus cardiac resynchronisation therapy was found to be associ-
ated with higher circulating levels of miR-26b-5p, miR-145–5 p, 
miR-92a-3p, miR-30e-5p and miR-29a-3p,107 and also 
miR-30d108 and miR-30e109 in responding patients. Similarly, 
it was noted that responsiveness to left ventricular assist device 
could be assessed by plasma levels of miR-1202,110 whereas 
elevated circulating miR-483–3 p and decreased miR-208, 
miR-499 and miR-1 levels were found following implantation of 
this device due to unloading of the heart.111 On the other hand, 
anthracycline chemotherapy to cancer patients is known to cause 
cardiotoxicity and plasma miR‐29b and miR‐499 are found to 
be acutely elevated following anthracycline therapy with a dose–
response relationship.112

Even though these studies emphasise the significance of circu-
lating miRNAs as potential biomarkers for cardiovascular disease, 
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there is a great need for systematic comparison of large panels of 
miRNAs in larger cohorts of patients with simultaneous compar-
ison with established biomarkers, for diagnosis, prognosis and 
treatment response. Also, use and validation of miRNAs as 
biomarkers in assessing the clinical outcome of cardiac diseases is 
the most important task that needs to be accomplished. In addi-
tion, considering that miRNAs can be secreted out of the cell 
and can be taken up by other cells where they can exert their 
effects, and also because of their stability in the  circulation, 
it is possible that these can be used as potential therapeutics. 
However, because of the multiple mRNA targets for many of the 
miRNAs and also effects in more than one organ, much needs to 
be worked out for them to be used in clinical practice.

Nevertheless, many studies have proven their potential as 
therapeutics in cardiac disease models in rodents.113 114 The 
diagnostic/prognostic abilities of some of the miRNAs have 
been described by receiver operating characteristic  (ROC) 
curve analyses. Thus while assessing non-invasive biomarkers 
of graft rejection in heart transplant recipients, it was found 
that serum levels of miR-10a, miR-31, miR-92a and miR-155, 
which strongly correlate with their expression in cardiac tissue, 
significantly discriminated patients with allograft rejection from 
those without rejection, on the basis of the AUC analyses of the 
corresponding ROC curves (miR-10a AUC=0.975; miR-31 
AUC=0.932; miR-92a AUC=0.989; and miR-155 AUC=0.998, 
P<0.0001 for all).115 Similarly, ROC curve analysis for miR-499 
in acute myocardial infarction patients compared with healthy 
controls showed an AUC of 0.947, which correlated signifi-
cantly with circulating cTnT, a well known biomarker.30 Also, 
for a diagnosis of heart failure, miR-423–5 p was found to show 
a significant clinically relevant association, with an AUC of 0.91 
for ROC curve analysis (95% CI 0.84–0.98).30

Conclusions
The significance of non-coding RNAs, including miRNAs, 
circRNAs and also lncRNAs in the regulation of various cellular 
processes and the  pathophysiology of the whole organisms 
is now clearly established. The importance of miRNAs and 
circRNAs in cardiovascular diseases is well studied and the role 
of these non-coding RNAs in the disease process and their use as 
diagnostic and prognostic biomarkers is recognised. Inasmuch as 
the existing biomarkers are only able to help differentiating the 
causes and progression of disease, to a limited extent the newly 
identified miRNAs and circRNAs are making it possible to fill 
this void. Apart from their use as disease biomarkers, miRNAs 
have also proven to be useful in evaluating patient response to 
the available therapies during the course of treatments and also 
to understand whether a patient will be responsive to a given 
treatment.116 117  Also, miRNAs are being tested as drugs for 
cardiovascular diseases in multiple preclinical studies and have 
proven to be efficacious. However, considering that miRNAs 
and circRNAs have multiple cellular targets and may show their 
effects in organs not directly involved in the disease pathogen-
esis, attempts are being made to improve the in vivo specificity 
of miRNA mimics. Also, the effectiveness of panels of multiple 
miRNAs and/or circRNAs is being studied as biomarkers for diag-
nosis, prognosis and treatment response monitoring. The future 
holds promise for these biomolecules and their mimics as thera-
peutics as well as biomarkers for cardiovascular diseases.
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