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Accurate segmentation of retinal blood vessels is crucial for enhancing diagnostic efficiency and 
preventing disease progression. However, the small size and complex structure of retinal blood vessels, 
coupled with low contrast in corresponding fundus images, pose significant challenges for this task. 
We propose a novel approach for retinal vessel segmentation, which combines the transformer and 
convolutional dual-path decoding U-Net (TCDDU-Net). We propose the selective dense connection 
swin transformer block, which converts the input feature map into patches, introduces MLPs to 
generate probabilities, and performs selective fusion at different stages. This structure forms a dense 
connection framework, enabling the capture of long-distance dependencies and effective fusion of 
features across different stages. The subsequent stage involves the design of the background decoder, 
which utilizes deformable convolution to learn the background information of retinal vessels by 
treating them as segmentation objects. This is then combined with the foreground decoder to form a 
dual-path decoding U-Net. Finally, the foreground segmentation results and the processed background 
segmentation results are fused to obtain the final retinal vessel segmentation map. To evaluate the 
effectiveness of our method, we performed experiments on the DRIVE, STARE, and CHASE datasets 
for retinal vessel segmentation. Experimental results show that the segmentation accuracies of our 
algorithms are 96.98, 97.40, and 97.23, and the AUC metrics are 98.68, 98.56, and 98.50, respectively.
In addition, we evaluated our methods using F1 score, specificity, and sensitivity metrics. Through a 
comparative analysis, we found that our proposed TCDDU-Net method effectively improves retinal 
vessel segmentation performance and achieves impressive results on multiple datasets compared to 
existing methods.
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Glaucoma, cataracts, diabetes, and other diseases not only cause physical pain to patients but also continue to 
affect their normal life and work1. Research has shown that diabetes is closely related to the structure of retinal 
blood vessels2. Doctors diagnose patients’ conditions by observing the structure of the blood vessels in the retina 
of the patient’s eye fundus image. However, directly observing the fundus image or segmented image through 
manual means can not only take more time but also result in misjudgment due to image quality issues. Therefore, 
automatic segmentation of retinal blood vessels can be used for early diagnosis of certain diseases, improve the 
efficiency of doctor diagnosis, and to some extent, improve the diagnosis results. This has led to the proposal of 
many retinal blood vessel segmentation algorithms, which has achieved good research results.

However, retinal images have low contrast, uneven lighting, and high levels of noise, and retinal blood 
vessels are small in size with complex shape and structure, which makes retinal blood vessel segmentation 
very challenging3. To address the problem of retinal blood vessel detection, numerous excellent scholars have 
proposed unique insights from different perspectives. Zhao et al.4 proposed a non-local total variation model to 
solve the problem of intensity inhomogeneity and low contrast and segmented the retinal blood vessel image into 
superpixels to locate the region of interest. Wang et al.5 determined the wavelet kernel based on the relationship 
between blood vessels and edges and iteratively segmented the blood vessels. You et al.6 proposed a radial 
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projection and semi-supervised method to locate the centerline of low-contrast and narrow retinal blood vessels, 
which helps with vessel segmentation. Yan et al.7 proposed a retinal blood vessel segmentation method based 
on the hessian-based filter and random walk algorithm to enhance vessel structures and improve segmentation 
results to some extent. Imani et al.8 innovatively proposed morphological component analysis based on sparse 
representation to separate retinal blood vessels and lesions, and finally obtained the final segmentation result by 
threshold processing. Although these traditional retinal blood vessel methods have solved some problems, there 
is still a certain gap between the segmentation results and the gold standard label, and the algorithm’s scalability 
is not strong, requiring a significant number of manually adjusted parameters.

With the advent of big data and rapid development of computer hardware, convolutional neural network 
technology has rapidly developed in the field of medical image segmentation and achieved good results. In 
the field of semantic segmentation, many researchers have proposed end-to-end segmentation networks such 
as FCN9, SegNet10, DenseASPP11, etc. In the field of medical image segmentation, many lesion segmentation 
algorithms are variants of the U-Net12 structure. Mlynarski et al.13 proposed a CNN-based tumor segmentation 
method that effectively combines 2D and 3D contextual distances. Murugesan et al.14 proposed Psi-Net, which 
has a single encoder and three parallel decoders, as a universal medical image segmentation architecture. In the 
context of retinal vascular segmentation, Kamran et al.15 introduced a multi-scale generation structure called 
RV-GAN. This approach utilizes two generators and two multi-scale encoders aiming to address the issue of 
information loss during the encoding process in automatic segmentation methods, ultimately enhancing the 
accuracy of retinal vascular segmentation.

In the field of NLP, transformer has been used for modeling sequential data, capturing long-range 
dependencies in text, and achieving remarkable results16. Inspired by the transformer algorithm, Dosovitskiy 
et al.17 introduced transformer into image recognition tasks, transforming an image into a sequence of image 
patches for recognition. transformer has also become one of the research hotspots in the computer vision field. 
For example, there are successive algorithms such as swin transformer18, Swin-Unet19, and TransUNet20.

Although many of the segmentation algorithms mentioned above have achieved good results, they still 
face problems of large-scale segmentation discontinuity and undetectable small blood vessels. Inspired by 
both the encoder-decoder network and the transfomer architecture, we proposed a combined transformer and 
convolutional dual path decoder U-Net (TCDDU-Net), whose overall network is shown in Fig. 1. TCDDU-
Net is an end-to-end retinal vessel segmentation algorithm that can effectively solve the problem of vessel 
fragmentation or undetectability. In this paper, by selectively densely connecting swin transformer blocks, long-
distance dependence can be captured, the network’s receptive field can be improved, and contextual information 
can be modeled. At the same time, features from different stages are collected and feature selection is performed 
to effectively fuse different stage features. In addition, we take the background as a segmentation object and 
design the background decoder to learn the knowledge of the retinal vessel background, which forms a dual-
path encoder with the foreground encoder. Lastly, the background decoder segmentation results are converted 
into retina segmentation results, which are fused with the foreground decoder segmentation results to solve the 
problem of poor background learning of the foreground decoder and improve the segmentation performance. 
To summarize the contribution of our work, we can outline the following three points: 

 (1)  We propose a retinal vessel segmentation algorithm, TCDDU-Net, for the segmentation of small retinal 
vessels.

 (2)  We designed selective dense connection swin transformer block to capture the long-distance dependencies 
of blood vessels for selective dense connection and effective fusion of multi-stage features .

 (3)  We utilize deformable convolution to segment the background, and design a background decoder to learn 
the background knowledge and form a dual-path decoder with the foreground decoder, followed by con-
verting the background segmentation results into retinal vessel segmentation results, and then fusing the 

Fig. 1. TCDDU-Net overall network structure.
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results with the foreground decoder segmentation results to improve the retinal vessel segmentation per-
formance.The rest of this paper is organized as follows. Section “Related work” discusses related work in the 
field. Section “Methodology” describes the design and principles of TCDDU-Net. Section “Experiments” 
presents the experimental results and analysis, comparing the proposed method with other segmentation 
methods. Section “Conclusion” concludes the paper and provides prospects for future work.

Related work
CNN structure: research on convolutional neural networks (CNN) has been very popular in recent 
years. Convolutional neural network (CNN)-based classification algorithms have been widely utilized in 
segmentation networks for the purpose of extracting high-dimensional features, exemplified by Res-Unet21 
and H-DenseUNet22. Therefore, CNNs are driving the development of computer vision and also advancing 
research on retinal vessel segmentation algorithms. Yan et al.23 proposed a segment-level loss to balance fine 
and coarse vessels, which was combined with pixel-wise loss for better balance. Xia et al.24 proposed a coarse-
to-fine segmentation network (CTF-Net) to address noise in retinal vessel segmentation in a cascade manner. 
Guo et al.25 were inspired by DropBlock and introduced Dropout into the U-Net network to mine local features 
of retinal vessels, achieve end-to-end training and prediction, and propose the SD-Unet network structure. Li 
et al.26 proposed a lightweight retinal vessel segmentation network with an attention mechanism that captures 
global information through the attention module and enhances feature representation in the feature fusion 
process while reducing model complexity. Wu et al.27 proposed a scale-aware feature aggregation module (SFA) 
that dynamically adjusts the receptive field to extract features of different scales. They also proposed an adaptive 
feature fusion module (AFF) to effectively fuse features and a multi-level semantic supervision (MSS) to refine 
retinal vessel segmentation results. Xu et al.28 proposed the SPNet, a retinal vessel segmentation network that 
shares a decoder and uses a pyramid-like loss to capture multiscale semantic information and achieve fine 
segmentation of retinal vessel edges at different scales. Zhang et al.29 used Sobel to obtain edge prior knowledge, 
enhanced segmentation boundary in an unsupervised way, denoised the features, and finally integrated them 
into an encoder-decoder architecture for end-to-end retinal vessel segmentation. Yang et al.30 analyzed the pixel 
ratio of coarse and fine retinal vessels and proposed a multi-task segmentation network and fusion network, 
and designed a loss function to solve the problem of sample imbalance. Tariq et al.31 proposed MRC-Net, which 
learns contextual dependencies between different semantic features through multi-scale feature extraction and 
models these dependencies using bidirectional recurrent learning. This method effectively captures retinal vessel 
information at varying scales, pays particular attention to tiny blood vessels, and thereby enhances retinal vessel 
segmentation performance. Zhu et al.32 proposed the DSeU net, which is based on deformable convolution and 
a squeeze-excitation residual module. This network dynamically adjusts the receptive field of retinal vascular 
features, scales the feature weights, and effectively learns the relationships between different features.

Transformer for computer vision: transformer is an important method in the field of natural language 
processing (NLP), initially used to solve machine translation problems, and now it has become one of the 
main methods for various NLP tasks33. However, some outstanding scholars has applied the transformer to 
computer vision tasks, successively proposing methods such as ViT17, swin-transformer18, Swin-Unet19, which 
have promoted the development of the transformer algorithm in the field of vision. ViT converts images into 
multiple 16 16 size patches, and projects the patches into fixed-length vectors as the input of the transformer. 
Finally, image classification is completed through an MLP head. However, ViT has a large number of parameters 
and requires pre-training on large datasets. Therefore, Touvron et al.34 proposed a distillation learning-based 
training strategy for the transformer, which achieved excellent results in training on the ImageNet dataset. swin-
transformer solves the problem of large-scale changes and high resolutions in visual tasks through a hierarchical 
transformer composed of shifted windows, which not only improves the computational efficiency but also 
achieves high experimental indicators in various tasks18, providing inspiration for the design of the algorithm 
in this paper. Swin-Unet uses swin-transformer as the encoding layer of the U-Net network to extract features 
from medical images, and designs a decoder based on swin-transformer to restore the spatial resolution of 
feature maps19. Similarly, there are also methods inspired by the transformer, such as35,36. Yuan et al.37 proposed 
the novel cross-scale attention transformer (CAT), which utilizes a shared attention mechanism and integrates 
useful information from retinal vessel features. Additionally, they designed an edge refinement module (ERM) 
to refine the foreground and background edges of retinal vessels, thus enabling accurate segmentation of blood 
vessels. However, there are still significant gaps in retinal vessel segmentation methods based on the transformer 
structure, and relevant research is still scarce. Therefore, we propose a transformer-based retinal segmentation 
algorithm, which has important research significance and value.

Methodology
We combine transformer and convolutional neural network to propose the TCDDU-Net algorithm, which 
consists of three components: encoder,selective dense connection swin transformer block and dual path decoder. 
This section will describe the overall algorithm implementation idea, including selective dense connection swin 
transformer block, select swin block, and design of background decoder.

Combining transformer and convolutional dual-path decoding U-Net
Inspired by the convolutional neural network and the transformer structure, we combine the advantages of the 
two algorithms and design the TCDDU-Net, whose overall structure is shown in Fig. 1. TCDDU-Net input 
and output sizes are both 48 × 48, with an overall u-shaped structure consisting of an encoder, selective dense 
connection swin transformer block, and dual-path decoder. The encoder consists of a series of convolutional 
and max-pooling operations, which is used to extract deep semantic features of the image. The foreground 
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decoder consists of an upsampling operation and a convolution operation, which is responsible for recovering 
the retinal vessel image resolution. The foreground decoder fuses the features extracted by the encoder with 
the up-sampled feature maps to fully utilize the low and high level features. The background decoder consists 
of deformable convolution, convolution and up-sampling operations that are responsible for restoring the 
resolution of the background image of the retinal vessels and learning about the background. At the same time, 
this paper introduces the selective dense connection swin transformer block in the last stage of feature extraction 
in the encoder to learn long-range dependencies between pixels, model contextual information and increase the 
network receptive field. In addition, the select swin block is introduced to adaptively fuse different sources of 
features, avoiding the introduction of redundant information in the dense connection process. The principles of 
the selective dense connection swin transformer block, the select swin block and the background decoder are 
described in detail in Parts 4, 5 and 6 of this section.

Selective dense connection swin transformer block
In retinal images, the retinal blood vessels are small and complex in structure. For the U-Net algorithm, the 
downsampling operation can lead to the loss of many details, resulting in the segmentation of small retinal 
blood vessels being incomplete or undetectable. To address this issue, this paper proposes the selective dense 
connection swin transformer block, which is added to the final stage of the feature extraction process in the 
encoder. The aim is to fully utilize information from different sources, strengthen the capture of long-range 
dependency relationships, model contextual information, and remove redundant information while focusing on 
useful information fusion. Specifically, the structure of the selective dense connection swin transformer block is 
shown in Fig. 2a, which includes a swin transformer block, a select swin block, and a dense connection structure. 
The swin transformer block is illustrated in Fig. 3, and the select swin block will be introduced in detail in the 
fifth section.

The swin transformer block18 is a multi-head attention module designed based on the sliding window 
approach. It consists of 4 LayerNorm (LN) layers, 2 MLPs, 1 window-based multi-head self-attention, and 1 
sliding window-based multi-head self-attention. The swin transformer block can be represented by the following 
formula:

 
Ẑl =W −MSA

(
LN

(
Zl−1

))
+ Zl−1,  (1)

Fig. 3. Swin transformer block (STB).

 

Fig. 2. Selective dense connection swin transformer block and select swin block.
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Zl =MLP

(
LN

(
Ẑl

))
+ Ẑl,  (2)

 
Ẑl+1 =SW −MSA

(
LN(Zl

))
+ Zl,  (3)

 
Zl+1 =MLP

(
LN

(
Ẑl+1

))
+ Ẑl+1,  (4)

the input and output of the swin transformer block are represented by Zl−1 and Zl+1 , respectively. Ẑl and 
Ẑl+1 are the outputs of W −MSA and SW −MSA, respectively. The calculation formula for self-attention is 
similar to the method38 and is shown as follows:

 
Attention(Q,K, V ) = SoftMax

(
QKT

√
d

+ B

)
V, (5)

where Q,K, V ∈ RM2×d denote the query, key and value matrices. M 2 represents the number of patches in the 
window, and d represents the dimension of the key and query. B indicates relative position bias.

Selective dense connection swin transformer block is composed of 3 swin transformer blocks and 3 select 
swin blocks connected densely. Dense connection can promote the effective flow of information, enhance the 
expressive ability of the model, and solve the problem of feature representation of small blood vessels in the deep 
layers of the network to the maximum extent. Specifically, it can be described by the following formula:

 
Oi =STB

(
Si

)
,  (6)

 
Sj =SSB

(
j, S1,

[
O1, ..., Oj−1

])
,  (7)

where Oi represents the output of the i-th STB, Si represents the input of the i-th STB, j represents the number 
of branches in the input SSB, and [...] represents the input set of the SSB.

Select swin block
Different stages of features contain different information, and direct dense connections can lead to too much 
redundant information. Therefore, it is crucial to select information. Using the filtered information as the input 
of STB can yield a purer output, which helps to model contextual information and capture effective long-range 
dependencies. Inspired by the sknet39 algorithm, we designed a select swin block. Moreover, the select swin block 
is highly flexible and simple, and can be extended to multiple branch inputs. The specific structure is shown in 
Fig. 2b, where GM represents global average pooling and FC represents fully connected operation. The figure 
only shows the case of two branch inputs. In the case of two branch inputs, first, S1 and O1 are added for fusion:

 F 1 = S1 +O1, (8)

next, the global representative information is obtained by performing global average pooling on F 1:

 
M = GM

(
F 1

)
=

1

H ×W

H∑
i=1

W∑
j=1

F 1(i, j), (9)

next, a fully connected operation is applied to M to guide the generation of probability feature maps and to 
filter the features from different sources, followed by the fusion of the adaptively selected features. The specific 
description is as follows:

 C =FC(M),  (10)

 
p1 =

eC
1

eC1 + eC2 ,  (11)

 
p2 =

eC
2

eC1 + eC2 ,  (12)

where C1, C2 ∈ R2×d represents the data of the first and second channels of feature map C.

Background decoder
For segmentation algorithms such as U-Net, Swin-Unet and TransUNet, they take the foreground as the 
segmentation object and ignore the auxiliary role of background information. Therefore, we designed the 
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background decoder to learn the background knowledge to help the network better understand and model 
the background information, understand the contextual information of the background, and avoid incorrectly 
segmenting similar regions into the foreground so as to improve the accuracy of retinal blood vessel segmentation, 
and the structure of the background decoder is shown in Fig. 4. X1, X2 and X3 are the feature maps obtained 
after 2 convolutions in the encoder. The background decoder consists of deformable convolution, convolution 
(convolution kernel size 1), upsampling and feature fusion. The overall process of the background decoder can 
be summarized as follows: firstly, deformable convolution is employed to extract features to better adapt to the 
deformation and spatial variations of the retinal vascular background, followed by increasing the number of 
channels of the feature map using the convolution with up-sampling, and then summing and fusing them with 
the encoder feature map Xi, where i = [1, 2, 3], and ultimately obtaining the background segmentation result.

Experiments
Based on the above proposed algorithm, we experimentally demonstrate the performance of the algorithm. 
In this section, we first describe the dataset and data processing methods, followed by the implementation 
details of the experiments. Then, we analyze the effects of different numbers of selective dense connection swin 
transformer blocks and the background decoder on the metrics. Finally, we compare our algorithm with other 
approaches.

Datasets introduction
This study conducted experiments on three widely recognized retinal vessel segmentation datasets, namely 
DRIVE40, STARE41, and CHASE42. The DRIVE dataset has an image resolution of 565 × 584 and was established 
by Staal et al. using fundus images of diabetic retinopathy patients. The STARE dataset was publicly released 
in 2000 and has an image resolution of 700 × 605, half of which is images of patients with retinal lesions. The 
CHASE dataset has a resolution of 999 × 960 and was obtained by capturing images of children’s eyes. Figure 5 
shows the original images and corresponding label images of the three datasets.

Data preprocessing
By appropriately preprocessing the data, the pressure on the model training can be alleviated and the training 
efficiency can be improved. Therefore, this article performs the following preprocessing operations on the 
data. First, the original color fundus images are converted to grayscale images. Second, the data is zero-mean-
normalized to make the pixel values of the image follow a normal distribution. Third, the contrast limited 
adaptive histogram equalization (CLAHE)43 algorithm is used to enhance the contrast of the image and highlight 
the location of small or tiny vessels. Fourth, gamma transformation is used to adjust the brightness of images 

Fig. 5. Partial fundus images and corresponding label images of the three datasets.

 

Fig. 4. Background decoder.
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that are too bright or too dark. Fifth, the pixel values of the image are divided by 255 for normalization, which 
can alleviate model overfitting and accelerate model training speed. The entire processing process and its effects 
are shown in Fig. 6.

In addition, due to the limited ability to collect data, the number of images in the datasets is relatively small 
and the sample diversity is insufficient, making it challenging to train the model. Therefore, in this paper, the 
images of the three datasets were randomly cropped into patches of size 48 × 48. The DRIVE and STARE 
datasets are cut by 300,000 patches, and CHASE is cut by 280,000 patches. The cropped patches were then 
divided into training and validation sets in a 1:1 ratios. Figure 7 shows some of the retinal vessel patch images.

Evaluation metrics
To validate the effectiveness of the proposed algorithm, this paper adopts Sensitivity (Se), Specificity (Sp), 
Accuracy (Acc), F1-score (F1), and Area Under Curve (AUC) of Receiver Operating Characteristic (ROC) as 
evaluation metrics. Their calculation formulas are shown below:

 
Se =

TP

TP + FN
,  (13)

 
Sp =

TN

TN + FP
,  (14)

 
Acc =

TN + TP

TN + FP + TP + FN
,  (15)

 
Pr =

TP

TP + FP
,  (16)

 
F1 =

2× Pr × Se

Pr + Se
,  (17)

Fig. 7. Patches with a size of 48 × 48. (a) Is the original RGB image, (b) is the preprocessed image, and (c) is 
the corresponding segmentation label image.

 

Fig. 6. Intermediate results of the preprocessing process.
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where TP represents the number of correctly predicted positive samples, TN represents the number of correctly 
predicted negative samples, FP represents the number of negative samples predicted as positive, FN represents 
the number of positive samples predicted as negative.

Experimental details
The experiments in this paper were conducted on an NVIDIA GeForce RTX 3090 graphics card and the neural 
network structure was implemented using the PyTorch framework with a version of 1.7.1. The learning rate was 
set to 0.003, and Adam was used as the optimizer to train the model with default values for the parameters. For 
gamma transformation, the gamma coefficient was set to 1.2. When applying the CLAHE method, the threshold 
for contrast limiting parameter was set to 2.0 and the size of the grid for histogram equalization was set to 8 × 8.

Ablation experiments
To investigate the effect of incorporating the selective dense connection swin transformer block (STB) into 
the original model, we conducted ablation experiments on the DRIVE, STARE, and CHASE datasets, and 
subsequently analyzed and summarized the experimental findings. Tables 1, 2, and 3 showed the effect of the 
number of STB and SSB on the test results of different datasets. The experimental data in the tables indicate that 
the best performance was achieved when the number of STB+SSB was 3. Compared with the original U-Net 
network, F1, Acc, AUC, and Se were improved by 2.74%/1.54%/3.67%, 0.37%/0.01%/0.57%, 0.63%/0.42%/0.57%, 
and 5.18%/6.49%/1.78% respectively in the DRIVE/STARE/CHASE datasets. The performance of the proposed 
method was significantly improved, especially in F1 and Se metrics. In the DRIVE and STARE datasets, the Sp 
metric was slightly lower than that of the original U-Net algorithm, but in the CHASE dataset, the Sp metric 
was improved by 0.49%. When the number of STB and SSB modules was 1 or 2, the performance of the U-Net 
network was also improved, which demonstrated the effectiveness of the selective dense connection swin 
transformer block.

We integrated the background decoder after the selective dense connection swin transformer block and 
conducted experiments on the DRIVE, STARE, and CHASE datasets. The experimental results in Table 4 
demonstrate a significant improvement in algorithmic metrics when the background decoder is incorporated. 
Specifically, on the DRIVE dataset, the F1 metric improved by 0.17%, the Acc metric by 0.1%, the Sp metric by 
0.26%, and there was a slight improvement in the AUC metric. On the STARE dataset, the F1 metric showed 
an improvement of 0.53%, the Acc metric improved by 0.22%, and the Sp metric improved by 0.47%. Similarly, 
on the CHASE dataset, the F1 metric improved by 0.34% and the Se metric showed a 0.45% improvement, in 
addition to improvements in the Acc, AUC, and Sp metrics. By treating the background as a learning object 
and leveraging the acquired background information, the integration of the background decoder leads to a 
substantial enhancement in the performance of retinal vessel segmentation.

STB+SSB numbers F1 Acc AUC Sp Se

0 (baseline) 74.37 ±  2.58 96.62 ±  0.62 97.86 ±  0.34 97.72 ±  0.73 79.64 ±  3.83

1 75.32 ±  2.53 96.78 ±  0.44 98.05 ±  0.32 97.84 ±  0.51 80.39 ±  3.64

2 76.66 ±  2.01 97.02 ±  0.38 98.18 ±  0.31 98.15 ±  0.38 79.85 ±  3.54

3 78.04 ±   1.84 97.19 ±   0.42 98.43 ±   0.27 98.21 ±   0.47 81.42 ±   3.45

Table 3. CHASE dataset ablation experiment. Significant values are in bold.

 

STB+SSB numbers F1 Acc AUC Sp Se

0 (baseline) 79.56 ± 6.23 97.17 ± 0.7 98.18 ± 1.04 98.89 ±  0.39 75.75 ± 10.84

1 80.12 ± 6.31 97.24 ± 0.69 98.32 ± 0.98 98.89 ±  0.35 76.60 ± 10.31

2 80.50 ± 6.50 97.27 ±  0.65 98.44 ± 0.98 98.82 ± 0.34 77.83 ± 11.06

3 81.10 ±  4.41 97.18 ± 0.49 98.60 ± 0.73 98.37 ± 0.50 82.24 ±  8.15

Table 2. STARE dataset ablation experiment. Significant values are in bold.

 

STB+SSB numbers F1 Acc AUC Sp Se

0 (baseline) 79.74 ± 2.01 96.51 ± 0.31 98.03 ± 0.50 98.20 ± 0.53 79.03 ± 5.66

1 82.05 ± 1.34 96.81 ± 0.24 98.53 ± 0.40 98.10 ± 0.48 83.56 ± 4.97

2 82.26 ± 1.44 96.86 ± 0.23 98.57 ± 0.41 98.16 ± 0.45 83.49 ± 4.99

3 82.48 ± 1.38 96.88 ± 0.23 98.66 ± 0.37 98.12 ± 0.47 84.21 ± 4.88

Table 1. DRIVE dataset ablation experiment. Significant values are in bold.
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In addition, we compares the U-Net and TCDDU-Net prediction results with real labels, and the comparison 
results are shown in Figs. 8, 9 and 10. By observing the prediction results and real label images, it is found that 
TCDDU-Net pays more attention to medium-sized and smaller blood vessels, and effectively utilizes contextual 
information to model long-distance dependencies, modeling and information fusion through background 
to foreground to alleviate the problem of retinal blood vessel segmentation breakage, and then improve 
segmentation effect.

Comparison of evaluation metrics for different algorithms
To provide a more comprehensive comparison of the performance of TCDDU-Net, we compared it with several 
state-of-the-art approaches from recent years, as depicted in Table 5, 6, and 7.

In the DRIVE dataset, TCDDU-Net performs optimally in F1, Acc, AUC, and Sp metrics, with the F1 metric 
reaching 82.65. For the STARE dataset, although the Acc and AUC metrics do not reach the optimal levels, 

Fig. 9. Prediction results of U-Net and TCDDU-Net on STARE dataset.

 

Fig. 8. Prediction results of U-Net and TCDDU-Net on DRIVE dataset.

 

Datasets F1 Acc AUC Sp Se

DRIVE 82.65 ±   1.57 96.98 ±   0.25 98.68 ±   0.37 98.38 ±   0.42 82.58 ±   5.18

STARE 81.63 ±   5.53 97.40 ±   0.64 98.56 ±   0.88 98.84 ±   0.32 79.20 ±   9.41

CHASE 78.38 ±   1.68 97.23 ±   0.40 98.50 ±   0.23 98.23 ±   0.45 81.87 ±   2.99

Table 4. Background decoder test results on DRIVE, STARE and CHASE datasets.
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TCDDU-Net is ranked second. Moreover, the F1 and Sp metrics of TCDDU-Net outperform other comparative 
methods. In the experimental results on the CHASE dataset, TCDDU-Net demonstrates superiority with AUC 
and Sp metrics of 98.50 and 98.23, respectively, surpassing other algorithms. TCDDU-Net also ranks second in 
terms of Acc and Se metrics among the compared algorithms, with scores of 97.23 and 81.87, respectively.

Methods F1 Acc AUC Sp Se

Yu44 – 96.13 97.87 98.22 78.37

DUNet45 81.43 96.41 98.32 98.78 75.95

Yan46 – 96.38 98.33 98.57 77.35

U-Net++47 78.59 97.57 97.63 – –

CTF-Net48 – – – – –

CcNet49 – 96.33 97.00 98.48 77.09

Yang30 – 96.26 – 98.21 79.46

Xu28 – 96.92 98.12 97.90 85.04

Ours (w/o background decoder) 81.10 ±   4.41 97.18 ±   0.49 98.60 ±    0.73 98.37 ±   0.50 82.24 ±   8.15

Ours (TCDDU-Net) 81.63 ±    5.53 97.40 ±   0.64 98.56 ±   0.88 98.84 ±   0.32 79.20 ±   9.41

Table 6. Comparison results of different segmentation algorithms in STARE,[Key: Best, Second Best]. 
Significant values are in bold and underline.

 

Methods F1 Acc AUC Sp Se

Yu44 – 95.24 97.23 98.03 76.43

DUNet45 82.37 95.66 98.02 98.00 79.63

Yan46 – 95.38 97.50 98.20 76.31

U-Net++47 81.92 96.88 98.12 – –

CTF-Net48 82.41 95.67 97.88 – –

CcNet49 – 95.28 96.78 98.09 76.25

Yang30 – 95.79 – 97.51 83.53

Xu28 – 96.64 98.28 98.02 82.43

Ours (w/o background decoder) 82.48 ±   1.38 96.88 ±   0.23 98.66 ±   0.37 98.12 ±   0.47 84.21 ±    4.88

Ours (TCDDU-Net) 82.65 ±   1.57 96.98 ±   0.25 98.68 ±   0.37 98.38 ±    0.42 82.58 ±   5.18

Table 5. Comparison results of different segmentation algorithms in DRIVE,[Key: Best, Second Best]. 
Significant values are in bold and underline.

 

Fig. 10. Prediction results of U-Net and TCDDU-Net on CHASE dataset.
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Based on the above analysis and Tables 5, 6 and 7, it is evident that the proposed algorithm in this paper 
outperforms the others on the three datasets, achieving AUC scores of 98.68/98.56/98.50 and Acc scores of 
96.98/97.40/97.23. Overall for the 3 datasets with 5 metrics, many of the metrics are ranked in the 1st and 2nd 
position, which fully demonstrates that TCDDU-Net shows superior performance.

Conclusion
Accurately segmenting retinal blood vessels in fundus images can help doctors improve the efficiency of eye 
disease diagnosis. In this paper, we propose the TCDDU-Net for retinal vessel segmentation, aiming to improve 
segmentation accuracy. Based on the U-Net network, we combine transformer and convolution modules 
to propose the TCDDU-Net, which focuses on segmenting small vessels and alleviates issues such as vessel 
segmentation discontinuity and undetectability. We introduce the selective dense connection swin transformer 
block to capture the long-distance dependencies of retinal blood vessels and model the context of surrounding 
information, thereby expanding the network’s receptive field. We also design a select swin block to selectively fuse 
the outputs of swin blocks, focusing on the fusion of important features. We propose the background decoder, 
which takes the background as the segmentation target, learns the background knowledge, and fuses it with the 
foreground segmentation results to assist retinal vessel segmentation and improve the segmentation accuracy. 
Ablation experiments were conducted on the DRIVE, STARE, and CHASE datasets to compare the proposed 
approach with contemporary state-of-the-art segmentation methodologies. The results of these experiments 
unequivocally demonstrate the superior effectiveness of the proposed approach.

In future work, we plan to include more retinal blood vessel data to train more powerful models and optimize 
model parameters for practical diagnosis applications to improve doctor’s diagnostic efficiency. Furthermore, we 
aim to extend the TCDDU-Net to three-dimensional medical image segmentation tasks, such as brain tumor 
segmentation and spleen segmentation, to improve the segmentation accuracy of 3D medical images and help 
more patients with disease diagnosis.
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