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Risk stratification model for lung cancer with gene expression profile is of great interest. Instead of previous models based on
individual prognostic genes, we aimed to develop a novel system-level risk stratification model for lung adenocarcinoma based on
gene coexpression network. Using multiple microarray, gene coexpression network analysis was performed to identify survival-
related networks. A deep learning based risk stratification model was constructed with representative genes of these networks. The
model was validated in two test sets. Survival analysis was performed using the output of the model to evaluate whether it could
predict patients’ survival independent of clinicopathological variables. Five networks were significantly associated with patients’
survival. Considering prognostic significance and representativeness, genes of the two survival-related networks were selected for
input of the model. The output of the model was significantly associated with patients’ survival in two test sets and training set
(𝑝 < 0.00001, 𝑝 < 0.0001 and 𝑝 = 0.02 for training and test sets 1 and 2, resp.). In multivariate analyses, the model was associated
with patients’ prognosis independent of other clinicopathological features. Our study presents a new perspective on incorporating
gene coexpression networks into the gene expression signature and clinical application of deep learning in genomic data science
for prognosis prediction.

1. Introduction

Risk stratification based on gene expression profiles is of major
biomedical interest in lung cancer research [1–6]. Previous
studies developed risk stratification models that mostly fo-
cused on individual prognostic genes. However, these studies
have not fully considered the nature of biological networks
and their systematic properties. Since it is more evident that
biological processes are derived from numerous interactions
between many cellular components, gene network analysis
could provide valuable information of cancer pathogenesis
[7]. Among the various biological networks, gene coexpres-
sion network has some strengths: not relying on prior infor-
mation about genes, avoiding biologicallywrong assumptions
about independence of gene expression levels, and alleviating
multiple testing problems [8].

Lung cancer, mainly, non-small-cell lung cancer, is one of
the most common cancers and is the leading cause of cancer-
related death worldwide [9, 10]. Currently, TNM staging
system is a universal guideline for prognosis prediction and
treatment decision. However, heterogeneous molecular fea-
tures of lung cancer require diverse adjuvant treatment op-
tions and lead to different prognosis even in the same stage
[11]. Hence, there has been a constant need for developing
better risk stratification models to predict accurate prognosis
and to improve cancer-related survival.

The main objectives of this study were (1) to identify
survival-related gene coexpression network modules (2) and
to propose a deep learning- (DL-) based risk stratification
model reflecting survival-related network modules. Using
public microarray datasets from the Gene Expression Omni-
bus (GEO), we identified survival-related network modules
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of lung adenocarcinoma. Subsequently, we constructed DL-
based prognostic score using representative genes of survival-
related network modules and it showed great prognostic
property in all cohorts.

2. Materials and Methods

2.1. Gene Expression Data. Total eleven microarray datasets
from NCBI GEO were included in the study. Two datasets
with survival information were set as independent test
sets and the others were merged and set as training set
(Supplementary Table 1). Detailed preprocessingmethods are
described in Supplementary Methods (available here).

2.2. Weighted Gene Coexpression Network Construction from
the Training Set. We used weighted gene coexpression net-
work analysis (WGCNA) package [8, 12] to build a weighted
gene coexpression network from the training set. We created
a correlationmatrix on the basis of Pearson’s correlation coef-
ficient for all pairwise genes across all samples. The power,
the key parameter for weighted network, was selected to
optimize both the scale-free topology and sufficient node
connectivity and we chose a threshold of 6 in this study
(Supplementary Figure 1). The correlation matrix was trans-
formed into adjacency matrix using the power function,
and pairwise topological overlap (TO) between genes was
calculated.We identified networkmodules using hierarchical
clustering method with TO dissimilarity as the distance
measure. The modules were detected using dynamic tree cut
algorithm [13], defining height cutoff value of 0.99, deep split
as 2, andminimummodule size cutoff value of 30. Genes that
were not assigned to any module were classified to color gray
(Figure 1).

2.3. Identification and Validation of Survival-Related Network
Modules. For each module, we summarized the module
expression profile by module eigengene (ME), which is the
first principal component of the expressionmatrix of the cor-
respondingmodule.WeusedMEas the representative of each
module to evaluate association with overall survival (OS).
The survival-related network modules were identified using
Cox regression analysis in the training set. For validation,
the same genes included in the network construction were
extracted from each test set. ME was calculated based on the
expression profile of each test set, and the association between
ME and OS was evaluated using Cox regression analysis to
see whether the modules identified from the training set
are also associated with OS in each test set. The modules
with uncorrected 𝑝 value under 0.05 were regarded as sig-
nificant survival-related network modules. We functionally
annotated all survival-related network modules with gene
ontology biological process terms using hypergeometric test
(Supplementary Methods).

2.4. DL-Based Risk Stratification Model. To simplify risk
stratification model, we selected representative genes of the
survival-related modules for model construction. Represen-
tativeness of a gene was measured by gene module member-
ship (GMM), a correlation coefficient between gene expres-
sion profile and ME of given module. Expression profiles of

representative geneswere used for the input of theDLbecause
they were expected to preserve coexpression patterns and to
reflect the systematic properties of survival-related network
modules. Convolutional neural network (CNN) was specifi-
cally used to extract gene expression patterns of modules. It
finally produced gene network prognostic score (NetScore).
Details of selection of representative genes and architecture
of DL framework are described in Supplementary Methods.

The DL-based risk stratification model was generated
using patients’ data of the training set. Parameters related to
training of the neural network including number of layers,
nodes, training epoch and learning rate were determined by
5-fold cross-validation. Training set was randomly divided
into 5 subsets. At each step, a single subset was left for testing
and other four subsets were used for training. The perfor-
mance of the model was measured by Harrell’s C-index of the
final output score of the model [14]. The optimal parameters
were selected according to the maximum average C-index
across the 5-fold of the loop.The predictive value of NetScore
was independently validated in two test sets.C-index for each
test set was also evaluated.

2.5. Survival Analysis Using NetScore in All Cohorts. Prog-
nostic property of NetScore as a continuous variable was
evaluated by univariate Cox analysis. To define risk groups,
NetScore was dichotomized using the median value in each
cohort. Kaplan-Meier method was used to assess survival
rates according to the risk groups and survival rate differences
were assessed with the log-rank test. Additionally, indepen-
dent prognostic value of NetScore was assessed by multi-
variate and subgroup analysis. Multivariate Cox analysis was
performed using clinical and pathological variables as well as
NetScore. Subgroups were divided on the basis of clinical and
pathological features, and univariate Cox analysis ofNetScore
was performed in each subgroup.

3. Results

3.1. GeneCoexpressionNetworkModules from the Training Set.
We aimed at developing a risk stratification model based on
gene coexpression networks (Figure 1(a)).The networks were
constructed from the training set which consists of microar-
ray data of 510 lung adenocarcinoma samples. The clinico-
pathological features of all samples from the training set are
detailed in Supplementary Table 2. Using WGCNA, 23 coex-
pression network modules were identified from the training
set (Figure 1(b)).The relationship between modules is visual-
ized with hierarchical clustering dendrogram and heatmap of
the corresponding ME (Supplementary Figure 2).

3.2. Identification of Survival-Related Modules from the Train-
ing Set and Validation in Test Sets. Total five modules were
significantly associated with OS (Figure 1(c)): red (𝑝 <
0.0001), turquoise (𝑝 = 0.018), magenta (𝑝 = 0.029), black
(𝑝 = 0.043), and light green (𝑝 = 0.044). To validate the
survival-related modules, we conducted survival analysis
in two independent test sets (GSE31210 as test set 1 and
GSE30219 as test set 2; 𝑛 = 226 and 84, resp.). Consequently,
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Figure 1: Gene coexpression network construction and survival-related modules identification. (a) A schematic diagram summarizing our risk
stratification modeling strategy. Gene coexpression network was constructed from the training set. Gene network modules were extracted
based on topological overlap. Survival-related modules were identified from the training set and validated in the two test sets. We selected
representative genes from survival-related modules, and built network-based prognostic scoring system using deep learning. (b) Gene
dendrogram and modules identified by weighted gene coexpression network analysis from the training set. Modules were labeled with
different colors. (c) Univariate Cox regression analysis of module eigengene in the training set was performed. Module eigengene is a
representative expression value of genes of each module calculated by the principal component analysis. The dotted line represents cutoff
value (𝑝 value = 0.05) for significance, and five modules were identified as survival-related network modules. (d) Survival-related network
modules were validated in the two test sets using Cox regression analysis. Three modules from test set 1 and two modules from test set 2 were
significantly associated with overall survival.
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Figure 2: Selection of representative genes of survival-related network modules. (a) To construct risk stratification model, representative genes
were selected according to the gene module membership. Gene module membership was correlated with the significance of association
between individual gene expression and survival. 𝑦-axis represents statistical significance calculated by univariate Cox analysis of individual
genes. A strong correlation was found in the red and turquoise modules (𝑟 = 0.53 and 𝑝 < 1 × 10−19 for red module; 𝑟 = 0.35 and 𝑝 < 1 × 10−23
for turquoise module). Coexpression networks of red (b) and turquoise (c) modules were visualized. Note that 160 genes among 880 genes
of turquoise module and their connections were shown. 160 genes were selected according to the gene module membership. Size of nodes is
proportional to gene module membership.

turquoise (𝑝 = 0.0005), light green (𝑝 = 0.019), and red
(𝑝 = 0.030) modules in test set 1 and turquoise (𝑝 = 0.011)
and red (𝑝 = 0.049) modules in test set 2 were significantly
associated with OS (Figure 1(d)).

The networks of two common survival-related network
modules (red and turquoise) are presented in Figures 2(a)
and 2(b). The significantly enriched gene ontology terms of
the red module included “organic acid catabolic process,”
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Figure 3: Continued.
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Figure 3: Risk stratification model using representative genes of survival-related network modules. (a) To construct risk stratification model,
deep convolutional neural network was used. Input data were expression value of top 10 genes from each of red and turquoise module. The
first layer consists of one-dimensional convolutional filters which extract gene expression patterns of each module. Three additional fully
connected (FC) layers were followed and connected to the output score gene network prognostic score (NetScore). Detailed training process
and architecture of the neural network are described in Supplementary Methods. (b) Univariate Cox regression analysis of NetScore as a
continuous variable was performed in the training and two test sets. It shows significant association between the score and overall survival in
all sets. The blue line represents hazard ratio for overall survival and the blue area represents 95% confidence interval. (c–e) Overall survival
of dichotomized group according to NetScore was depicted by Kaplan-Meier survival curve. The statistical difference was tested by log-rank
test. The high-risk group showed worse survival in the training set (c) and test set 1 (d) with statistical significance. The high-risk group of
the test set 2 (e) also showed worse prognosis though the difference did not reach statistical significance.

“carboxylic acid catabolic process,” and “small molecule
catabolic process,” and the turquoise module included “DNA
strand elongation involved in DNA replication,” “mitotic cell
cycle phase transition,” “DNA-dependent DNA replication”
(Supplementary Table 3).

3.3. DL-Based Risk Stratification Model Using Representative
Genes of Survival-Related Module. By measuring the corre-
lation between gene significance for OS (𝑝 value) and GMM
in each survival-related module, we identified two modules
demonstrating high correlation with statistical significance
(𝑟 = 0.53, 𝑝 < 1 × 10−19 and 𝑟 = 0.35, 𝑝 < 1 × 10−26 for
red and turquoise module, resp.; Figure 2(c)). Based on the
strong correlation, we could assume that the genes with high
representativeness measured by GMMhave high significance
for OS and are the most important elements of the module;
therefore, we selected top 10 genes according to GMM
from the red and turquoise modules for the DL-based risk
stratification model construction (Supplementary Figure 3).

The expression profiles of selected 20 genes were used
as input data of the risk stratification model (Figure 3(a)).
NetScore, the final output of our model, was significantly
associated with OS in the training and two test sets
(Figure 3(b)) (𝑝 < 0.00001, 𝑝 < 0.0001 and 𝑝 = 0.02 for

training set and test sets 1 and 2, resp.). Subjects were divided
into two groups, high- and low-risk groups, according to
the median value of NetScore in each cohort. The high-risk
group was significantly associated with OS in the training
set (𝑝 < 0.0001; Figure 3(c)) and in test set 1 (𝑝 < 0.0001;
Figure 3(d)). A trend of the association was also shown in test
set 2 (𝑝 = 0.054; Figure 3(e)).

3.4. NetScore as an Independent Predictive Factor for Prog-
nosis. Cox multivariate analysis revealed that the risk group
was associated with OS independent of stage as well as other
clinicopathological features in the training set and test set 1
(Table 1). The independent predictive factors for OS in Cox
multivariate analysis were the risk group (𝑝 = 0.001) and
T-stage 3 (𝑝 = 0.030) in training set and the risk group
(𝑝 = 0.01) and EGFR mutation status (𝑝 = 0.005) in test
set 1. In test set 2, there was no feature significantly associated
with OS in univariate Cox analysis, though the high-risk
group showed a trend of unfavorable prognosis (𝑝 = 0.06).
We also evaluated the prognostic value of NetScore in
subgroups divided by clinical andpathological features. In the
training set, the high-risk group was significantly associated
with poor prognosis in subgroups regardless of age and T-
stage. In all subgroups, a trend of close relationship between
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Figure 4: Continued.
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Figure 4: Subgroup analysis using NetScore. (a) Predictive value of our risk stratification model was tested in subgroups classified by
clinicopathological characteristics of the training set. A trend of association between the risk group and overall survival was found in all
subgroups. (b, c) The same subgroup survival analysis was also performed in both test sets. (b) The risk group was associated with overall
survival regardless of clinicopathological variables except female, stage II, and KRAS mutation subgroups in test set 1. (c) Regardless of
subgroups, a trend of poor prognosis in high-risk group was also found in test set 2.

the risk group and OS was found except never-smoking
subgroup (Figure 4(a), Supplementary Figure 4). According
to subgroup analysis in test set 1, the risk group was closely
associated with OS in male, old-aged, ever/never smokers,
stage IA/IB, EGFR positive and all negative mutation sub-
groups (Figure 4(b), Supplementary Figure 5). A trend of
association between the risk group and OS was also revealed
in each subgroup of test set 2, regardless of clinical features
including sex, age, and T-stage (Figure 4(c), Supplementary
Figure 6).

4. Discussion

In this study, we developed a risk stratification model for
lung adenocarcinoma based on gene coexpression networks
and deep learning. Survival-related network modules were
identified in multiple cohorts and representative genes of
these modules were selected for risk stratification modeling.
Themodel constructed by deep CNN reflects gene expression
patterns of survival-related network modules and it provides
prognostic score, NetScore. The NetScore was significantly
associated with OS in all cohorts and also an independent
predictor for OS from clinicopathological variables.

The model based on survival-related network modules
can provide more robust risk stratification compared with
models focusing on statistical combination of individual
prognostic genes which have been proposed in the previous
studies [1–6]. In spite of previous promising results of individ-
ual gene-basedmodels, they failed to validate in independent
samples of other study [4]. Furthermore, there were few over-
lapping significant prognostic genes in the previous models.
A meta-analysis of published gene expression data revealed
that few genes were associated with survival of lung adeno-
carcinoma [15].The result of few significant prognostic genes
in large samples implied the limitation of usage of individual

genes for risk stratification. Besides, selection of individual
significant genes has a substantial problem of multiple statis-
tical testing [16]. Instead of these previous approaches, sys-
temic approach integrating gene interaction as well as indi-
vidual genes would be a breakthrough for robust risk stratifi-
cation modeling because variation patterns of their expres-
sion levels can be associated with prognosis.

Recently, DL has dramatically improved data analysis in
genomics and imaging fields [17, 18]. The main contribution
of DL for our risk stratification model is to apply deep
neural network to gene expression data. It employed convolu-
tional layers for extracting multiple gene expression patterns.
Another contribution is to solve regression problems of
survival data by using a specialized loss function [19] (see
Supplementary Methods). We compared predictive accuracy
of DL-based model and conventional Cox proportional haz-
ard model obtained from the expression level of selected 20
genes. Predictability of the DL-based model was significantly
higher than that of the Cox model in test set 1 (C-index =
0.709 ± 0.042 and 0.608 ± 0.046, resp.; 𝑝 = 0.004). It was also
higher in the training set and test set 2 though the differ-
ence did not reach statistical significance (Supplementary
Methods, Supplementary Figure 7). Furthermore, to confirm
robustness of NetScore, the model was retrained by the
dataset combined by original training and test set 1 and
validated in test set 2. NetScore of the retrained model was
also significantly associated with OS in the test set 2 (𝑝 =
0.003; C-index = 0.651 ± 0.042). To our knowledge, NetScore
is the first study that apply deep convolutional neural net-
work to high-dimensional gene expression data for predict-
ing prognosis. By applying this novel approach to various
genomic data, risk stratification and survival prediction could
be improved compared with conventional Cox model.

NetScore was trained by various samples with different
clinicopathological characteristics. We found NetScore was
associated with sex, smoking status, stage, and molecular
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subtypes (Supplementary Figure 8). Briefly, a trend of high
NetScore was found in male, smokers, late stage, and KRAS
mutation positive samples. Nonetheless, NetScore was signif-
icantly associatedwithOS independent of clinicopathological
variables according tomultivariate and subgroup analyses. Of
note, NetScore was significant predictor in early stage sub-
groups (stage IA/IB).This finding could be important because
the new risk stratification could identify patients who might
need adjuvant chemotherapy. For example, a recent clinical
trial using 15-gene signature based on individual prognostic
genes showed successful selection of patients with stage
IB and II NSCLC who would most likely benefit from adju-
vant chemotherapy [20]. In the future, as a new prognostic
biomarker based on gene network, the usefulness of NetScore
should be tested whether it could affect clinical decision
and compared with the previous prognostic models using
individual genes.

We developed a risk stratification model for lung adeno-
carcinoma using gene coexpression network. A future exten-
sion of our work would be to apply this approach to the
coexpression networks of other cancer types. In terms of
technical improvement, modification of DL architecture and
selection process of representative genes could improve the
prediction accuracy. Finally, we expected that a prospectively
designed clinical trial with well-controlled clinicopathologi-
cal variables would help find clinical application of our new
risk stratification model.
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ation of gene network prognostic score (NetScore) with
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survival analysis software to assess the prognostic value of
biomarkers using transcriptomic data in non-small-cell lung
cancer,” PLoS ONE, vol. 8, no. 12, Article ID e82241, 2013.

[16] D. B. Allison, X. Cui, G. P. Page, and M. Sabripour, “Microarray
data analysis: from disarray to consolidation and consensus,”
Nature Reviews Genetics, vol. 7, no. 1, pp. 55–65, 2006.

[17] C. Angermueller, T. Pärnamaa, L. Parts, and O. Stegle, “Deep
learning for computational biology,”Molecular Systems Biology,
vol. 12, no. 7, article no. 878, 2016.

[18] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature,
vol. 521, no. 7553, pp. 436–444, 2015.

[19] J. Katzman, U. Shaham, A. Cloninger, J. Bates, T. Jiang, and Y.
Kluger, “DeepSurv: personalized treatment recommender sys-
tem using a cox proportional hazards deep neural network,”
https://arxiv.org/abs/1606.00931.

[20] C.-Q. Zhu,K.Ding,D. Strumpf et al., “Prognostic andpredictive
gene signature for adjuvant chemotherapy in resected non-
small-cell lung cancer,” Journal of Clinical Oncology, vol. 28, no.
29, pp. 4417–4424, 2010.

https://arxiv.org/abs/1606.00931

