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Abstract. RNA secondary structures are known to be important in
many biological processes. Many available programs have been devel-
oped for RNA secondary structure prediction. Based on our knowledge,
however, there still exist secondary structures of known RNA sequences
which cannot be covered by these algorithms. In this paper, we provide an
efficient algorithm that can handle all RNA secondary structures found
in Rfam database. We designed a new stochastic context-free grammar
named Rectangle Tree Grammar (RTG) which significantly expands the
classes of structures that can be modelled. Our algorithm runs in O(n6)
time and the accuracy is reasonably high, with average PPV and sensi-
tivity over 75%. In addition, the structures that RTG predicts are very
similar to the real ones.

1 Introduction

Secondary structures of RNA molecules play important roles in their function-
alities [1, 2]. Many methods have been proposed to predict RNA secondary
structures. Although the majority of RNAs have simple secondary structures,
pseudoknots (base pairs crossing each other) are found in almost all classes of
RNAs. Pseudoknots are known to be involved in biological functions such as stim-
ulating ribosomal frameshifting [3, 4]. The existence of pseudoknots make the
secondary structure prediction an NP-hard problem, in general [5, 6]. Existing
algorithms attempt to solve the problem by considering a restricted set of pseu-
doknots [7–18]. Not all existing pseudoknots can be modelled. In terms of pre-
diction accuracy, CentroidAlifold[9] generalized a centroid estimator that maxi-
mizes the expected accuracy of structure prediction. Tabei, Yasuo and Kiryu[16]
proposed a fast multiple sequence alignment method named MXScarna in which
the optimal structure that maximized a heuristic scoring function was found
during the group alignments of stem component sequences. RNAaliFold[17] pre-
computed alignments using a combination of free-energy and a covariation mea-
sures, whilst TurboFold[18] utilized an iterative probabilistic method to predict
secondary structures for multiple RNA sequences.
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Despite of so many algorithms to predict RNA secondary structures, there
exist secondary structures of known RNAs in Rfam [19] that cannot be covered
by existing efficient algorithms1. Figure 1 shows such an example.

Fig. 1. A structure in Rfam which cannot be handled by existing efficient algorithms

In this paper, we proposed a grammar-based machine learning method to pre-
dict secondary structures for all RNA sequences in Rfam. Enlightened by [20], we
designed a new stochastic context-free grammar called Rectangular Tree Gram-
mar (RTG), which can model all possible secondary structures of known RNA
sequences in the Rfam database. Each structure can be generated by a unique
operation path, that is, the only sequence of operations that yields this sequence.
A set of paths is obtained using some real RNA sequences with known struc-
tures. Rule transition probabilities and base emission probabilities are calculated
based on this set. In order to determine the unknown secondary structure of a
RNA sequence, dynamic programming is adopted to generate the most probable
structure. This procedure takes O(n6) time, where n is the length of input RNA
sequence.

The proposed approach was evaluated using several sets of sequences with one
containing pseudoknot-free structures and the others with different types of pseu-
doknots. We compared the performance of RTG with popular prediction
algorithms including gfold[7], CentroidAlifold[9], pknotsRG[21], NUPACK[22],
MXScarna[16], RNAaliFold[17] andTurboFold[18]. The experimental results have
shown that our approach outperforms others substantiallywith high PPVand sen-
sitivity, especially on highly-pseudoknotted sequences.

2 Method

2.1 RNA Secondary Structure Definitions

Let S = s1s2 . . . sn be an RNA sequence of length n. Mx,y is the set of base pairs
in the range [x, y], Mx,y = {(i, j)|x ≤ i < j ≤ y, (si, sj) is a base pair}.
Banding: The secondary structure of sx . . . sy is a banding if it satisfies the
following conditions:
(i) for any i, j, k, l ∈ [x, y], i �= k, j �= l, if (i, j) ∈ Mx,y and (k, l) ∈ Mx,y, then
i < k < l < j or k < i < j < l.
(ii) (x, y) ∈ Mx,y.

1 We only consider algorithms which run in O(n6) time.
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Gapped Banding: The secondary structure of sx . . . sy ∪ sp . . . sq is a gapped
banding if it satisfies the following conditions:
(i) By cutting out the gap sy+1 . . . sp−1, the secondary structure over this new
sequence sx . . . sysp . . . sq is a banding.
(ii) ∀(i, j) ∈ M[x,y]∪[p,q], (i, j) is across the gap.

Regular Structure: A structure is a regular structure if no base pair cross-
ing exists, that is, the secondary structure of sx . . . sy is a regular structure if
� ∃i, j, k, l ∈ [x, y] such that (i, j) ∈ Mx,y, (k, l) ∈ Mx,y, and i < k < j < l.

Standard Pseudoknot of Degree k: A structure is a standard pseudoknot of
degree k (k ≥ 3) if it is either a simple standard pseudoknot of degree k or a
gapped standard pseudoknot of degree k.

For any 1 ≤ w ≤ k − 1, let Hw = {(i, j) ∈ Mx,y|xw−1 ≤ i < xw ≤ j < xw+1}.
We allow j = xk for Hk−1 to resolve the boundary case.

The secondary structure of sx . . . sy is a simple standard pseudoknot of degree
k (k ≥ 3) if there exists a set of x1, x2, . . . , xk−1 that satisfies the following
conditions (Figure 2):
(i) x = x0 < x1 < x2 < . . . < xk−1 < xk = y.
(ii) ∀w ∈ [1, k − 1], Hw is a gapped banding.
(iii) ∀(i, j) ∈ Mx,y, ∃w such that (i, j) ∈ Hw.
(iv) ∀w ∈ [1, k − 1], if (i, j) ∈ Hw, (k, l) ∈ Hw+1, then i < k < j < l.
(v) there does not exist two base pairs (i, j) ∈ Hw, (k, l) ∈ Hv, v − w ≥ 2, such
that i < k < j < l.

x = x0 x1 x2 x3 x4 = y

H1

H2

H3

Fig. 2. A simple standard pseudoknot of
degree 4

x = x0 x1 x3 x4 = y

H1

H2

H3

a b

Fig. 3. A gapped standard pseudoknot of
degree 4, where sa . . . sb forms a regular
structure

The secondary structure of sx . . . sy is a gapped standard pseudoknot of degree
k (k ≥ 3) if there exists a, b such that sa+1 . . . sb−1 is a structure defined above
and sx . . . sa ∪ sb . . . sy satisfies the following conditions (Figure 3):
(i) By cutting out the gap sa+1 . . . sb−1, the secondary structure over this new
sequence sx . . . sasb . . . sy is a standard pseudoknot.
(ii) if (i, j) ∈ M[x,a]∪[b,y] is across the gap, then ∃w such that (i, j) ∈ Hw.
Moreover, ∀(k, l) ∈ Hw is across the gap.

Based on our analysis to Rfam database, we focus on all standard pseudoknots
of degree k (k ≥ 3) in this paper.
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Three Banding Structure: The secondary structure of sx . . . sy is a three
banding structure if we can find x1, x2, x3 such that all the following conditions
are satisfied.
(i) x ≤ x1 ≤ x2 ≤ x3 ≤ y.
(ii) ∀(i, j) ∈ M[x,y], it must belong to one of the sets L12, L23, L34, L14 as defined
below.
(iii) for any two pairs (i, j) ∈ Lab and (k, l) ∈ Lab, then i < k < l < j or
k < i < j < l. where Lab = L12, L23, L34 or L14.

Let L12 = {(i, j)|x ≤ i ≤ x1 ≤ j ≤ x2}, L23 = {(i, j)|x1 ≤ i ≤ x2 ≤ j ≤ x3},
L34 = {(i, j)|x2 ≤ i ≤ x3 ≤ j ≤ y}, L14 = {(i, j)|x ≤ i ≤ x1, x3 ≤ j ≤ y}.

x x1 x2 x3 y

(a) A three banding structure.

x

x1

x2

x3

y

(b) Twist this three band-
ing structure so that all base
pairs are parallel.

Fig. 4. A three banding structure and its twisted view

Figure 4 illustrates a three banding structure sx . . . sy (Figure 4(a)) and how
it is twisted so that all its base pairs are grouped into four parallel sets (Figure
4(b)), i.e., L12 (blue and cyan pairs), L23 (red pairs), L34 (green and lime pairs)
and L14 (magenta pairs).

k-Crossing Structure: sxsx+1 . . . sy is a k-crossing structure (k ≥ 3) if it is
either a simple k-crossing structure or a gapped k-crossing structure. Intuitively,
in a k-crossing structure, there exist k gapped bandings where any two of them
crosses each other.

For any (1 ≤ w ≤ k), let Hw = {(i, j) ∈ Mx,y|xw−1 ≤ i < xw, xw−1+k ≤ j <
xw+k}. We allow j = x2k for Hk to resolve the boundary case. Let Cw(1 ≤ w ≤
2k) = {(i, j) ∈ Mx,y|xw−1 ≤ i < j < xw}. j = xj is allowed for C2k. A crossing
set is defined as CHw = Hw ∪ Cw ∪ Cw+k(1 ≤ w ≤ k).

The secondary structure of sx . . . sy is a simple k-crossing structure (k ≥ 3)
if there exist x0, x1, . . . , x2k that satisfy the following conditions:
(i) x = x0 < x1 < . . . < x2k−1 < x2k = y.
(ii) ∀ (i, j) ∈ Mx,y, ∃w such that (i, j) ∈ CHw.
(iii) ∀w ∈ [1, k], CHw is a regular structure, a standard pseudoknot or a three
banding structure.
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The secondary structure of sx . . . sy is a gapped k-crossing structure if and only
if there exists a, b such that sa+1 . . . sb−1 is a defined structure and sx . . . sa ∪
sb . . . sy satisfies the following conditions:
(i) By cutting out the gap sa+1 . . . sb−1, the secondary structure over this new
sequence sx . . . sasb . . . sy is a k-crossing structure.
(ii) ∀w ∈ [1, k], ∀(i, j) ∈ Hw, (i, j) is across the gap sa+1 . . . sb−1.
(iii) ∀(i, j) ∈ M[x,a]∪[b,y] is across the gap, ∃w ∈ [1, k] such that (i, j) ∈ Hw and
�w ∈ [1, k] such that (i, j) ∈ Cw.

x = x0x1 x2 x3 x4 x5 x6 = y

H1

H2

H3

C2 C4 C6

Fig. 5. A 3-crossing structure

Figure 5 depicts a 3-crossing structure. Each color denotes a crossing set, i.e.,
CH1 (cyan), CH2 (red) and CH3 (green).

Recall the example in Figure 1. The difficulty of this structure lies on two
mixed substructures called 3-crossing and standard pseudoknots for which none
of the existing algorithms can model (the green basepairs form a standard pseu-
doknot; the green, blue, and the red basepairs form a 3-crossing structure).
As a matter of fact, among all classes of Rfam structures we defined below,
only gfold[7] can generate some extremely simple 3-crossing structures with
CHw = Hw. None of the aforementioned algorithms can generate k-crossing
structures (k ≥ 4).

2.2 Rectangle Tree and Complete Tree

We have observed that the classic grammar-based algorithm, Simple Linear Tree
Adjoining Grammar[23], is incapable of predicting some highly-pseudoknotted
structures (e.g k-crossing structures). To predict these structures, we introduce
a new grammar called Rectangle Tree Grammar(RTG).

Let V be a finite set of alphabets and Σ be a set of terminal alphabets where
Σ ⊂ V . Let γ be a tree over V such that
(i) each internal node must be labeled with a nonterminal symbol.
(ii) each leaf node can be labeled with a nonterminal or terminal symbol.
(iii) each internal node can have any number of children.
(iv) each edge can be labeled red or black.

Y (γ) (ie. yield of tree) is defined as breadth-first search output of γ where all
the nonterminal symbols are ignored.

A tree is rectangle if it satisfies all the conditions below:
(i) all the internal nodes should be labeled with nonterminal symbols.
(ii) there is only one leaf labeled with nonterminal symbol. This node is called
N4. The path from the root to N4 is called the backbone.
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(iii) there is only one red edge that defines the insertion point of this tree which
is along the backbone.
(iv) considering the red edge N2 −N3, N3 is the only child of N2.
(v) the path from root to N2 is the longest path in upper tree, the path from
N3 to N4 is the longest path in bottom tree.

According to the definition above, a rectangle tree can be divided into two
parts by splitting through red edge, the yield of upper tree is γU , the yield of
bottom tree rooted at N3 is γB. Y (γ) = γUγB, the position between γU and γB
is called an insertion point (where other structures can be inserted in). Figure 6
is an example of a rectangle tree.

N1

f

a b

N2 e

N3

g

c d N4

γU

γB

Fig. 6. A rectangle tree. Orange nodes and blue are labeled with nonterminal and
terminal symbols, respectively. Its yield is fabe, gcd. The comma represents its insertion
point.

A tree is complete if it satisfies all the following conditions:
(i) only one leaf (labeled as N4) is labeled with nonterminal symbol.
(ii) there is no red edge, i.e., no more base pairs will be added.
(iii) the path from root to N4 is the longest path in the tree.
By labeling the red edge in Figure 6, the rectangle tree becomes a complete tree.
The yield is fabegcd. To predict the secondary structure of an RNA sequence,
we compute the most probable rectangle tree whose yield is exactly the given
sequence.

2.3 Grammar States

A rectangle tree or a complete tree has a unique state. As shown in Table 1, a
state corresponds to the secondary structure represented by this tree. The first
seven states are for rectangle trees. The remaining three are for complete trees.

2.4 Tree Operations

There are multiple ways to add bases into a tree. A tree operation defines how a
single base, a base pair or another tree are allowed to be added. In this section,
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Table 1.Grammar states and the corresponding secondary structures of RNA sequence
si . . . sk ∪ sl . . . sj or si . . . sj

State Structure Description

B banding or gapped banding

B3 the structure is three banding, insertion point is the insertion point of the
second banding.

BL the structure is standard pseudoknot of degree k(k ≥ 3), insertion point is the
insert point of the rightmost banding.

BR the structure is standard pseudoknot of degree k(k ≥ 3), insertion point is the
insert point of the leftmost banding.

BLR the structure is standard pseudoknot of degree k(k ≥ 4), insertion point can
be insertion point of any banding except the leftmost and rightmost one.

G 2-crossing structure, after another Cr operation, it will transit to state H.

H k-crossing structure(k ≥ 3).

CPP both si and sj are paired bases.

CPS si is a paired base, sj is a single base.

CSP si is a single base, sj is a paired base.

CSS both si and sj are single bases.

we introduce tree operations from state to state so that it is clear why each
operation is needed. For simplicity, we use S1 to denote γU (the yield of upper
tree) and S2 to denote γB (the yield of bottom tree).

Gapped Banding (State B). A gapped banding is divided by insertion point
into two parts: S1 and S2. Basically, base pairs and single bases of a banding is
allowed to be added from outmost inwards. For rectangle trees, single bases can
only be added at the end of S1 (at N2) or at the beginning of S2 (at N3). To
obtain a gapped banding, the following tree operations are designed:

– L23: add a base pair X into the tree, where the head and tail of X are added
to the end of S1 and the beginning of S2, respectively.

– Ls2: add a single base to the end of S1.
– Ls3: add a single base to the beginning of S2.

Three Banding (State B3). A basic idea to generate a three banding structure
is to add gapped bandings in the twisted structure in a top-down manner. Besides
L23, Ls2 and Ls3, there are three more legal operations to add a gapped banding
(or a base pair) X :

– L12: add the head of X to the beginning of S1; tail of X to the end of S1.
– L34: add the head of X to the beginning of S2; tail of X to the end of S2.
– L14: add the head of X to the beginning of S1; tail of X to the end of S2.

Standard Pseudoknot of Degree k (State BL). To generate standard pseu-
doknot of degree k(k ≥ 3), we designed operation LR (Figure 7). Operation LR
inserts the upper tree of α above N1 of β and its bottom tree above N2. At the
same time, the insertion point is updated to insertion point of β. As a result,
base pairs across upper tree and bottom tree in α and β would cross. Moreover,
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the update of insertion point prevents base pairs in α from crossing base pairs in
subsequent trees adjoined with LR later. After (k− 2) LR operations, standard
pseudoknot of degree k is generated.

k-Crossing (State G and H). In k-crossing structures, without considering
embedded substructures, all base pairs can be grouped into different crossing
sets CH1 . . . CHk, where CHw (∀w ∈ [1, k]) is a regular structure (state B),
a standard pseudoknot (state BL, BR or BLR) or a three banding structure
(state B3). Standard pseudoknots of state BL and BR have their insertion
point within the leftmost and rightmost banding, respectively. Otherwise, if the
insertion point comes from neither the leftmost nor the rightmost banding, this
standard pseudoknot is in state BLR.

Fig. 7. After 2 LR operations over 3
gapped bandings, a standard pseudoknot
of degree 4 is generated

Fig. 8. A 3-crossing can be generated by
2 Cr operations

Operation LL is designed for state BR and BLR. An LL operation on rect-
angle tree ε with ζ inserts the upper tree of ζ above N3 of ε and its bottom
tree under N4. Then by operating LR on α1LR . . . LRαi with ε1LL . . . LLεj,
standard pseudoknot with insertion point in its (i+ 1)th banding is generated.

After generation of all the crossing sets, we designed the operation Cr to link
them up. As is shown in Figure 8, operation Cr on rectangle tree α with β
inserts upper tree of β under N2 of α and bottom tree under N4. So base pairs
between upper tree and bottom tree in α and β would cross. After (k − 1) Cr
operations, k-crossing can be generated.

Fig. 9. Lplus2, Lplus3 and Cp for embedding and concatenation. a is a rectangle tree,
b and c are complete trees
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Embedding and Concatenation (State CPP ). By applying operation Lm to
label the red edge of a rectangle tree to black, a complete tree is generated. Em-
bedding operations Lplus2 and Lplus3 insert a complete tree to N2 and N3 of a
complete tree, respectively. The concatenation operationCp can concatenate two
complete trees. The above three operations are also explained in Figure 9. Note
that if a rectangle tree α embeds (using Lplus2 or Lplus3) some complete trees, it
becomes a new rectangle treeα′. And the state ofα′ remains the same as that ofα.

Single Bases at Both Ends (State CPS, CSP and CSS). As required
by RTG, gapped bandings are always generated at first. Afterwards, applying
proper tree operations as defined above, these gapped bandings compose a more
complicated structure. When no base pairs are to be inserted, Lm alters this
rectangle tree (representing this complicated structure) to a complete tree of
state CPP . Note that the first base si and the last base sj must have been
boundary bases of gapped bandings. When there are single bases at either end
of an RNA sequence, operation Ls1 and Ls4 are used to add single bases to the
beginning of S1 and the end of S2, respectively.

2.5 Grammar

A RTG grammar rule clarifies whether a specific operation is applicable to rect-
angle trees (in CPP, CPS, CSP or CSS state) or complete trees (in any other
state). All the rules are tabulated in Table 2. In the table, α is a single base. (α,β)
is a base pair. (b1, b2) and (b3, b4) are rectangle trees, where comma denotes their
insertion points. (c), (c1), and (c2) represent complete trees.

After applying RTG grammar rules, the state of the predicted structure tran-
sits into another. All valid transitions defined by the grammar rules will be given
in the full paper. For the dynamic programming algorithm for structure predic-
tion and the parameter training, we follow the standard techniques (details will
be given in the full paper).

Table 2. RTG rules

Operation Input output

Ls2 α (b1,b2)*(α) (s1α,s2)
Ls3 α (b1,b2)*(α) (b1,αb2)
L12 (b1,b2)*(b3,b4) (b3b1b4,b2)
L23 α β (b1,b2)*(α,β) (b1α,βb2)
L34 (b1,b2)*(b3,b4) (b1,b3b2b4)
L14 (b1,b2)*(b3,b4) (b3b1,b2b4)
LL (b1,b2)*(b3,b4) (b3,b1b4b2)
LR (b1,b2)*(b3,b4) (b1b3b2,b4)
Lplus2 (b1,b2)*(c) (b1c,b2)
Lplus3 (b1,b2)*(c) (b1,cb2)
Lm (b1,b2) (b1b2)
Cr (b1,b2)*(b3,b4) (b1b3,b2b4)
Cp (c1)*(c2) (c1c2)
Ls1 (c1)*(α) (αc1)
Ls4 (c1)*(α) (c1α)
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3 Experiments

A total of 564 RNA sequences from 44 families were extracted from Rfam
database for our experiments. All these families were classified into three sets
D1, D2 and D3. D1 consists of regular structures (15 families). D2 contains stan-
dard pseudoknots of degree ≥ 3 (27 families). D32comprises a set of 3-crossing
structures (2 families). We carried out a 10-fold cross-validation on D1, D2
and D3 datasets separately. More specifically, take D1 as an example. In each
round of validation, a total of 334 sequences in D1 were randomly partitioned
into ten equal-size subsets. Out of these ten subsets, one subset was retained to
test the model, while the other nine subsets were used to train this model. To
eliminate variability, 10 rounds were performed using different partitions. The
performance evaluated below is based on the average among 10 rounds. We com-
pared the performance of our RTG method with seven popular softwares. For
softwares that take multiple sequences as inputs, like TurboFold, CentroidAlifold
and RNAalifold, we provided them with each family of sequences as an input.
The performance was measured using positive predictive value (PPV) and sen-
sitivity defined below. PPV = α

γ and sensitivity = α
β , where α is the number of

correctly reported base pairs, β is the total number of reported base pairs, and
γ is the total number of base pairs in the Rfam.

Table 3. PPV and sensitivity of RTG and seven other softwares on D1, D2 and D3

Dataset Software PPV(%) Sensitivity(%) Software PPV(%) Sensitivity(%)

D1 62.21 28.97 54.5 24.6
D2 pknotsRG[21] 71.72 65.92 gfold[7] 3 67.35 53.28
D3 19.78 10.13 11.00 6.70

D1 51.41 24.36 93.53 36.73
D2 NUPACK[22] 74.24 62.63 CentroidAlifold[9] 50.24 43.71
D3 37.52 18.88 24.89 12.38

D1 75.54 38.76 77.69 45.60
D2 MXScarna[16] 48.01 52.50 RNAalifold[17] 43.98 51.77
D3 13.73 7.30 23.40 24.88

D1 75.46 34.01 80.22 62.81
D2 TurboFold[18] 55.09 42.07 RTG 80.56 75.09
D3 20.80 10.74 71.95 71.36

Table 3 summarized the comparison of secondary structure prediction for
RTG and seven other state-of-the-art programs. Our RTG program often out-
performs other programs in terms of PPV and sensitivity. The experiment has
revealed that 3-crossing dataset is hard to predict for other programs, which is
consistent with our analysis of previous algorithms. However, the prediction of
RTG program is accurate to a certain extent.

2 There are only two families in Rfam with this complicated structures and one of
the families (RF02032) is too long that our server does not have enough memory to
handle it, we only extracted the 3-crossing structure (without considering embedded
substructure) to run.
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Apart from RTG, NUPACK[22] and RNAalifold[17] performed best in esti-
mating the secondary structure for 3-crossing dataset. The performance regard-
ing this dataset is further illustrated in Figure 10, which presents the predicted
structure of NUPACK, RNAalifold and RTG over AE005174-2 as well as the
trusted annotation in Rfam. The underlined parentheses(< − >,A − a and
B − b) denotes the correctly predicted base pairs.

Fig. 10. An detailed comparison for predicting the structure of AE005174-2(RF00140)
in Rfam

Evidently, RTG behaved the best with PPV = 87.5% and sensitivity = 70.0%.
The PPV and sensitivity of RNAalifold were 56.2% and 45.0%, respectively. NU-
PACK reached even lower PPV and sensitivity. In addition to its high accuracy
evaluated using PPV and sensitivity, RTG predicted a structure much more sim-
ilar to the ground truth. RTG thought the secondary structure of AE005174-2
is a 3-crossing. Furthermore, it almost pointed out all the bandings correctly.
Even for pairs denoted by B − b, the pairing position was very close. However,
NUPACK and RNAalifold predicted it as regular structures, which was way far
from its real structure.
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