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Abstract: Despite the toxicity and health risk characteristics of formaldehyde (FA), it is currently
used as a cytological fixative and the definition of safe exposure levels is still a matter of debate.
Our aim was to investigate the alterations in both oxidative and inflammatory status in a hospital
working population. The 68 workers recruited wore a personal air-FA passive sampler, provided a
urine sample to measure 15-Fy;-Isoprostane (15-Fy;-IsoP) and malondialdehyde (MDA) and a blood
specimen to measure tumour necrosis factor « (TNF«). Subjects were also genotyped for GSTT1
(Presence/Absence), GSTM1 (Presence/Absence), CYP1A1 exon 7 (A > G), and IL6 (—174, G > C).
Workers were ex post split into formalin-employers (57.3 pg/m?) and non-employers (13.5 ug/m3). In
the formalin-employers group we assessed significantly higher levels of 15-Fy-IsoP, MDA and TNFx
(<0.001) in comparison to the non-employers group. The air-FA levels turned out to be positively
correlated with 15-Fy-IsoP (p = 0.027) and MDA (p < 0.001). In the formalin-employers group the
MDA level was significantly higher in GSTT1 Null (p = 0.038), GSTM1 Null (p = 0.031), and CYP1A1
exon 7 mutation carrier (p = 0.008) workers, compared to the wild type subjects. This study confirms
the role of FA in biomolecular profiles alterations, highlighting how low occupational exposure can
also result in measurable biological outcomes.

Keywords: formaldehyde; 15-F-isoprostane; malondialdehyde; TNFo; GSTT1; GSTM1; occupa-
tional health

1. Introduction

The exposure to airborne pollutants can result in harmful health effects, depending
on the chemical agents, the time of exposure, and the individual susceptibility [1]. Several
studies have focused on hospital workers and their occupational risks [1-5], e.g., oper-
ating theatre nurses and pathologists, including those who are chronically exposed to
formaldehyde (FA) [6-8].

FA inhalation has been associated with several toxic effects: low exposure levels
(0.1 ppm) can irritate the eyes, nose and upper respiratory airways, while high concentra-
tions may result in pulmonary function impairment and asthma [9,10]. Prolonged exposure
to FA has been also associated with nasopharyngeal cancer [11,12] and leukaemia [12,13],
and there is limited evidence of a possible association of this compound with sinonasal can-
cer [14]. In this context, the International Agency for Research on Cancer (IARC) classifies
FA as “carcinogenic to humans (Group 1)” [15].

Despite its harmful characteristics, FA is still widely used in pathology wards, where
it has been used as fixative for almost 100 years due to its unique ability in preserving cell

Toxics 2021, 9, 178. https:/ /doi.org/10.3390/toxics9080178

https:/ /www.mdpi.com/journal/toxics


https://www.mdpi.com/journal/toxics
https://www.mdpi.com
https://orcid.org/0000-0002-0655-7550
https://orcid.org/0000-0002-2471-6594
https://doi.org/10.3390/toxics9080178
https://doi.org/10.3390/toxics9080178
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/toxics9080178
https://www.mdpi.com/journal/toxics
https://www.mdpi.com/article/10.3390/toxics9080178?type=check_update&version=2

Toxics 2021, 9,178

20f13

and tissue morphology [16,17]. Hence, the long-standing concerns over the adverse health
effects related to FA exposure [18] in this population.

Workers employed in settings where FA or FA-containing products are made or used
may be exposed to such chemicals, mainly by inhalation or skin contact [19]. In order
to protect their health, the American Conference of Governmental Industrial Hygienists
(ACGIH) updated in 2016 the threshold limit of exposure. Indeed, after having recom-
mended only a threshold limit value-ceiling (TLV-C) of 370 pg/m3 since 1992, the limits
were updated introducing a “time-weighted average” threshold limit value (TLV-TWA) at
120 pg/m?3 and a “short-term exposure limit” (TLV-STEL) at 370 y1g/m?> [20]. The European
Union (EU) Scientific Committee for Occupational Exposure Limits (SCOEL) proposed a
FA 8-h OEL of 370 pg/m? and a 15-min STEL of 740 pg/m? [21].

The EU Carcinogens and Mutagens Directive of 2019 recently set a Binding Occu-
pational Exposure Limit (BOEL) at 0.37 mg/m? (0.3 ppm) for long-term exposure (8-h
time-weighted average) and of 0.74 mg/m? (0.6 ppm) for 15-min exposure. Moreover, a
specific 8-h limit value of 0.62 mg/m? (0.5 ppm) was introduced for the healthcare, funeral
and embalming sectors, which will be valid until July 2024 [22].

A recent review on the management of FA pollution in pathology wards [23] high-
lighted that most studies had suggested improving the exhaustion ventilation systems and
to use appropriate personal protective equipment (PPE). In the same regards, other research
demonstrated the effectiveness of technological approaches, such as photocatalyst and
vacuum sealing technologies, alongside with the use of alternative fixatives to formalin [23].
However, due the current lack of an effective alternative chemical, the use of formalin is
still needed, making it necessary to arrange various measures to control workers” exposure,
such as the isolation of activities producing greater emissions and the adoption of new
standard procedures in order to reduce the number of samples soaked into formalin [22].

The possible mechanisms underlying the FA-induced long-term effects include in-
flammation, oxidative stress (OS), and apoptosis [24]. Indeed, FA is a powerful trigger
of inflammation in the lower airways [25]; several signalling mechanisms, such as the
MAPK and NF-«kb pathways, have been proposed alongside the FA-induced increase in
intracellular reactive oxygen species (ROS) [26]. This condition of imbalance between
an excess of oxidant compounds and insufficient antioxidant defences [27], can lead to
oxidative damage to biomolecules, including proteins, lipids, and nucleic acids, for ex-
ample through lipid peroxidation [28]. The alteration of oxidative status is frequently
studied through specific biomarkers, such as malondialdehyde (MDA) and F;-isoprostanes
(F2-IsoPs) as measure of lipid peroxidation [29-31]. In order to protect themselves against
hostile oxidative environments, living organisms evolved several antioxidant defenses,
including antioxidant enzymes as well as non-enzymatic ROS scavengers [32]. One of the
main non-enzymatic antioxidants is glutathione (GSH), which is able to scavenge ROS and
thus decrease OS [26,33]. This compound is also involved in FA-absorbed oxidation, since
dehydrogenation of FA requires GSH [34,35].

ROS and antioxidants could also influence the immune system [36]. Indeed, the OS
condition could lead to an increase in airway and systemic inflammation associated either
to T 1 or T2 cytokine production [37]. Specifically, interleukin (IL)-6 and tumour necrosis
factor-alpha (TNF-u) play a key role in the immune and inflammatory response and several
studies have evaluated the alteration of their levels following FA exposure, albeit with
contrasting results [38—42].

Simultaneously, several genetic pathways have evolved for minimizing the effects of
environmental exposures [43]. The heritable variability of these genes may be associated
with an altered efficiency of the processes in which they are involved [43]. Among these,
the enzymes belonging to the glutathione S-transferase (GST) and cytochrome P450 (CYP)
families take part in a two-step detoxification process of a wide spectrum of environmental
xenobiotics [44,45]. Moreover, the vast majority of GSTs’ functions are associated with
detoxification or anti-oxidation processes: structural changes in these molecules can lead
to a high variation in their enzymatic activity, resulting thus in OS intensification which
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can lead to an increase in susceptibility to chronic diseases such as hypertension and
cancer [46]. Similarly, cytokine genes can also be polymorphic, resulting in an alteration
of the overall expression and secretion of these molecules, partly explaining the inter-
individual differences in immune responsiveness [1].

Thus, the aim of this study is to evaluate the systemic oxidative and inflammatory
status alteration in a hospital working population routinely exposed to air-FA. Moreover, to
better understand the role of inter-individual differences in the exposure-related outcomes,
all participants were genotyped for polymorphisms involved in xenobiotic metabolism
and in cytokine production. We selected the following polymorphisms: CYP1A1 exon 7
(A > G), which is involved in phase I metabolic pathways, GSTT1 (Presence/Absence) and
GSTM1 (Presence/Absence), which are involved in phase II reactions, and, finally, TNF-«
(=308, G > A) and IL-6 (—174, G > C) to evaluate the possible role of an alteration in the
production of cytokines involved in long-term inflammation processes. Indeed, our interest
is to highlight the susceptibility biomarkers relevant in occupational studies and, more
specifically, their role in influencing the oxidative and inflammatory status.

2. Materials and Methods
2.1. Study Population

Sixty-eight workers variously exposed to FA (nurses, health care assistants, laboratory
technicians and pathologists) were recruited at “Citta della Salute e della Scienza” (Turin,
Italy), during the same sampling campaign described in our previous study [7]. Only those
subjects who agreed to give a blood sample were considered eligible for the purpose of this
study. In accordance with the 2013 Declaration of Helsinki, all subjects received detailed
information about the project and gave their informed consent before the participation.
The research protocol was approved by the Bioethical Committee of University of Turin.

Each subject: (1) wore a personal air-FA sampler for an 8-h working shift; (2) completed
a standardised questionnaire; (3) provided biological samples for the quantification of OS
and inflammatory biomarkers: a spot of urine for the quantification of OS biomarkers
(15-Fy¢-IsoP, and MDA) and creatinine (CREA), and a fresh blood sample to measure TNFx
and single nucleotide polymorphisms (SNPs) frequency.

Workers involved in this study were employed in tasks involving FA use in rotation
and were classified ex post as “formalin-employers” or “non-employers”, according to the
use of formalin by each volunteer during the sampling day. The exposure level measured
in the formalin-employers group could be considered as an approximation of the mean
exposure level of the period in which they employed FA-based chemicals. Conversely,
the exposure levels measured in the subject group not employing formalin could be
representative of the general indoor air-FA level.

2.2. Questionnaire, Personal Air-FA Exposure Assessment, and Biological Measurements

The questionnaire and its administration, air-FA sampling and the urine spot collection
and storage have been previously described [7].

Briefly, a standardised questionnaire was administered to all workers to collect infor-
mation about individual factors (sex, age, BMI), working conditions (task, FA exposure,
working years) and lifestyle factors (smoking).

To assess the individual (personal) exposure to air-FA, each volunteer wore a radial
diffusive personal passive sampler during an 8-h working shift.

During the same day, each subject also provided a specimen of blood and a spot of
urine in order to obtain systemic measurement of the studied alterations, given the short
half-life of FA, which is rapidly metabolised after entering in the body.

2.2.1. Personal Air-FA Exposure

Given the high variability in FA exposure according to the different tasks of the
subjects enrolled, the individual exposure was quantified, for each subject, using a radial
symmetry diffusive sampler (Radiello®, ICS Maugeri SpA, Pavia, Italy) (https://radiello.
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com/, accessed on 8 June 2021), as described in previous studies [47,48]. The sampler
was clipped near the volunteers’ breathing zone during a whole working shift, in order to
assess the FA concentration in the air inhaled by each worker.

Briefly, the photoprotective diffusive body of the sampler, operating in diffusive
mode, was equipped with sorbent cartridges consisting in a stainless-steel mesh tube
filled with Florisil™ coated with 2,4-dinitrophenylhydrazine (2,4-DNPH). The reaction
between airborne aldehydes and 2,4-DNPH leads to the production of the corresponding
2,4-dinitrophenylhydrazone, that can be extracted by 2 mL of acetonitrile (Merck, Milan,
Italy), directly inserted in each cartridge tube and then stirred for 30 min. The solution
obtained was subsequently filtered and analysed by reverse-phase HPLC with a UV
detector set at a wavelength of 365 nm. 10-50 pL of the solution were injected and eluted
at flow of 1.9 mL/min. An isocratic elution was performed with acetonitrile/water 38:62
v/v for 10 min, up to acetonitrile/water 75:25 v/v in 10 min, and reverse gradient to
acetonitrile/water 38:62 v/v in 5 min. FA was quantified by high performance liquid
chromatography (HPLC) according to the NIOSH method No. 2016. The quantification
limit was twice the detection limit: 0.10 pg/mL and 0.05 pg/mL, respectively. The CV
values were <5%.

2.2.2. OS Measurement

15-Fp-IsoP and MDA urinary concentrations were quantified by competitive E.L.LS.A.
kit (Urinary Isoprostane ELISA Kit, Oxford Biomedical Research, Rochester Hills, MI,
USA and TBARS assay kit, Abnova, Taipei, Taiwan, respectively) performed according to
the manufacturer’s instructions. Urinary creatinine was determined by the kinetic Jaffé
procedure [49] to normalise the urinary excretion rate of 15-Fy;-IsoP.

Briefly, to measure the total fraction 15-Fy-IsoP, urine samples were incubated for
2 h at 37 °C with 3-glucuronidase and then mixed with an enhanced dilution buffer to
eliminate interferences due to non-specific binding. The assay measures the 15-Fp-IsoP in
samples or standards competing with 15-F,-IsoP conjugated to horseradish peroxidase
(HRP) for binding to a polyclonal antibody specific for 15-F;-IsoP coated on the microplate
through colour development when the substrate is added. The colour intensity is inversely
proportional to the amount of unconjugated analyte in samples or standards. The LOD
was 0.08 ng/mL.

The Thiobarbituric Acid Reactive Substances (TBARS) assay, instead, is based on the
quantification of the MDA-TBA adduct formed by MDA and TBA under high temperature
(99-100 °C) and acidic conditions. The reaction between one molecule of MDA and
2 molecules of 2-thiobarbituric acid leads to the formation of a chromophore and can be
measured colorimetrically at 530-540 nm.

2.2.3. Blood Sample Collection and Inflammatory Biomarkers

Blood samples were obtained by venepuncture (5-10 mL) and collected in heparinised
Vacutainer® (Becton, Dickinson and Company, Franklin Lakes, NJ, USA).

TNF-« was quantified using a Human Soluble Cytokine Receptor Panel kit (MILLIPLEX®
MAP, Merck, Milan, Italy). This assay is based on the Luminex xXMAP® technology, a
multiplex technology capable of performing immunoassays on the surface of fluorescent-
coded magnetic beads known as MagPlex®-C microspheres. Luminex uses proprietary
techniques to internally colour-code microspheres with two fluorescent dyes. Through
precise concentrations of these dyes, distinctly coloured bead sets of 500 5.6 um polystyrene
microspheres or 80 6.45 pum magnetic microspheres coated with a specific capture antibody
are created. After the bead captures an analyte from a test sample, a biotinylated detection
antibody is introduced. Streptavidin-PE conjugate, the reporter molecule, is added to
the mixture to allow the reaction conclusion on the surface of each microsphere. Each
microsphere is identified. Our results were quantified based on fluorescent reporter
signals [50].
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2.2.4. DNA Extraction and Genotyping

Genomic DNA was extracted from white blood cells isolated with the Ficoll separation
method and stored at —140 °C. Vials containing whole blood were centrifuged at 1000 rpm
for 10 min, with the centrifuge brake set to off. Plasma was aspired with a venturi pump,
leaving about 1-2 mL of plasma in the vial. The remaining content was transferred in
a Falcon tube and the pellet was diluted 1:2 with RPMI-1640 medium (Thermo Fisher
Scientific, Inc., Waltham, MA, USA) or PBS (Thermo Fisher Scientific, Inc., Waltham, MA,
USA) previously heated in a thermostatic bath. The tube content was then transferred
drop by drop, at least in the first steps, in a clean Falcon tube containing 10-15 mL of
Biocoll solution previously heated in a thermostatic bath. Falcon tubes were centrifuged
for 25-30 min at 1700-1800 rpm with the centrifuge brake off. The opalescent ring formed
containing lymphocytes and monocytes was transferred in a clean tube. The washing step
was performed with RPMI-1640 medium, adding 5 mL of medium drop by drop, mixing
by inversion 1-2 times and then adding medium up to 30-50 mL. Tubes were centrifuged
for 8-10 min at 1400 rpm with centrifuge brake off. The supernatant was removed by
aspiration with a Venturi pump and the pellet was gently re-suspended by hitting the
bottom of the tube. If the supernatant was turbid, RPMI-1640 medium was again added
in tubes with samples up to 15-20 mL; samples were mixed by inversion and centrifuged
8-10 min at 1200 rpm with the centrifuge brake off. The supernatant was removed, the
pellet re-suspended and 1 mL of freezing medium (50% inactivated FBS (Thermo Fisher
Scientific, Inc., Waltham, MA, USA), 40% RPMI-1640 medium, 10% DMSO (Merck, Milan,
Italy)) was then added drop by drop to each sample. Cells were resuspended, and 1 mL of
the sample was transferred in a cryovial. Vials were stored at —80 °C and then at —140 °C.
DNA extraction was conducted by using a salting-out procedure: white blood cells were
centrifuged at 14,000 rpm and the pellet was resuspended in a solution consisting of 340 uL
white cell lysis buffer (10 mM Tris pH 7.6 (Merck, Milan, Italy); 10 mM EDTA (Merck, Milan,
Italy) and 50 mM NaCl (Merck, Milan, Italy)), 10 pL of SDS 10% (Merck, Milan, Italy) and
30 uL of proteinase K (Merck, Milan, Italy). After incubation at 55 °C for 30 min, 200 uL of
saturated sodium acetate was added to the solution. The samples were vigorously shaken
and centrifuged at 14,000 rpm for 5 min. Subsequently, 0.5 mL of isopropanol for DNA
precipitation were added to the supernatant solution and, after centrifugation at 14,000 rpm
for 1 min, 0.5 mL of 70% ethanol was added to remove salt from the pellet. After 30—60 min
at room temperature, the pellet was resuspended in 50 uL of ultrapure distilled water.

All subjects were genotyped for GSTT1, GSTM1, CYP1A1 exon 7, TNF-oc and IL-6 by
using primers and methodologies as described in Table 1. PCR reactions were performed
in a 25 pL volume containing about 10 ng DNA (template), with a final concentration of
1X Reaction Buffer (Thermo Fisher Scientific, Inc., Waltham, MA, USA), 1.5 mM of MgCl,
(Thermo Fisher Scientific, Inc., Waltham, MA, USA), 5% of DMSO (Thermo Fisher Scientific,
Inc., Waltham, MA, USA), 250 uM of dNTPs (Thermo Fisher Scientific, Inc., Waltham, MA,
USA), 0.5 uM of each primer, and 1 U/sample of Taq DNA polymerase (Thermo Fisher
Scientific, Inc., Waltham, MA, USA). Cycles were set as follows: 35 cycles, 1 min at 95 °C,
1 min at 60-65 °C (depending on the gene polymorphism, Table 1), 1 min at 72 °C, and a
final extension step 10 min at 72 °C. Amplification products were detected by ethidium
bromide (Merck, Milan, Italy) staining after 3% agarose gel (Societa Italiana Chimici, Rome,
Italy) electrophoresis.

2.3. Statistical Analysis

Statistical analyses were performed by SPSS Statistics 27 (IBM SPSS Statistics, New York,
NY, USA) and RStudio (RStudio Desktop 1.2.5042, RStudio Inc., Boston, MA, USA). A
Shapiro-Wilk test was performed to assess the normality of the distributions.

Descriptive analyses were performed by using x? or Fisher tests for categorical vari-
ables (sex, smoking, task, working years, and gene polymorphisms) and a Wilcoxon test
or t-test for continuous variables (age, BMI, FA, 15-Fy-IsoP, MDA, and TNF-«), as ap-
propriate. Non-parametric correlations were assessed by Spearman’s test to investigate
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the correlation between biomarkers and FA exposure, and between biomarkers them-
selves. Non-parametric comparison of biological and environmental variables between
formalin-employers and non-employers groups were performed by the Mann-Whitney
or Kruskall-Wallis tests. Boxplots were drawn to show the difference of MDA levels be-
tween formalin-employers and non-employers according to GSTT1, GSTM1, and CYP1A1
polymorphisms.

Table 1. Description of primer sequence, annealing temperature, methodology employed and PCR product size (bp).

Polymorphism Main T PCR
Gene }II\ICBF Function Sequence o) Methodology  Product Reference
Protein Size (bp)
CYP1A1 Phase-I 5'-AAGACCTCCCAGCGGGCAAT-3'
(A>G) rs1048943 metabolic 5-AAGACCTCCCAGCGGGCAAC-3 60 ARMS-PCR 162 [51]
enzyme 5'-CTCTGGTTACAGGAAGCTAT-3'
GSTT1 Phase-II ' ’
p 5-TTCCTTACTGGTCCTCACATCTC-3
(iﬁ:ssee:ccs / 151601993659 n;:zltza}l’)r?lléc 5 - TCACCGGATCATGGCCAGCA- 63 PCR 480 [52]
GSTM1 Phase-1II
P 5-CTGGATTGTAGCAGATCATGC-3’
(g’fsseerﬁ‘ccg/ rs1183423000 H;flf‘}lfr‘r’lgc 5-CTGCCCTACTTGATTGATGGG-3. PCR 273 1531
TNF-«
(—308, G > 4) Pro. 5 -TCTCGGTTTCTTCTCCATCG-3'
rimer rs1800629 inflammator 5'-ATAGGTTTTGAGGGGCATGG-3 60 ARMS-PCR 184 [54]
G-semse primer Y 5-AATAGGTTTTGAGGGGCATGA-3'
A-sense primer
IL-6
174 G>0) Pro. 5'-TCGTGCATGACTTCAGCTTTA-3
rimer rs1800796 inflammator 5'-AATGTGACGTCCTTTAGCATG-3’ 60 ARMS-PCR 190 [55]
Gesemse primer Y 5-AATGTGACGTCCTTTAGCATC-3'
C-sense primer
3. Results

The general description of the sample was described in the previous paper [7], while
the following descriptive analyses are referred to FA exposure (Tables 2 and 3).

Table 2. Characteristics of the sampled population presented as formalin-employers and non-employers groups. Differences
between formalin-employers and non-employers groups were tested by x?/Fisher tests as appropriate and Wilcoxon tests
for categorical and continuous variables, respectively.

Formalin-Employers (n = 23) Non-Employers (n = 45)

Characteristics p-Value
n (%) n (%)
Sex
Male 5(21.7) 7 (15.6) 0522
Female 18 (78.3) 38 (84.4) ’
Smoking
Yes 7(30.4) 12 (26.7)
No 16 (69.6) 33 (73.3) 0.780
Task
Healthcare assistant 4(17.4) 11 (24.4)
Nurse 7(30.4) 20 (44.4) 0133
Laboratory technician 7 (30.4) 12 (26.7) )
Pathologist 5(21.7) 2(4.4)
Working years
<5 3(13.0) 5(11.1)
5-10 5(21.7) 10 (22.2) 0.973
>10 15 (65.2) 30 (66.7)
Median IQR Median IQR
Age (years) 44.00 14.00 49.00 13.00 0.369
BMI (kg/m?) 23.44 420 23.40 7.32 0.429
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Table 3. FA exposure, biomarker measurements, and polymorphism frequencies of the sampled population presented as

formalin-employers and non-employers groups. Differences between formalin-employers and non-employers groups were

tested by %2 /Fisher tests as appropriate and Wilcoxon tests for categorical and continuous variables, respectively.

Formalin-Employers (n = 23) Non-Employers (n = 45)
Parameters p-Value
Median IQR Median IQR
FA (ng/m®) 57.3 125.9 135 12.7 <0.001
15-Fy-IsoP (ng/mg CREA) 16.06 14.98 2.16 2.67 <0.001
MDA (uM) 2.29 0.67 1.25 0.64 <0.001
TNF-« (pg/mL) 15.35 16.51 11.59 7.31 0.023
n (%) n (%)
GSTT1
GSTT+ 15 (65.2) 38 (84.4) 0120
GSTT Null 8(34.8) 7 (15.6) )
GSTM1
GSTM+ 16 (69.6) 34 (75.6) 0772
GSTM Null 7 (30.4) 11 (24.4) )
CYP1A1
wt 15 (65.2) 32(71.1) 0.782
mutation carrier 8(34.8) 13 (28.9) :
TNF-u
wt 18 (78.3) 30 (66.7) 0.405
mutation carrier 5(21.7) 15 (33.3) :
IL-6
wt 15 (65.2) 32 (71.1) 0782
mutation carrier 8 (34.8) 13 (28.9) )

wt, wild type.

As expected, the difference in FA levels between formalin-employers and non-employers
proved to be highly significant (p < 0.001). Concerning biomarkers, the comparison between
formalin-employers and non-employers revealed a significant alteration in both oxidative
and inflammatory status. Specifically, significant differences were found in 15-F,-IsoP
(p < 0.001), MDA (p < 0.001), and TNF-« (p = 0.023). Conversely, no differences were
found concerning confounding factors such as gender, age, BM], tasks, working years and
smoking habits, nor in the frequency of polymorphisms’ distribution.

The air-FA concentration was significantly and positively correlated with 15-Fy-Isop
(Spearman’s tho = 0.269, p = 0.027) and MDA (Spearman’s rho = 0.647, p < 0.001). Among
biomarkers a correlation was found between 15-Fy-Isop and MDA (Spearman’s rho = 0.471,
p <0.001) and MDA and TNF-« (Spearman’s rho = 0.299, p = 0.013).

Regarding the gene polymorphisms, GSTT1 Null subjects had higher MDA concentra-
tion than GSTT1+ in both formalin-employers and non-employers t = 2.220, p = 0.038 and
t =2.827, p = 0.007, respectively Figure 1A).

In formalin-employers, higher MDA levels were found in subjects GSTM1 Null
(t=10.679, p = 0.031, Figure 1B) compared to GSTM1+ and in those who carried at least one
mutated allele for the CYP1A1 gene (U = 20.50, p = 0.008, Figure 1C) in comparison with
the wt. The additional comparison between the wt and carriers of mutation for the other
biomarkers did not provide any significant results.
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Figure 1. Boxplot of MDA levels in formalin-employers and non-employers according to the five polymorphisms analysed:
(A) GSTT1, (B) GSTM1, (C) CYP1A1, (D) TNF-«, (E) IL-6. In each panel the non-employers data are depicted on the left side,
while the formalin-employers data are on the right. In each group, the boxplot in light grey shows the mutation carriers

for the selected genes, while the boxplot in dark grey is related to the wt. *: p < 0.05, **: p < 0.01, ns: not significant, dots

represent the outliers.

4. Discussion

FA has been the most popular fixative in histology: the ease in use, the low cost and
the variety of techniques that can be performed following fixation are only some of the
properties which made widespread the usage of this chemical [56]. Nevertheless, the health
and safety risks associated with formalin exposure are still a matter of concern [57].

The main aim of this study was to investigate wide range of outcomes in terms of
alteration of the oxidative and inflammatory status related to occupational exposure to
FA, considering the possible role of genetic polymorphisms in modulating the individual
response.

The FA metabolism includes several oxidation steps that could lead to ROS gener-
ation [58], and, in turn, to the alteration of exposed subjects’ biomolecular profiles, as
confirmed in this study.

Oxidative stress and inflammatory biomarkers levels must be interpreted as the
outcome of the metabolic pathways of the days before sampling.

Among formalin-employers we found a significant alteration in the systemic oxidative
status, highlighted by significantly higher urinary concentration of 15-F,;-IsoP and MDA
than in non-employers. In line with our results, many studies in literature reported inter-
esting data demonstrating systemic adverse effects following FA exposure in occupational
settings [4,59,60].

A huge number of studies to date have demonstrated the role of ROS in the patho-
genesis of chronic diseases including cancer. ROS sources could be both endogenous,
from mitochondria, peroxisomes or inflammatory cell activation, and exogenous, caused
by environmental agents, radiations, pharmaceuticals, or industrial chemicals. When an
excess of ROS is produced for a long time, resulting in a condition known as OS, cellular
structure and functions may be affected by significant damages, which, in turn, may induce
somatic mutations and neoplastic transformation [61,62].
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The air-FA concentration measured in the workers’ breathing zone resulted positively
correlated with levels of 15-Fy-IsoP and MDA. These results agree with reports of our
previous studies, coming from professional exposures monitoring and toxicology research.
Bellisario et al. (2016), particularly, demonstrated a direct role of air-FA exposure on the
alteration of the oxidative status, with higher levels of urinary 15-Fp;-IsoP and MDA in
nurses employing FA, although MDA levels were found to be significantly higher only in
nurses exposed to liquid FA, in particular, higher FA concentrations [7].

The high MDA levels in formalin-employers are noteworthy, since the interaction
between this molecule and nucleic acid bases can lead to several adducts, including the 3-
(2-deoxy-p-D-erythro-pentafuranosyl)-pyrimido-[1,2-«]-purin-10(3H)-onedG (M;dG) [63].
Specifically, in a study on pathologists” exposure to FA, the M;dG concentration was found
to be significantly higher in workers than in the control group, with a dose-dependent
relationship associated with exposures exceeding 66 j1g/m3 [63]. In our study, the median
FA concentration measured in the formalin-employers group was 57.3 pg/m3. Therefore,
we can suppose that our sample, or at least a some of the volunteers enrolled, might be at
risk of M1dG adducts formation.

Concerning the correlations between OS biomarkers, we also found a significant,
positive correlation between MDA and 15-F;-IsoP, about which contrasting reports have
been previously published [64,65].

The specific role of FA in triggering airway inflammation remains still unclear [26]. In
a study on workers employed in the production and the utilisation of FA-melamine resins,
Seow et al. (2015) highlighted a potential association between FA and immunosuppression,
suggesting that high exposures may result in subtle immunological alterations [24]. We
found a significant difference in TNF-« level, with the higher concentration in the formalin-
employers group. This finding is remarkable, since TNF- is able to trigger the transcription
of the nuclear factor kappa B, involved, in turn, in both inflammatory and OS processes [61].
Moreover, these results are in line with the results provided by Oztan et al. (2020), reporting
an increase in TNF-o and IL-6 serum levels in workers employed in a fibre manufacturing
company exposed to FA [60]. The significant positive correlation we found between TNF-«
and MDA levels, might be considered as a possible link between the alteration in both
inflammatory and oxidative status, even though contrasting reports can be found [66-68].
Our results, thus, could be further evidence of the role of FA in the immune profile
alteration.

In this context, the investigation of genetic susceptibilities, and more specifically, the
analysis of genetic polymorphisms that may be involved in modulating the individual
susceptibility to occupational disease is of utmost importance [43]. Indeed, the results from
previous studies and the present study could enable identification of worker subgroups
susceptible to specific workplace exposures, and to provide useful inputs to update the
current exposure limits [43].

In a recent review, Nielsen et al. (2017) reported that polymorphisms seem not to have
any influence on modulating the genotoxic effect due to FA exposure [14]. Despite these
premises, in our study we found lower MDA levels in GSTT1 Null subjects, both in the
formalin-employers and non-employers, in formalin-employers GSTM1 Null and in those
carrying at least one mutate allele for the CYPIAT exon 7 (A > G) gene.

GSTs are part of a family of phase II metabolising enzymes with a wide variety of
biological roles, including cell protection against OS and toxic molecules. These enzymes
are able to conjugate GSH to hydrophobic and electrophilic molecules, including carcino-
gens, drugs, and products of oxidative metabolism, making them less toxic and suitable
to further modification and/or elimination [69]. The FA oxidation process requires GSH.
Indeed, FA binds quickly and reversibly with GSH right after entering in the body, forming
S-hydroxymethylglutathione, which is subsequently oxidised by cytosolic GSH-dependent
FA-dehydrogenase. In an alternative pathway, free FA is first oxidised to formate, and
then further to carbon dioxide [58]. In vitro studies confirmed that GSH depletion is one of
the consequences of FA exposures: FA-induced cytotoxicity was proved to be influenced
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by intracellular GSH level [70], and, in neurons, FA exposure was found to induce GSH
release, with an increase of the GSx amount in the extracellular medium [71]. The null
genotype is characterised by a deletion of GSTM1 and GSTT1 genes, leading to the absence
of the enzymes. The homozygous deletions are, thus, involved in a reduced elimination of
carcinogens, and the carrier subjects are more susceptible to oxidative injuries [72]. Some
studies have reported the association between deletion of the GSTTI and GSTM1 genes
and an increase in lipid peroxidation biomarkers, such as MDA [66,72]. Contrasting results
are, instead, reported concerning the association between these two gene polymorphisms
and genomic damage in FA exposed workers: some studies found no association [3,73]
while Santovito et al. (2017b), in a pathologist sample, found significantly higher frequency
of sister chromatid exchanges (SCEs) and chromosomal aberrations (CAs) in GSTT1 Null
subjects. Thus, we can suppose that the lower reduction of MDA levels in GSTT1+ formalin-
employers than in non-employers could be ascribed to FA’s pro-oxidant role, overcoming
the enzyme antioxidant activity. The lower MDA concentration found in subjects with at
least a mutated allele for the CYP1A1 was in contrast with results reported in the literature,
where the lower MDA levels were found in wt subjects [67,68]. The main limitation of
this study is the cross-sectional design, which prevents the possibility of causal inferences.
Longitudinal studies should be performed, in order to clarify causes of oxidative and
inflammatory status alteration.

The strengths, on the other hand, consist in the quantification of personal exposure
of workers enrolled in the study and in the measurement of many different biomarkers
representing the different pathways that could be altered following the FA exposure. In
addition, having also considered the genetic differences that could have an impact in the
responsiveness to harmful exposure allowed us to highlight the importance of considering
individual susceptibility in occupational settings.

5. Conclusions

This study confirms once more the role of FA exposure in the alteration of both ox-
idative and inflammatory profiles, highlighting how daily occupational exposure, even at
low levels and in compliance with current legislation, can result in measurable biological
outcomes. Moreover, this research highlights once more the importance of considering
individual susceptibility biomarkers in the characterisation of biological outcomes follow-
ing occupational exposures. These results, therefore, stress the relevance of preventive
measures intended to reduce the FA exposure in workers who must use FA-based com-
pounds during their work, e.g., vacuum systems for pathologists and nurses employed
in operating theatres. In this scenario, in terms of public health and preventive strategies,
gathering information on the different factors able to influence the biological outcome
onset is of utmost importance in order to allow the definition of exposure limits for the
safety of workers.
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