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Abstract

Loin muscle area (LMA) and loin muscle depth (LMD) are important traits influencing the pro-

duction performance of breeding pigs. However, the genetic architecture of these two traits is

still poorly understood. To discern the genetic architecture of LMA and LMD, a material con-

sisting of 6043 Duroc pigs belonging to two populations with different genetic backgrounds

was collected and applied in genome-wide association studies (GWAS) with a genome-wide

distributed panel of 50K single nucleotide polymorphisms (SNPs). To improve the power of

detection for common SNPs, we conducted a meta-analysis in these two pig populations and

uncovered additional significant SNPs. As a result, we identified 75 significant SNPs for LMA

and LMD on SSC6, 7, 12, 16, and 18. Among them, 25 common SNPs were associated with

LMA and LMD. One pleiotropic quantitative trait locus (QTL), which was located on SSC7

with a 283 kb interval, was identified to affect LMA and LMD. Marker ALGA0040260 is a key

SNP for this QTL, explained 1.77% and 2.48% of the phenotypic variance for LMA and LMD,

respectively. Another genetic region on SSC16 (709 kb) was detected and displayed promi-

nent association with LMA and the peak SNP, WU_10.2_16_35829257, contributed 1.83%

of the phenotypic variance for LMA. Further bioinformatics analysis determined eight promis-

ing candidate genes (GCLC, GPX8, DAXX, FGF21, TAF11, SPDEF, NUDT3, and PACSIN1)

with functions in glutathione metabolism, adipose and muscle tissues development and lipid

metabolism. This study provides the first GWAS for the LMA and LMD of Duroc breed to ana-

lyze the underlying genetic variants through a large sample size. The findings further

advance our understanding and help elucidate the genetic architecture of LMA, LMD and

growth-related traits in pigs.

Background

The pig, which has abundant phenotypes, is a model animal that not only intimately resembles

man in physiology, anatomy, and genetic architecture[1] but also contributes to meat

PLOS ONE | https://doi.org/10.1371/journal.pone.0218263 June 12, 2019 1 / 21

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Zhuang Z, Li S, Ding R, Yang M, Zheng E,

Yang H, et al. (2019) Meta-analysis of genome-

wide association studies for loin muscle area and

loin muscle depth in two Duroc pig populations.

PLoS ONE 14(6): e0218263. https://doi.org/

10.1371/journal.pone.0218263

Editor: Roberta Davoli, Universita degli Studi di

Bologna, ITALY

Received: December 20, 2018

Accepted: May 29, 2019

Published: June 12, 2019

Copyright: © 2019 Zhuang et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data

required to replicate the findings in this study are

available on Figshare (https://doi.org/10.6084/m9.

figshare.8019551.v1).

Funding: We would like to thank the Natural

Science Foundation of China (31601912 and

31790411), the Science and Technology Planning

Project of Guangdong Province (Grant No.

2017B020201012), the Natural Science Foundation

of Guangdong Province (Grant Nos.

2018B030315007 and 2017A030313213) and the

http://orcid.org/0000-0002-7583-1576
http://orcid.org/0000-0002-7031-2160
https://doi.org/10.1371/journal.pone.0218263
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0218263&domain=pdf&date_stamp=2019-06-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0218263&domain=pdf&date_stamp=2019-06-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0218263&domain=pdf&date_stamp=2019-06-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0218263&domain=pdf&date_stamp=2019-06-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0218263&domain=pdf&date_stamp=2019-06-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0218263&domain=pdf&date_stamp=2019-06-12
https://doi.org/10.1371/journal.pone.0218263
https://doi.org/10.1371/journal.pone.0218263
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.6084/m9.figshare.8019551.v1
https://doi.org/10.6084/m9.figshare.8019551.v1


consumption[2]. In the past decades, lean pigs account for a large share of the pork consump-

tion market, and the traits that affect swine growth have been important breeding targets in

the pig industry[2]. Loin muscle area (LMA) and loin muscle depth (LMD) play important

roles in the determination of growth traits (e.g., back fat and carcass lean rate)[3]. Thus, pre-

diction of growth traits by investigating LMA and LMD is important. It is generally accepted

that both of nutrition and growth environment of the pig can affect the growth and develop-

ment of loin muscle[4, 5], and muscle growth may be subject to number of muscle fibers in

swine muscle composition[6]. However, genetics is widely considered to be the most impor-

tant factor for the loin muscle development. Hence, it is the primary means to achieve this goal

in terms of genetics, such as finding causal genes or mutations that affect muscle development

[7, 8]. LMA and LMD are heritable and moderate-heritability above traits, where the estimated

heritabilities range from 0.35 to 0.47[9–11], showing that these two traits can be improved via

genetic approach.

To dissect the molecular basis of the divergent phenotypes of LMA and LMD among differ-

ent individuals, researchers have selected various populations[12–14] using multiple strategies

[15, 16]. For instance, using exiguous microsatellite markers across the pig entire genome,

genome scans have detected a limited number of quantitative trait loci (QTLs) for LMA[17]

and LMD[18]. Despite some progress in the traditional genetic improvement of carcass and

growth-related traits, inadequacies and challenges remain to be overcome to elucidate the bio-

logical mechanisms of complex traits[19].

To date, 27,878 QTLs associated with 718 traits have been reported in the pig QTL database

(http://www.animalgenome.org/cgi-bin/QTLdb/SS/index, Jul 24, 2018). Among them, 330

and 41 QTLs are associated with LMA and LMD, respectively. These discoveries have provided

a certain number of molecular markers to the breeding for swine LMA and LMD. For

instance, Edwards et al.[20] used 510 Duroc × Pietrain F2 animals genotyped for 124 microsat-

ellite markers that are uniformly spaced across the genome and detected a significant QTL that

affects LMA and related backfat trait. A similar approach was employed in a study related to

LMD[21]. The researchers detected a significant QTL on Sus scrofa chromosome (SSC) 11 that

explains approximately 6% of the phenotypic variance of LMD. Although many QTLs have

been detected, these findings are still deficient due to the inferior power of QTL mapping and

poor resolution in the majority of QTLs[22]. Another factor that cannot be ignored is that the

confidence intervals are commonly in the order of ~30 cM, and such a large region may con-

tain several genes, which hamper the optimization of plausible candidate genes[23, 24]. With

the development of genomic tools and high-density single nucleotide polymorphism (SNP)

marker panels in recent years, genome-wide association studies (GWAS), a powerful strategy

in detecting genetic variants associated with complex traits, have been widely used in humans

[25], and livestock[26, 27]. In pigs, GWAS have been conducted to explore the genetic variants

and genetic architecture on a great diversity of importantly economic traits[28]. These studies

successfully identified causal mutation and verified the causal genes[29]. For LMA and LMD,

GWAS have also been performed to detect the underlying genetic mechanisms[4, 30], but the

sample size of these studies is smaller compared with that of the current study. Although

GWAS have obtained remarkable findings[31], the use of association studies in the genetics of

human and other species is bound by population structure and limited sample size[32]. There-

fore, to enhance the detection power and verify the significant discoveries identified in single-

population GWAS, meta-analysis of GWAS was widely used in human[33] and livestock[34]

owing to the powerful statistical efficiency.

In this study, we performed a GWAS, based on phenotype records using Porcine SNP50

Beadchip in two Duroc pig populations with different genetic contexts (American origin and

Canadian origin). The American and Canadian original populations comprised 3916 and 2127
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individuals, respectively. Moreover, a meta-analysis combining the full GWAS results from the

two populations was conducted and uncovered additional significant SNPs. This study aimed

to identify genomic regions and plausible candidate genes that lead to the phenotypic diversity

of LMA and LMD. This study can serve as a basis to elucidate the molecular architecture

underlying muscle development in pigs, humans, and other mammals.

Materials and methods

Ethics statement

All procedures involving animals in this study met the guidelines for the care and use of exper-

imental animals established by the Ministry of Agriculture of China. The ethics committee of

South China Agriculture University (SCAU) (Guangzhou, China) approved this study

(Approval number SCAU#0017).

Animals and phenotype

In this study, experimental animals, including American and Canadian origin Duroc popula-

tions, were raised in the Wens Foodstuff Group Co., Ltd. (Guangdong, China) following the

same feeding standards. Briefly, a total of 6043 pigs of these two Duroc populations were used

in the present study, including 3916 American origin pigs and 2127 Canadian origin pigs. The

pigs of the American original population were born between 2013 and 2017, and the other was

born between 2015 and 2017. All pigs of the two populations sustained uniform feeding condi-

tions and fine fodder and consistent management during the fattening period from 30 to 100

kg live weight to minimize the impact of non-genetic factors. Phenotypic records included

LMA and LMD. For American and Canadian populations, phenotypes of LMA and LMD

were collected by practiced investigators from the 10th-rib to 11th-rib of pigs at the weight of

100 ± 5 kg by an Aloka 500V SSD B ultrasound (Corometrics Medical Systems, USA), which

employed diagnostic ultrasound system and transducers to acquire high resolution images,

and computer software was used to ascertain the LMA[11].

Genotyping and quality control

Genomic DNA was extracted from ear tissue following the traditional phenol/chloroform method.

The quality and quantity of the DNA samples were measured with a NanoDropTM 2000 (Thermo

Fisher Scientific, Waltham, MA, USA) as described by Wang et al.[35]. In brief, all DNA samples

were assessed by ratios of light absorption (A260/A280) in the range of 1.8–2.0 and diluted to a

final concentration of 50ng/μL. Genotyping was conducted using Geneseek Porcine 50K SNP

chip (Neogen, Lincoln, NE, United States), which contains 50,703 SNP markers across the entire

genome. Quality control (QC) procedures were carried out using PLINK v1.07 software[36] with

the parameters of animal call rates> 0.95, SNP call rates> 0.9, minor allele frequencies> 0.01,

and P> 10−6 for Hardy–Weinberg equilibrium test. SNPs with no position information and

located on the sex chromosomes were also removed. Notably, the two populations follow the same

quality control criteria. After QC, a final set of 38,790 and 35,845 informative SNPs and 3916 and

2127 individuals were retained for single-trait GWAS in the American and Canadian original

Duroc populations, respectively. Furthermore, in the meta-analysis of GWAS, a common set of

40,030 differently eligible SNPs for LMA and LMD across the populations were later used.

Population structure analysis

In consideration of the different genetic contexts of the two Duroc populations, principal com-

ponent analysis (PCA) was performed to detect the possible population stratification using
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GCTA tool[37]. We initially conducted a blended PCA by combing the two populations with

the first two eigenvectors belonging to each population and then drew a PCA plot. The top five

eigenvectors were embedded subsequently as covariates in the association analysis model to

correct and decrease the confounding effect of population structure in the massive sample

association study herein[38]. Meanwhile, genomic control, a prevailing method for solving

stratification, was also performed to acquire the genomic inflation factors (λ). Then, a quan-

tile-quantile (Q-Q) plot was constructed using R script to assess the influence of population

stratification on the GWAS.

Single-trait GWAS

The entire processes in the single-trait GWAS were performed using the software of genome-

wide efficient mixed-model Analysis (GEMMA)[39] and genome-wide complex trait analysis

(GCTA)[37]. The genomic relatedness matrix between individuals within each population was

used to perform single-trait GWAS by GEMMA. GEMMA provides two alternative options

(the centered genotypes or standardized genotypes) to estimate the relatedness matrix from

genotypes. Although the choice of which way to use relies on the underlying genetic mecha-

nism of a given trait, the two matrices exert negligible effects[39]. In the present study, the

standardized option (“-gk 2”) was used to estimate a n × n relatedness matrix. GWAS was per-

formed independently for LMA and LMD in each Duroc pig population with a univariate lin-

ear mixed model fitted in GEMMA. The estimated n × n standardized relatedness matrices

(K) between the individuals within populations as well as the calculated top five eigenvectors

were used in the model as follows:

y ¼Waþ Xbþ uþ ε

where y is the vector of phenotypic values; W is the incidence matrix of covariates (fixed

effects) that comprise the top five eigenvectors derived from PCA, sex and live weight; α is the

vector of corresponding coefficients including the intercept; X is the vector of marker geno-

types; β is the corresponding effect size of the marker; u is an m × 1 vector of random effects,

with u ~ MVNm(0, λ τ−1K); and ε is the vector of random residuals, with ε ~ MVNn(0, τ−1In).

τ−1 is the variance of the residual errors; λ refers to the ratio between the two variance compo-

nents; K is a known n × n relatedness matrix calculated in previous step; and I refers to the

identity matrix. MVNn denotes the n-dimensional multivariate normal distribution. Bonfer-

roni correction was applied to determine the genome-wide and chromosome-wide signifi-

cance thresholds, which were defined as 0.05/N and 1/N, respectively. N is the number of

filtered SNPs for each trait of American and Canadian original Duroc populations.

Meta-analysis

A meta-analysis was performed across the different genetic contexts of Duroc pig populations

for a trait on the strength of single-trait analysis using METAL software[40]. METAL converts

the direction of effect and the P value observed from each study ί into Z-scores. The key statis-

tic formulae for the approach used herein was previously described[40, 41]. Notably, 40,030

common SNPs were detected in the American and Canadian origin populations. Bonferroni

correction was applied to determine the genome-wide significance threshold (0.05/40,030)

and the chromosome-wide significance threshold (1/40,030).

SNP-based heritability estimation and contribution to phenotypic variance

The GCTA software was used to estimate the variance explained by genome-wide SNPs (SNP-

based heritability) for each trait in the two populations via the restricted maximum likelihood
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approach, relying on the genomic relationship matrix estimated from all the autosomal SNPs.

To partition the phenotypic variance onto each of the autosomes, we also appointed a model

to investigate the contributions by each chromosome as described by Yang et al.[37]. Further-

more, the GCTA tool was used to calculate the phenotypic variance explained by each sugges-

tive or significant SNP, which was detected by single-trait GWAS. Notably, the fixed effects

including the first five PCA eigenvectors, sex and live weight were embedded as covariates to

adjust the population stratification and latent relatedness[42].

LD analysis and conditional analysis

Many SNPs, which were located on several narrow regions, were associated with LMA and

LMD in the Canadian original Duroc population, and they were detected both by single-trait

and meta-analysis GWAS. To further verify the linkage disequilibrium among these SNPs and

detect candidate regions connected with the two traits, we employed PLINK v1.07[36] and

Haploview v4.2[43] for haplotype block analysis. We also performed conditional analysis to

determine the potential associated SNPs that might be masked in the putative region by

intense signal. In brief, the peak SNP or the one that explained the largest phenotypic variance

was selected to perform a univariate linear mixed model via converting its genotypes into

covariates[28, 44]. Keeping that in mind, the other covariates used previously were consistent.

Regional association plots were generated using the R package v3.4.3.

Candidate gene search and functional annotation

The functional genes were searched on the strength of Sscrofa 11.1 genome version (http://asia.

ensembl.org/Sus_scrofa/Info/Index). Gene sets with the criteria of including or nearest the signifi-

cant SNPs were selected to conduct KEGG pathways and Gene Ontology (GO) analysis. Pathway

analysis and GO analysis was conducted using the DAVID bioinformatics resource (https://david.

ncifcrf.gov/, Aug 6, 2018, version 6.8). Fisher’s exact test was used to assess the significance of the

enriched terms with P< 0.05 and detect the genes involved in biological processes[2, 45]. In addi-

tion, GeneCards (http://www.genecards.org/) and the NCBI (https://www.ncbi.nlm.nih.gov/)

database were used to query gene functions and determine promising candidates.

Results

Phenotype and heritability analysis

We acquired four phenotypic data from two Duroc populations of 6043 pigs, which met the

quality control standards, including LMA and LMD. Descriptive statistics of phenotypes and

the SNP-based heritability of LMA and LMD are shown in Table 1. The coefficients of varia-

tion (CV) of LMA and LMD in the American and Canadian original populations ranged from

7.10% to 8.94% and 7.89% to 11.22%, respectively. Results showed that different scopes of CV

values indicated different levels of sample variability between the two pig populations. The

SNP-based heritability of each trait was estimated using a univariate model, where the pheno-

typic variance was partitioned into the variance explained by genetic components and residual

variance with the genetic relationship matrix. The genomic heritabilities of the traits in the two

populations are moderate-heritability, ranging from 0.37 to 0.39, showing that genetic technol-

ogy could effectively promote the genetic improvement of these traits.

Single-trait GWAS

The effects of potential population stratification were corrected using PCA. In this study, the

two Duroc pig populations were clearly identified via PCA, as shown in Fig 1. Although almost
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all individuals were classified into one cluster within each population, the plot implied a slight

population stratification. The Manhattan and QQ plots for LMA and LMD are shown in Fig 2

and S1 Fig. The genomic inflation factor (λ) at each trait ranged from 1.03 to 1.10, and none of

the Q-Q plots showed any sign of inflation, indicating consistent consequence with PCA.

Table 1. Descriptive statistics and heritability for loin muscle area (LMA) and loin muscle depth (LMD) traits in two Duroc populations.

Traits1 Source Unit N Mean (±SD) Min Max C.V./% h2 (±SE)

LMA American origin cm2 3916 42.28±3.78 26.40 54.80 8.94 0.37±0.02

LMD mm 3916 52.36±3.72 37.30 65.00 7.10 0.39±0.02

LMA Canada origin cm2 2127 39.14±4.39 27.30 56.60 11.22 0.37±0.03

LMD mm 2127 47.91±3.78 37.00 61.20 7.89 0.38±0.03

Number (N), Mean (standard deviation), Minimum (Min), Maximum (Max), coefficient of variation (C.V.), heritability (standard error) of LMA and LMD traits values.
1Loin muscle area (LMA); Loin muscle depth (LMD)

https://doi.org/10.1371/journal.pone.0218263.t001

Fig 1. Population structure for two Duroc populations. pc1 = first principal component; pc2 = second principal component. The first two PCs derived from

the genomic kinship matrix were extracted to assess the population structure. In this study, the two Duroc pig populations can be clearly identified via principal

component analysis.

https://doi.org/10.1371/journal.pone.0218263.g001
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We herein performed four separate association analyses for LMA and LMD in the two pop-

ulations using a univariate linear mixed model. Multiple significant SNPs associated with

LMA and LMD for the American and Canadian original populations of Duroc breed are listed

in Tables 2 and 3, respectively. In summary, 24 SNPs were detected on SSC6, 7, 12, 16, and 18.

Notably, eight SNPs showed significant association with more than one trait, suggesting that

they exert pleiotropic effects on multiple carcass traits.

Five SNPs were significantly associated with LMA and LMD in the American original

Duroc population, of which two common SNPs were associated with LMA and LMD at differ-

ent significance levels (Tables 2 and 3). These two SNPs were located close to genes RAS gua-

nyl releasing protein 4 (RASGRP4) (SNP on SSC6: 47.35Mb) and fibroblast growth factor 21

(FGF21) (SNP on SSC6:54.07Mb). They both explained 1.18% of the phenotypic variance of

LMA. Three SNPs were associated with LMD at the chromosome-wide significance level. Of

these SNPs, the most significant was ALGA0065784 (SSC12: 26.37Mb) and was located close

to gene ENSSSCG00000034682, and it explained 1.20% of the phenotypic variance of LMD.

For the Canadian original Duroc pig population, 19 SNPs were associated with LMA and

LMD. As shown in Tables 2 and 3, six common SNPs were associated with these two traits at

different significance levels. Among them, six SNPs associated with LMA reached the chromo-

some-wide significance level (P< 2.79E-05), and five SNPs associated LMD reached the

genome-wide significance level (P< 1.39E-06). The most significant SNP, ALGA0040260, was

located at 30.34Mb and was near the gene Nudix hydrolase 3 (NUDT3) on SSC7. This SNP

Fig 2. Manhattan plots of genome-wide association studies for LMA and LMD in the two Duroc pig populations. The x-axis represents the chromosomes,

and the y-axis represents the -log10(P-value). Different colors indicate various chromosomes. The solid and dashed lines indicate the 5% genome-wide and

chromosome-wide Bonferroni corrected thresholds, respectively. The thresholds of the genome-wide and the chromosome-wide levels are P< 1.29E-06 and

P< 2.58E-05 (American population); P< 1.39E-06 and P< 2.79E-05 (Canadian population); P< 1.25E-06 and P< 2.50E-05 (meta-analysis). Manhattan

plots on the left are shown for the single-trait association analysis in (A) American original population, (B) Canadian original population, and (C) meta-

analysis for LMA. Manhattan plots on the right are shown for the single-trait association analysis in (D) American original population, (E) Canadian original

population, and (F) meta-analysis for LMD.

https://doi.org/10.1371/journal.pone.0218263.g002
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explained 1.77% of the phenotypic variance of LMA. As for LMD, the peak SNP in this region,

ALGA0040263, was located at 30.35 Mb within the NUDT3 gene on SSC7 and contributed 2.48%

of the phenotypic variance of LMD. The remaining 13 SNPs reached the chromosome-wide sig-

nificance level, of which 10 were associated with LMA (all located on SSC16) and three with LMD

(all located on SSC7). The most significant SNP of the 10 SNPs, WU_10.2_16_35829257 contrib-

uted 1.83% of the phenotypic variance of LMA. This SNP was not located within any gene; none-

theless, it was in close proximity to gene sorting nexin 18 (SNX18). In addition, the remaining

SNPs, which were close to each other on SSC16 between 33.46 Mb and 34.37 Mb, were located

within or near several genes, such as ADP ribosylation factor like GTPase 15 (ARL15), glutathione

peroxidase 8 (putative) (GPX8), and multiciliate differentiation and DNA synthesis associated cell

cycle protein (MCIDAS), and a not openly reported gene (ENSSSCG00000016898) (Table 2).

Meta-analysis across populations by trait

We conducted a meta-analysis of GWAS for each trait across these two Duroc pig populations.

The meta-analysis integrates all association signals from the two populations. Thus, when the

two populations show consistent association directions with the traits of interest, the detection

power for these traits improve via the meta-analysis. In the current study, 68 SNPs associated

with LMA and LMD were identified in the across-population meta-analysis. Among them, 56

SNPs were associated with LMA, and 11 of these 56 SNPs reached the genome-wide signifi-

cance level (P< 1.25E-06). In addition, 37 SNPs were associated with LMD, and 15 of these 37

SNPs reached the genome-wide significance level (P< 1.25E-06) (Fig 2; S1 Table). Among

Table 2. Significant SNP and associated genes for LMA in the single-trait association analysis.

SSC1 SNP ID Position(bp)2 P value3 Population Minor/major Allele MAF4 EPV/%5 Candidate gene Distance/bp6

6 Hal_2 47357966 6.05E-07 American T/C 0.094 1.18 RASGRP4 24726

12784654 54079560 9.84E-07 American T/C 0.094 1.18 FGF21 -3046

7 ALGA0040260 30342161 8.40E-06 Canadian A/G 0.216 1.77 NUDT3 -1092

ALGA0040263 30356985 8.48E-06 Canadian G/A 0.216 1.77 NUDT3 within

ASGA0032536 30476054 1.06E-05 Canadian C/A 0.217 1.74 PACSIN1 within

ASGA0032526 30497305 1.06E-05 Canadian C/T 0.217 1.74 PACSIN1 within

INRA0024788 30317219 1.35E-05 Canadian T/C 0.217 1.72 ENSSSCG00000032242 -3195

DRGA0007345 21886880 1.39E-05 Canadian G/A 0.362 1.74 ENSSSCG00000032646 474

16 WU_10.2_16_35829257 33757844 5.75E-06 Canadian C/A 0.328 1.83 SNX18 -18902

ASGA0072998 33589982 1.12E-05 Canadian T/C 0.328 1.81 ARL15 24383

ALGA0090190 33515233 1.34E-05 Canadian A/G 0.328 1.78 ARL15 within

ALGA0090184 33467573 1.35E-05 Canadian G/A 0.328 1.78 ARL15 within

MARC0103451 33493718 1.35E-05 Canadian T/C 0.328 1.78 ARL15 within

MARC0074818 33559933 1.35E-05 Canadian T/C 0.328 1.78 ARL15 within

ASGA0073002 33636702 1.57E-05 Canadian T/G 0.328 1.79 ARL15 71103

ALGA0090276 34334858 1.76E-05 Canadian A/G 0.303 1.79 GPX8 -650

ALGA0090273 34364519 2.07E-05 Canadian A/G 0.303 1.78 MCIDAS -13441

ALGA0090242 34031872 2.26E-05 Canadian C/T 0.303 1.78 ENSSSCG00000016898 -9810

1Sus scrofa chromosome.
2SNP position in Ensembl.
3The bold data in this column represent the significant SNP surpass the genome-wide significant threshold, otherwise at the chromosome-wide significant level.
4Minor allelic frequency.
5The proportion of the phenotypic variance explained by significant SNP.
6The location of SNP in upstream/downstream of the nearest gene.

https://doi.org/10.1371/journal.pone.0218263.t002

Meta-analysis of GWAS for loin muscle area and loin muscle depth in pigs

PLOS ONE | https://doi.org/10.1371/journal.pone.0218263 June 12, 2019 8 / 21

https://doi.org/10.1371/journal.pone.0218263.t002
https://doi.org/10.1371/journal.pone.0218263


these 68 SNPs, 25 common SNPs were associated with LMA and LMD simultaneously. In

addition to all the significant SNPs, 17 significant SNPs that were detected in the single-trait

association analysis were confirmed and 51 loci with novel candidate genes were identified in

the meta-analysis. To evaluate whether SNPs associated with LMA and LMD traits in present

study replicate any previously known QTLs, we searched the pigQTLdb based on SNP loca-

tions (S2 Table). Although a large number of QTLs that were mainly detected via QTL map-

ping using sparse microsatellite markers were identified for LMA and LMD in multiple pig

breeds, few QTLs were reported within a narrow interval using the GWAS strategy. Compared

with previous results, our findings revealed many loci in several confined genetic regions and

highlighted two QTLs that influence LMA and LMD.

Haplotype block analysis and conditional analysis

As mentioned above, among the 19 significant SNPs in the Canadian original population, we

found eight significant SNPs on SSC16 in close proximity to be associated with LMA and

detected a haplotype block that spanned 709 kb (Fig 3A) containing the eight SNPs. In particu-

lar, we observed five significant SNPs associated with LMA and LMD, and these significant

SNPs were situated in a 283 kb block on SSC7 (Fig 3B). To examine whether linkage disequi-

librium (LD) masks certain independently associated SNPs and/or potential signals, we per-

formed a step-wise conditional analysis. Then we fitted the peak SNP ALGA0040260 on SSC7

that was significantly associated with LMA and LMD in the Canadian original population into

the univariate linear mixed model as a covariate to inspect these associations. For LMA, the P

values of previous significant SNPs that had strong LD status with lead SNP ALGA0040260

decreased below the minimum threshold line (Fig 4A and 4B). The same pattern was

found for the same peak SNP for LMD trait (Fig 4C and 4D). Analogously, the peak SNP

WU_10.2_16_35829257 on SSC16 that was merely significantly associated with LMA in the

Table 3. Significant SNP and associated genes for LMD in the single-trait analysis.

SSC1 SNP ID Position(bp)2 P value3 Population Minor/major Allele MAF4 EPV/%5 Candidate gene Distance/bp6

6 Hal 47357966 3.88E-06 American T/C 0.094 1.04 RASGRP4 24726

12784654 54079560 4.97E-06 American T/C 0.094 1.05 FGF21 -3046

7 MARC0061142 30716800 1.91E-05 American T/C 0.158 0.61 SNRPC within

12 ALGA0065784 26376192 2.98E-06 American T/C 0.27 1.2 ENSSSCG00000034682 -555

18 WU_10.2_18_58542037 53382393 9.98E-06 American T/C 0.165 0.59 INHBA 477180

7 ALGA0040263 30356985 4.96E-09 Canadian G/A 0.216 2.48 NUDT3 within

ALGA0040260 30342161 5.47E-09 Canadian A/G 0.216 2.48 NUDT3 -1092

ASGA0032536 30476054 7.05E-09 Canadian C/A 0.217 2.45 PACSIN1 within

ASGA0032526 30497305 7.05E-09 Canadian C/T 0.217 2.45 PACSIN1 within

INRA0024788 30317219 8.60E-09 Canadian T/C 0.217 2.43 ENSSSCG00000032242 -3195

DRGA0007345 21886880 1.39E-05 Canadian T/C 0.105 2.05 ENSSSCG00000032646 474

ALGA0039866 26451150 8.72E-06 Canadian G/A 0.362 2.15 TINAG within

ALGA0039447 21940478 1.57E-05 Canadian T/C 0.361 1.98 ZNF165 within

M1GA0027226 26125115 2.21E-05 Canadian A/G 0.274 1.67 FAM83B within

1Sus scrofa chromosome.
2SNP position in Ensembl.
3The bold data in this column represent the significant SNP surpass the genome-wide significant threshold, otherwise at the chromosome-wide significant level.
4Minor allelic frequency.
5The proportion of the phenotypic variance explained by significant SNP.
6The location of SNP in upstream/downstream of the nearest gene.

https://doi.org/10.1371/journal.pone.0218263.t003
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Canadian original population was also fitted into the model as a covariate in the same manner.

The same pattern was also observed as shown in Fig 5A and 5B.

SNP effects and partitioning phenotypic variance by chromosomes

The phenotypic variance explained by significant SNPs, which were detected by single-trait

association analysis, and autosomes were estimated for LMA and LMD in the two populations

using GCTA tool[37] (Tables 2 and 3, Fig 6). For LMA, the peak SNP, Hal_2, located on SSC6,

accounted for 1.18% of the phenotypic variance in the American original population. How-

ever, the significant SNPs in the Canadian original population accounted for 1.72%-1.83% of

the phenotypic variance, and the lead SNP, WU_10.2_16_35829257, located on SSC16, had

the largest contribution (1.83%) to the phenotypic variance. For LMD, the significant SNPs in

the American original population explained 0.59%-1.20% of the phenotypic variance. The

most significant SNP, ALGA0065784, located on SSC12, accounted for 1.20% of the pheno-

typic variance. In the Canadian original population, nine significant SNPs explained 1.67%-

2.48% of the phenotypic variance. Notably, the peak SNP, ALGA0040263, and the second

most significant SNP, ALGA0040260, made an equal contribution to the phenotypic variance

(2.48%), and they were located on a narrow region on SSC7 between 30.34 and 30.35 Mb.

The phenotypic variance explained by each chromosome for LMA and LMD is shown in

Fig 6. The contribution of autosomes differed from each other, and much new information

was obtained. For instance, chromosomes SSC7, SSC8, and SSC16 accounted for 4.35%,

5.72%, and 3.71% of LMA variance in the Canadian original population, respectively.

Although the contribution of SSC8 explained the largest fraction of LMA variance, single-trait

association analysis or meta-analysis did not detect any significantly associated SNPs on this

chromosome. Meanwhile, single-trait association analysis identified numerous SNPs signifi-

cantly associated with LMD on SSC7 in the same population, and chromosome 7 explained

approximately 6.61% of LMD variance. These findings are in line with the results of associa-

tion analysis. The peak shown in Fig 6A and 6C implied that SSC7 should have identified a

large number of significant SNPs, whereas few SNPs were detected on this chromosome in the

American original population.

Fig 3. Linkage disequilibrium (LD) blocks in the significant region on SSC16 (A) and SSC7. (B). LD blocks are marked with triangles. Values in

boxes are LD (r2) between SNP pairs and the boxes are colored according to the standard Haploview color scheme. The complete red boxes with no

numbers indicated that SNP pairs have complete linkage disequilibrium. Annotated genes in the chromosomal region were retrieved from the

Ensemble genome browser (www.ensembl.org/Sus_scrofa/Info/Index).

https://doi.org/10.1371/journal.pone.0218263.g003
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Candidate genes and function analysis

A total of 41 functional genes that were within or nearest the significant SNPs were detected

based on the Sus scrofa 11.1 genome assembly (Tables 2 and 3 and S1 Table). These genes

were used to conduct KEGG pathways and Gene Ontology (GO) analysis. In particular, the

gene set enrichment analysis uncovered that 21 annotated genes had a highlight biology func-

tion with LMA and LMD (S3 Table). In brief, the most significant pathways for LMA and

LMD were related to glutathione metabolism and MAPK signaling pathway, respectively. The

top GO term for LMA was related to transcription and DNA templated whereas that for LMD

was related to regulation of transcription and DNA templated. Given that numerous genes are

involved in important pathways and biological processes, functional annotations in the Gene-

Cards tools and NCBI database as well as copious literatures were investigated and verified.

Hence, eight genes, including Glutamate-Cysteine Ligase Catalytic Subunit (GCLC), GPX8,

death domain associated protein (DAXX), fibroblast growth factor 21 (FGF21), TATA-Box

binding protein associated factor 11 (TAF11), SAM pointed domain containing ETS transcrip-

tion factor (SPDEF), NUDT3, and protein kinase C and casein kinase substrate in neurons 1

Fig 4. Regional association plot of the primary signal (ALGA0040260) associated with LMA and LMD at SSC7. For each plot, the -log10(observed P-

values) of SNPs (y-axis) are presented according to their chromosomal position (x-axis). The red line and darkblue line indicate the genome-wide significance

level (P< 1.39E-06) and the chromosome-wide significance level (P< 2.79E-05), respectively. The primary SNPs are denoted by large blue triangles. SNPs are

represented by colored rhombi according to the target SNP with which they were in strongest LD. The left panel of the figure shows the association results for

LMA (A) before and (B) after conditional analysis on ALGA0040260. The right panel of the figure shows the association results for LMD (C) before and (D)

after conditional analysis on ALGA0040260. The P-value of association results for (B) LMA and (D) LMD after conditional analysis on ALGA0040260 fell

below the predicted threshold.

https://doi.org/10.1371/journal.pone.0218263.g004
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(PACSIN1), with biological functions such as increasing available amino acids in skeletal mus-

cle, mammalian growth, fat deposition, and body size of pig were selected as promising candi-

dates for swine carcass traits and growth-related traits.

Discussion

QTL associated with LMA and LMD

Scientific and comprehensive determining indices are the basis of measuring the level of pro-

duction performance and growth-related traits of swine. LMA and LMD are important traits

influencing the production performance of commercial pigs. Thus, the genetic mechanisms of

LMA and LMD should be elucidated to estimate the affecting factors and consider them for

future pig breeding programs. In this study, we performed four single-trait GWAS in two

Duroc pig populations containing 6043 individuals in total. To improve the power of detection

for common SNPs, we conducted a meta-analysis combining the full GWAS results from the

two populations and uncovered additional significant SNPs. To our knowledge, few studies

used GWAS strategy to analyze LMA and LMD. The present study is the first GWAS for LMA

and LMD focusing on Duroc breeding pigs. Based on a large sample size (n = 6043) and multi-

ple statistical analysis strategies, a total of 75 SNPs associated with LMA and LMD were

detected. Of these SNPs, only one third of the significant SNPs were found to be simulta-

neously associated with both LMA and LMD, although these two traits were highly positively

correlated to each other in American (r = 0.94) and Canadian populations (r = 0.74). The par-

tial overlap of significant SNPs between LMA and LMD may be because the muscle growth

is not only depended on the muscle fiber density, but also the fiber diameter[6, 46, 47]. It

means that the muscle fiber density and the fiber diameter may have great contribution to

the development of loin muscle and consequently affect LMA and LMD. One QTL with pleio-

tropic effects on LMA and LMD on SSC7 was identified in our study. LD analysis uncovered

one haplotype block of 283 kb, in which the most significant SNPs (ALGA0040260 and

ALGA0040263) on SSC7 were associated with LMA and LMD in the Canadian original pig

Fig 5. Regional association plot of the primary signal (WU_10.2_16_35829257) associated with LMA at SSC16. For each plot, the -log10(observed P-values) of SNPs

(y-axis) are presented according to their chromosomal position (x-axis). The red line and darkblue line indicate the genome-wide significance level (P< 1.39E-06) and

the chromosome-wide significance level (P< 2.79E-05), respectively. The primary SNPs are denoted by large blue triangles. SNPs are represented by colored rhombi

according to the target SNP with which they were in strongest LD. The left panel of the figure shows the association results for LMA (A) before conditional analysis on

ALGA0040260. In the right panel of the figure (B), the P-value of corresponding SNPs fell below the predicted threshold.

https://doi.org/10.1371/journal.pone.0218263.g005
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population, whereas a region that partially overlapped with the results herein was identified

significantly associated with carcass length as described by Liu et al.[48]. Notably, previous

studies demonstrated that a hot region that spans approximately 6.5 Mb (from 31.27Mb to

37.74Mb) on SSC7 exert strong QTL effects on carcass traits[14, 49]. Compared with previous

studies, our findings indicated that the pleiotropic QTL for LMA and LMD was fine mapped

within a narrow interval of 283 kb. In addition, on SSC16, a QTL that affects LMA was refined

to a 709 kb interval in this study. In this QTL region, Cho et al.[12] identified a QTL for LMA

at the more distal position from our QTL in an F2 intercross between Landrace and Korean

native pigs (n = 830). In the same region, Choi et al.[13] reported a QTL for LMA that spanned

from 24.3 cM to 44.8 cM using 954 F2 Duroc × Pietrain pigs. Our study increased the power of

QTL detection and narrowed the QTL locations by using high-density molecular markers and

large sample sizes. However, no common SNPs and QTL that were associated with the traits

were shared with the two pig populations in this study. The results showed that the difference

in genetic background greatly influenced the identification of significant SNPs. In subsequent

studies, we will continue to increase the number of samples and the density of breed-specific

markers or use re-sequencing data for the traits analyzed herein.

Fig 6. Heritabilities of LMA and LMD by chromosome in the two populations. Estimates of chromosome-wide heritability on LMA and LMD are drawn

against the chromosome length (x-axis). The blue line represents heritability regressed on chromosome length. Grey area around the blue line is the 95%

confidence level interval for prediction from the linear model. In the figure, (A) and (B) show the heritability that each chromosome explained for LMA in the

American and Canadian original populations, respectively. (C) and (D) show the heritability that each chromosome explained for LMD in the American and

Canadian original populations, respectively.

https://doi.org/10.1371/journal.pone.0218263.g006
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Population stratification control in different genetic backgrounds

Given their powerful detection capability, GWAS are widely adopted for studying the genetics

of natural variation. However, the most basic problem of GWAS is the risk of false positive in

structured populations that may cause spurious associations[50, 51]. In the present study,

three methods were used to resolve this problem: genomic control[28], PC analysis[38], and a

linear mixed model that includes genomic relatedness matrix among individuals[52]. In the

linear mixed model, the top five eigenvectors that calculated separately in the two different

populations via GCTA tool[37] were embedded as covariates in the association analysis model

to reduce the influence of population sub-stratification. As illustrated in S1 Fig, the Q-Q plot

implies that the population stratification was sufficiently controlled with the aid of relatedness

matrix and principal components of the specific population. Nevertheless, only a few variants

were detected in the American original population. Most traits of interest are multifactorial

and many factors affect the detection power of statistical of genetics studies[52]. In this study,

we selected two Duroc pig populations with different backgrounds to perform the same analy-

sis. The qualified sample size of the American original population is much larger than that of

the Canadian original population (3196 versus 2127). Theoretically, the larger the sample size,

the more genetic variations detected. However, a notable exception was detected. The probable

reason is that rare variant SNPs have lower r2 compared to the common alleles contained in

commercial SNP arrays because these SNPs are selected to represent common variants[52].

Thus, additional breed-specific SNP arrays should be developed to boost more dense represen-

tative tag variations for association analysis.

Candidate genes

Basing from the results of KEGG pathway and GO analysis, we obtained a number of func-

tional genes and performed further gene annotations. Eight genes related to LMA and LMD

were selected as promising candidates, of which, two were relevant to LMA, one was relevant

to LMD, and five were involved in both traits. For LMA, GCLC and GPX8 are highlighted as

important candidate genes that play roles in the pathway of glutathione metabolism. GCLC,

the first rate-limiting enzyme of glutathione synthesis, is related to the biological processes of

protein heterodimerization activity and coenzyme binding. Wei et al.[53] found that GCLC
participates in amino acid metabolism and might upregulate the expression of glutathione in

porcine skeletal muscle via feeding pigs with a linseed-enriched diet. GPX8 functions in gluta-

thione metabolism and thyroid hormone synthesis pathways. Damon et al.[54] discovered that

GPX8 is highly expressed in the longissimus muscle of Large White pigs with the function of

response to oxidative stress and oxidation reduction. It was also identified by genome-wide

linkage analysis as a candidate gene for growth and carcass merit in an F2 pig population

because expression QTL (eQTL) analysis of loin muscle tissue demonstrated that GPX8 eQTL

is part of a network relevant to cell cycle and lipid metabolism[55]. For LMD, one candidate

gene, DAXX, was related to LMD trait. DAXX participates in the MAPK signaling pathway

and is also involved in the regulation of transcription and DNA templated. The DAXX gene

encodes a multifunctional protein and interacts with various proteins, such as apoptosis

antigen Fas. Yang et al.[56] found that DAXX, as a novel signaling protein, plays a critical

role in Fas-binding domain, and the elevated expression of DAXX cements Fas-mediated

apoptosis.

For LMA and LMD, many common significant SNPs that are involved in both traits were

found to be close to or within numerous genes. Consequently, five genes were determined as

major functional candidates: FGF21, TAF11, SPDEF, NUDT3, and PACSIN1. The FGF21 gene

encodes a member of the fibroblast growth factor (FGF) family, which plays a critical role in
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lipid metabolism[57], cell growth and development, and wound healing[58]. Ayuso et al.[59]

found that FGF21 is relevant to adipose and muscle tissue development, and functions in lipid

metabolism in purebred Iberian pigs and in cellular and muscle growth in Duroc-crossbred

Iberian pigs. FGF21 also induces PGG-1α and regulates carbohydrate and fatty acid metabo-

lism[60]. TAF11 participates in RNA polymerase II transcription initiation and promoter

clearance pathway and is related to the regulation of transcription and DNA templated. Robin-

son et al.[61] showed that TAF11 enhances TBP-TFIIA complex formation through protein-

protein interactions, and the loss of interaction would encumber the cell growth and transcrip-

tion in vivo. NUDT3 of the Nudix protein family and participates in insulin signaling and ino-

sitol phosphate metabolism pathway. Many studies proved that NUDT3 is the obesity-linked

gene for human[62], Drosophila, and mouse[63], possibly because of its polymorphic activity

against polyphosphate substrates[64]. SPDEF plays a role in DNA binding transcription factor

activity, transcription, and DNA templated. Meanwhile, PACSIN1 is involved in phospholipid

binding and cytoskeletal protein binding. Baranski et al.[65] found that SPDEF and PACSIN1
are associated with adiposity and the amount of fat/triglyceride in tissue-specific knocked

down Drosophila. NUDT3, SPDEF, and PACSIN1 have been identified in a closely linked

region that is associated with obesity or carcass traits, such as body growth and size, in human

or pigs[48, 66, 67]. These candidate genes warrant further investigation.

Comparing the single-trait analysis with meta-analysis

In the present study, we performed four single-trait GWAS in American and Canadian origi-

nal Duroc pig populations using the same linear mixed model and carried out a meta-analysis

to improve the detection power. Comprehensive use of multiple methods improves the effec-

tiveness of detection, but no common significant SNPs were identified between the two popu-

lations. For this case, some issues are worth discussing. First, significant SNPs detected by

single-trait association analysis were significantly less than those detected by meta-analysis.

The results suggest that the number of samples used in the experiment needs to be improved,

although it far exceeds the number in a vast majority of previous studies; population specificity

also possibly contributes to the occurrence of this event[31, 40]. Some informative SNPs that

had large effects on the single-trait GWAS were eliminated during QC in the meta-analysis.

Another intuitive difference between single-trait association analysis and meta-analysis is that

the new P values for all significant SNPs were decreased, and numerous SNPs that were

detected by single-trait association analysis were confirmed via meta-analysis. Similar findings

have been discovered in previous studies that closely related to carcass traits. For instance,

Jiang et al.[68] performed GWAS separately using American and British original Yorkshire

populations to uncover significant variants and candidate genes related to growth and fatness

traits, but they detected no overlapping significant SNPs in the two populations with different

genetic backgrounds. Guo et al.[69] used four pig populations (a White Duroc × Erhualian F2

intercross population, Chinese Sutai, Laiwu, and Erhualian populations) and four methods

(SS-GWAS, MS-GWAS, SM-GWAS, and MM-GWAS, the detailed introductions are shown

in the article) to conduct an association analysis on nine growth and fatness traits. Results

revealed no common loci across the four populations in the single-population GWAS. How-

ever, the meta-analysis was more powerful in detecting the association between markers and

diverse phenotypes, and greater SNPs were perceived compared with the single-population

association analysis. Despite is strong detection effectiveness, the meta-analysis might deduce

a high false positive rate[40, 68]. Therefore, we focused on the overlapping SNPs of single-trait

association analysis and meta-analysis, and conducted a subsequent functional analysis based

on them.
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Conclusions

In sum, we detected a set of significant SNPs for LMA and LMD in 6043 Duroc pigs from two

populations with different genetic contexts. One pleiotropic QTL located on SSC7 with a 283

kb interval was identified to affect multiple traits. Another genetic region on SSC16 (709 kb)

was also discovered to play an important role in LMA. A series of bioinformatics analysis strat-

egies revealed many functional genes for LMA and LMD. For instance, GCLC, GPX8, DAXX,

FGF21, TAF11, SPDEF, NUDT3, and PACSIN1 with biological functions such as increasing

available amino acids in skeletal muscle, mammalian growth, fat deposition, and body size of

pig were selected as promising candidates for swine carcass and growth-related traits. This

study provides the first GWAS for the LMA and LMD of Duroc breed to analyze the underly-

ing genetic variants through a large sample size. These findings revealed the complexity of the

genetic mechanism that forms the phenotypic diversity and provide essential insights into the

future production of pigs in the context of marker-assisted selection.
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