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Abstract: Articular cartilage defects represent an inciting factor for future osteoarthritis (OA) and
degenerative joint disease progression. Despite multiple clinically available therapies that succeed
in providing short term pain reduction and restoration of limited mobility, current treatments do
not reliably regenerate native hyaline cartilage or halt cartilage degeneration at these defect sites.
Novel therapeutics aimed at addressing limitations of current clinical cartilage regeneration therapies
increasingly focus on allogeneic cells, specifically mesenchymal stem cells (MSCs), as potent, banked,
and available cell sources that express chondrogenic lineage commitment capabilities. Innovative
tissue engineering approaches employing allogeneic MSCs aim to develop three-dimensional (3D),
chondrogenically differentiated constructs for direct and immediate replacement of hyaline cartilage,
improve local site tissue integration, and optimize treatment outcomes. Among emerging tissue
engineering technologies, advancements in cell sheet tissue engineering offer promising capabili-
ties for achieving both in vitro hyaline-like differentiation and effective transplantation, based on
controlled 3D cellular interactions and retained cellular adhesion molecules. This review focuses on
3D MSC-based tissue engineering approaches for fabricating “ready-to-use” hyaline-like cartilage
constructs for future rapid in vivo regenerative cartilage therapies. We highlight current approaches
and future directions regarding development of MSC-derived cartilage therapies, emphasizing cell
sheet tissue engineering, with specific focus on regulating 3D cellular interactions for controlled
chondrogenic differentiation and post-differentiation transplantation capabilities.

Keywords: chondrogenesis; chondral defects; differentiation; cellular interactions; adhesion; transplantation

1. Introduction

A plethora of therapies are clinically available for treating articular cartilage defects,
all seeking to improve outcomes and mitigate osteoarthritis (OA) in the global popula-
tion [1–4]. Advanced approaches employ cells prepared in vitro to increase control of
cell populations, phenotypes, and dosing, with the goal of achieving more reliable hya-
line cartilage regeneration [5,6]. Mesenchymal stem cells (MSCs) have been thoroughly
researched as cell sources for cartilage tissue engineering due to accessibility, extended
in vitro expansion capabilities, and chondrogenic lineage capacity [7–10]. However, MSC
therapies are often limited by poor survival, engraftment, and control of MSC chondrogenic
differentiation fate in vivo [7,11]. Therefore, one unique method of advanced cartilage
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regeneration aims to prepare MSC-derived cartilage constructs that express hyaline-like
characteristics at the time of transplantation with the goal of more rapidly and reliably
replacing damaged hyaline articular cartilage [12].

To prepare these MSC-derived pre-differentiated cartilage therapies, design consid-
erations must include both the extent and stability of in vitro chondrogenesis and in vivo
transplantation capabilities to ensure robust and lasting hyaline regeneration. MSC chon-
drogenic potential is known to be increased in three-dimensional (3D) structures [13–16];
therefore, development of tailored 3D constructs that promote transition of cells toward
stable hyaline-like cartilage in vitro is crucial for success. Three-dimensional structures
influence chondrogenesis in part by increasing 3D cellular interactions compared to two
dimensional (2D) constructs [17,18]. As a result, developing a 3D platform that optimizes
and controls these cellular interactions should subsequently improve the final construct’s
hyaline-chondral characteristics.

Even when cells are successfully differentiated, delivery and retention in the joint rep-
resent two major translational hurdles. Traditional suspended cell injections for cartilage
regeneration demonstrate no homing ability if injected intravenously and poor engraftment
and cellular retention at injured or diseased sites even when administered directly to the
synovial space, offering only transient pain reduction [8,19,20]. Recent data show only ~3%
cellular retention in the knee joint a few days post-injection with very few cells attached
to the cartilage surface [8]. Obvious limitations in cell delivery result in inconsistent and
suboptimal regeneration in vivo. Therefore, many current cell therapies utilize support
materials to maintain cellular localization at the injury or defect sites [21,22]. Unfortunately,
these additional support materials present added biocompatibility concerns [23]. As a re-
sult, MSC cartilage tissue engineering research has increasingly trended toward developing
scaffold-free platforms that not only offer superior in vitro chondrogenic differentiation
and optimized control 3D cellular interactions, but also support direct, unassisted deliv-
ery for robust engraftment with improved surgical versatility. Of these approaches, cell
sheet tissue engineering specifically presents a unique scaffold-free platform that retains
endogenous 3D cellular interactions and tissue-like organization for promoting stable
in vitro hyaline-like chondrogenesis, while preserving intact adhesion molecules along
the transplantation surface for direct in vivo transplantation [12,24,25]. The goal of this
review is to discuss current and future directions in the development of tissue-engineered
3D MSC-derived hyaline cartilage, emphasizing cell sheet tissue engineering, with spe-
cific focus on controlled chondrogenic differentiation through 3D cellular interactions and
post-differentiation engraftment capabilities.

2. Hyaline Cartilage Structure and Function

Hyaline articular cartilage is an avascular and aneural tissue that covers articulating
surfaces, such as the knee, and has minimal intrinsic ability to regenerate without interven-
tion. Hyaline cartilage structure and function (Figure 1) have been thoroughly reviewed in
recent literature [9,26–30]. Briefly, it has a unique architecture and biochemical composition,
comprising a sole cell type, chondrocytes, and their deposited extracellular matrix (ECM).
Hyaline cartilage is characterized by predominantly rounded chondrocytes, organized
in lacunae, at low cellular density, and the ECM deposited by these chondrocytes is rich
in collagens type II, type IX, and type XI in addition to aggrecan, hyaluronic acid, gly-
cosaminoglycans (GAGs), and other proteoglycans. The structure and relationship between
the type II collagen and proteoglycans play a crucial role in providing hyaline cartilage’s
shock absorbing functionality through releasing and absorbing water in response to joint
loading. Distinct from hyaline cartilage, fibrocartilage, a common clinical outcome from
chondral defect therapies, is characterized by dense-packed, aligned collagen fibrils (rich
in type I relative to type II collagen) lacking robust dynamic compression capabilities of
hyaline cartilage [27,31,32]. To successfully develop hyaline cartilage replacement thera-
pies, tissue-engineered cartilage constructs must satisfy key design specifications relative
to native hyaline cartilage: be biocompatible, comprise viable rounded chondrocytes in
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lacunae structures, contain ECM rich in type II collagen, aggrecan, and sulfated proteogly-
cans and lacking type I and X collagens and MMP13, be able to integrate with the native
cartilage, and be able to survive repeated loading within the knee joint.
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3. Current Clinical Cartilage Regeneration Therapies

Articular cartilage defects are increasingly responsible for morbidity and compromised
quality of life in the global population and remain a significant precursor to osteoarthritis
(OA) [28,33–35]. Based on a compelling need to regenerate durable cartilage in these defects,
the past several decades witnessed numerous new therapeutic strategies designed to restore
functional hyaline cartilage, increase patient quality of life, and reduce degenerative joint
disease progression [21,28,36,37]. A multitude of clinical therapeutic options are currently
available for treating chondral and osteochondral articular cartilage defects, thoroughly
summarized in recent reviews [1–4]. These therapies include arthroscopic debridement,
osteochondral allograft transplant (OCA), osteochondral autograft transplantation (OAT),
mosaicplasty, and marrow stimulation techniques, among others [1–4]. Optimal therapy
selection depends on numerous factors such as grade and location of the defect, patient
age, and desired activity level.

For most smaller focal chondral defects, marrow stimulation, such as microfracture,
is often the first-line treatment option [1,2,38]. Microfracture involves mechanical stim-
ulation of the subchondral bone to repopulate the defect with autologous bone marrow
that contains populations of regenerative stem cells [39]. Microfracture has shown clinical
success in filling small focal chondral defects of the knee (<3.6 cm2) and reducing pain
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short-term [40,41]. However, long-term follow-up data show that regenerated cartilage
tissue is predominantly fibrocartilage with subsequent higher failure after two to five
years [40,42,43]. Limitations of microfracture are often attributed to the low relative pop-
ulation of endogenous multipotent stem cells recruited to blood clots that fill the defect
post-surgery, hindering the therapy’s regenerative capacity [44].

Advanced approaches to regenerate native cartilage in chondral defects aim to specif-
ically prepare the patients’ own chondral cells (autologous chondrocytes from cartilage
biopsy) ex vivo to support greater control of cell culture population, phenotype, and dosing
upon re-implantation, with the goal of more reliable hyaline cartilage regeneration and
enduring function in vivo. Autologous chondrocytes are the primary cell source used
in these clinical cell-based cartilage regeneration therapies because chondrocytes are the
primary cell source in articular cartilage [28,29]. Significantly, autologous cell sourcing
presents few immunological hurdles based on the patient being both the donor and recipi-
ent of the ex vivo-processed cells. The first cell-based approach to treat articular cartilage
defects—autologous chondrocyte implantation (ACI)—was FDA-approved in 1997 [45]
with several new “generations” of ACI reported recently [1,28,44,46,47]. ACI harvests
autologous chondrocytes from a healthy, low load-bearing area of the patient’s cartilage,
followed by cell expansion ex vivo, and then staged reimplantation of the expanded cells
back to the defect as suspended cell injections under a sutured periosteal flap [22]. Unlike
microfracture, ACI provides more reliable and improved pain reduction and mobility
outcomes at 5-year follow-ups [48,49]. Further development of this therapy led to the use
of porcine collagen support membranes for matrix-supported autologous cultured chon-
drocyte therapy (MACI) [22], FDA-approved in 2016 [50]. The collagen support membrane
is intended to preserve chondrocyte characteristics during culture and retain cells in the
defect site during transplantation. MACI has shown some in vivo therapeutic benefit in
treating chondral defects [22,49,51,52]. Short-term 2-year clinical follow-ups reported 75%
of tissue filling the defects was hyaline-like [53], and long-term 15-year follow-ups showed
increases in Lysholm [54], International Knee Documentation Committee (IKDC) [55],
and Tegner activity [56] scores compared to preoperative baselines [57]. However, supe-
riority of MACI relative to ACI remains controversial. In randomized trials with 2-year
follow-ups, no significant improvements (IKDC and Tegner activity scores) were noted
for MACI compared to ACI, with ACI reporting slightly better International Cartilage
Repair Society (ICRS) [58] and Lysholm functionality scores [1,3,22,59,60]. Few additional
cell-based therapies have gained clinical approval in recent decades around the world, but
ACI and MACI remain the only cell and tissue engineering cartilage therapies approved
in the U.S. (Table 1). Hundreds more are currently in the clinical trial pipeline [1,21,61]
(www.clinicaltrials.gov; accessed on 1 March 2021).

www.clinicaltrials.gov
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Table 1. Clinically approved cell and tissue engineered cartilage regeneration therapies.

Product Name Company Cell Type * Support Material(s) Country of
Approval—Approval Body

Year
Approved Refs.

Carticel (1st gen. ACI) Vericel Autologous chondrocytes Surgical application of
periosteal flap U.S.—FDA 1997 (2017 phased out) [62,63]

Chondron™ Sewon
Cellontech Autologous chondrocytes Fibrin gel Korea—MFDS 2001 [64]

ChondroCelect® TiGenix Autologous chondrocytes

Surgical application of
periosteal flap or commercially
available collagen membrane

(not included)

E.U.—EMA 2009 (2016 withdrawn) [65,66]

Cartistem® Medipost
Allogeneic umbilical cord

blood-derived mesenchymal
stem cells

N/A (injection into
synovial space) Korea—MFDS 2012 [67]

JACC® J-Tec Autologous cultured
chondrocytes Collagen gel Japan—MHLW 2012 [68]

Novocart® 3D Aesculap Biologics Autologous chondrocytes
Three-dimensional

collagen-chondroitin
sulphate scaffolds

Germany/Switzerland 2014 [69]

MACI® Vericel
Autologous cultured

chondrocytes
Porcine type I/III

collagen membrane
E.U.—EMA 2013 (2018 withdrawn) [70]

U.S.—FDA 2016 [71]

Ortho-ACI®

(3rd gen. MACI)
Orthocell Autologous chondrocytes Porcin type I/III

collagen scaffold Australia 2017 [72]

Spherox (chondrosphere®) co.don Autologous matrix-
associated chondrocytes N/A (self-adhering) E.U.—EMA 2017 [73]

Invossa™ (TissueGene-C) Kolon Life Sciences
Allogeneic chondrocytes

(retrovirally transduced to be
TGF-β-expressing)

N/A (injection into
synovial space) Korea—MFDS 2017 (2019 revoked) [74,75]

* All cell types are human unless otherwise noted. ACI: Articular Chondrocyte Implantation. MACI: matrix-supported autologous cultured chondrocyte therapy. U.S.: United States of America. E.U.: European
Union. FDA: Federal Drug Admnistration. MFDS: Ministry of Food and Drug Safety. EMA: European Medicines Agency. MHLW: Ministry of Health, Labour and Welfare. Not Applicable (N/A) refers to
products that are not prepared, or indicated to be used, with any biomaterials for supporting adhesion or localization.
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4. Limitations of Current Autologous Cell-Based Cartilage Regeneration Therapies

Despite clinical availability of several generations of these autologous cell-based carti-
lage regeneration therapies, clinical outcomes remain heterogeneous and unconvincing,
and difficulties persist in enabling broader patient population applications [1,4,43,76]. One
primary limitation of these therapies is reliance on autologous chondrocyte cell sourcing.
Chondrocytes are known to dedifferentiate during in vitro culture and expansion, tran-
sitioning during preparation from their mature phenotype to fibroblast-like phenotypes,
and also exhibit limited capacity for in vitro expansion before becoming senescent [1,2].
Autologous sourcing of these chondrocytes also introduces patient burden through multi-
ple surgeries, donor site morbidity, and extended time between donation and treatment.
Additionally, cell quality and quantity from autologous sources are donor-dependent,
increasing procedural cost and complexity [6,25,45,77,78], and making it difficult, if not
impossible, to predict, control, and standardize therapeutic potency [19,79]. Due to these
limitations, further efforts focus on selecting improved, appropriate cell sources for carti-
lage tissue engineering and regenerative purposes. Greater consistency and control over
cellular characteristics are needed to ensure reliable chondrogenic construct production
and understand implant performance. Moreover, these sources should ideally be broadly
applicable and efficacious for treating a wide range of patient populations [4,19,48,80,81].

5. Allogeneic Mesenchymal Stem Cells as Promising Cell Sources for
Cartilage Applications

Developing tissue-engineered constructs for articular cartilage focal defect therapies
increasingly focuses on transitioning from non-standard, heterogeneous autologous to
standardized allogeneic cell sourcing [21,79,82]. In contrast to autologous cell sourcing
issues, allogeneic cells offer greater control over cell quality and characteristics, improved
accessibility, and potentially broader use [5,6,83]. Allogeneic sourcing also permits greater
in vitro expansion capacity, and cells with various profiles and characteristics can be pro-
filed, selected, validated, and banked, enabling “off-the-shelf” products [5,6,83]. Concerns
regarding allogeneic cell immune rejection remain. However, with a long history of os-
teochondral allografting [38,84] and new insights into immune-matching [85,86], paired
with reported immunomodulatory characteristics of certain allogeneic cell sources [87,88],
translational prospects for human allogeneic cells are seemingly more feasible.

Advanced cell-based therapies also seek to replace chondrocytes with MSCs as the
chondrogenic cell source. Chondrocyte sourcing is tissue-specific, whereas MSCs are
adult progenitor cells isolated from a variety of tissues (e.g., bone marrow, adipose, dental
pulp, umbilical cord, etc.), offering a widely accessible cell source [14,15,87,89]. Addi-
tionally, chondrocytes are limited by de-differentiation during culture and passaging,
while MSCs exhibit strong capacity for in vitro expansion while maintaining their identity
and unique capacity for in vitro self-renewal [11,16,82,88,90]. Although not standard-
ized, MSC identity is generally confirmed via several accepted surface markers: CD90+,
CD44+, CD73+, CD105+, CD11−, CD34−, CD45− [91,92]. When selecting appropriate MSC
sources it is important to account and test for reduced in vitro self-renewal and differentia-
tion capacities induced by extensive passaging, occurring at different rates for different
MSCs [11,83,93–95]. Specific to chondral regeneration, MSCs have utility for fabricating car-
tilage in vitro based on their multilineage differentiation potential, including the capacity
to transition to chondrocytes [15,16,87,88]. Many reports have described undifferentiated
MSC therapies exhibiting some therapeutic efficacy in delaying cartilage degeneration
and reducing pain [8,19,96,97]. However, in vitro and in vivo MSC differentiation fate and
maintenance are still not easily controlled, limiting these therapies’ capabilities to induce
lasting cartilage regeneration [7,20,98]. Advanced approaches in MSC-based cartilage
regeneration aim to employ allogeneic MSC sources and exploit innate MSC chondrogenic
potential to better control their differentiation in vitro, preparing hyaline-like transplantable
constructs for rapid structural cartilage regeneration through direct tissue replacement
in vivo, applicable to a broader range of patients with a more consistent cell-based product.
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6. Three-Dimensional Culture for MSC Chondrogenesis

MSC-derived hyaline-like cartilage constructs prepared in vitro actively exploit recent
advances in 3D culture systems (Figure 2).
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MSC multipotency enables directed cell differentiation to hyaline-like chondrocyte phe-
notypes in vitro within 3D cultures both with and without supporting biomaterials [14–16,87].
Successful MSC chondrogenesis is generally verified by detecting positive expression
of hyaline cartilage markers within the cells and their deposited ECM (e.g., Sox9, sul-
fated proteoglycans, type II collagen, and aggrecan) [7,16,99,100]. A persisting limita-
tion in MSC chondrogenesis is the expression of transient hyaline-like cartilage pheno-
types with the inevitable and undesired transition toward hypertrophic or fibrocartilage
phenotypes [7–9,44]. Therefore, hyaline differentiation must also exhibit persistent negative
marker expression of type X and type 1 collagens and MMP13 [7,16,99,100]. Researchers
have long noted that 3D culture conditions and 3D cellular interactions are essential for
inducing and maintaining this stable hyaline-like chondrogenesis [7,14,18,99,101–104].
Standard 2D culture conditions limit chondrogenesis because they are unable to promote
requisite 3D cellular interactions and structures associated with chondrogenic conden-
sation and further maturation [17,105,106]. Unlike traditional adherent 2D cell culture
methods, 3D culture platforms allow cells to assume rounded morphologies associated
with mature chondrocytes [13,107,108] and promote 3D cellular interactions, mimicking
early condensation stages during cartilage development and playing an important role in
stabilizing terminally differentiated cartilage [13,99,101].

In addition to three-dimensionality, appropriate culture conditions are critical for
inducing MSC chondrogenesis. Cartilage tissue’s innate avascularity results in a natu-
rally hypoxic environment that directly impacts chondrogenic development and cellular
functionality [27,109,110]. Likewise, experimentally recapitulating this low oxygen environ-
ment in vitro, via hypoxic culture conditions (1–7% O2), is essential for eliciting hyaline-like
ECM deposition [27,111–114]. In vitro hypoxic culture specifically upregulates type II colla-
gen and aggrecan synthesis for both chondrocytes and MSCs [27,111,114]. As such, in vitro
MSC chondrogenic differentiation generally utilizes 3D cultures, chondrogenic induction
media, and humidified hypoxic culture conditions [7,115].

The most common method for assessing MSC chondrogenic potential in vitro employs
spheroids [116], usually as pellet or micromass cultures [14–16]. Beyond their simplicity of
fabrication, these cultures allow cells to self-aggregate and assume rounded morphologies
while establishing 3D cellular interactions necessary for chondrogenesis [14–16,117,118].
Although pellet cultures allow cells to assume rounded morphologies, these cultures
regularly produce heterogenous tissue in vitro that does not mimic native cartilage in
structure, phenotype, or function. Such heterogeneity is often attributed to media and
oxygen diffusion limitations influencing 3D cellular interactions, resulting in variable
differentiation between the pellet’s periphery and hypoxic core [119–121].

In an attempt to offer improved control over cell differentiation, many MSC differ-
entiation platforms employ natural or synthetic biomaterial scaffolds, such as collagens,
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alginates, hyaluronic acid, agarose, chitosan, decellularized “native” ECM, and polygly-
colic acid (PGA)/polylactic acid (PLA), to accommodate cells in 3D structures and promote
MSC chondrogenic differentiation [107,122,123]. These biomaterial scaffolds permit a high
degree of control over 3D construct architecture, a key component in controlling MSC
chondrogenesis [124,125]. Extensive work is reported for further tailoring these bioma-
terial scaffolds, via fabrication techniques (e.g., bioprinting, electrospinning, molding,
etc.) and combinations of cell ligands and binding motifs, macro- and micro- structure,
stiffness, and other biomaterials properties [23,98,107,123,126–128] seeking to promote and
maintain cellular interactions and functionality, supporting transitions toward hyaline-like
phenotypes [23,122,129]. However, these approaches are often limited by poor cell–cell
communication due to interruptive scaffold materials hindering requisite direct cell–cell
and cell-ECM interactions, hyaline-like cell transitions, and reliable hyaline-like phenotypic
preservation [23,124,129].

Scaffold-free approaches offer increasing benefits compared to scaffold-based methods,
supporting MSC differentiation in 3D conditions, within their endogenous ECM and in
continuous, direct 3D contact, promoting necessary cellular interactions without scaffold
interference [23]. Scaffold-free cell-based constructs can also accommodate higher cell
densities than scaffold-based approaches, and despite native cartilage’s intrinsic low cell
density [30,130], cell-dense constructs are recognized as necessary for promoting in vitro
MSC chondrogenesis [15,118,131,132]. Recently proposed advanced scaffold-free methods
employ high-density seeding cultures that create disc-like cartilage constructs in vitro by
seeding MSCs into porous cell culture inserts at very high concentrations [100,133–136].
These high-density 3D cultures induce more homogenous chondrogenesis compared to
pellet cultures, and produce more ergonomic implant forms to more completely fill cartilage
defects [100,133–135]. However, these approaches are hindered by exorbitant cell seeding
densities and limited control over cellular interactions in culture, based solely on cell
aggregation forced by over-confluence [100,133–136]. Such high-density 3D constructs are
sometimes referred to as “cell sheets” [134,135], but differ significantly from temperature-
responsive culture dish (TRCD) derived cell sheets discussed in Sections 8 and 9 based
on their (1) three-dimensionality achieved solely through over-confluent culture, and (2)
harvest methods reliant on mechanical detachment that damage the cultured construct’s
adhesion interface. Despite extensive work focused on promoting in vitro hyaline-like
chondrogenesis within a wide range of 3D culture constructs, these platforms are still
broadly unable to sufficiently control both structure and 3D cellular interactions, hindering
resulting chondrogenic stability and homogeneity in vitro.

7. Transplantation Capabilities of 3D MSC Chondrogenic Cultures

Even when 3D culture platforms achieve hyaline-like chondrogenesis in vitro, these
resulting cellular constructs are still unable to directly adhere and interface with host tissues
in vivo. Most constructs require additional transplantation support materials (e.g., suturing,
fibrin glue, periosteal flap, etc.), increasing biocompatibility concerns and disrupting direct
communication between the transplanted cells and host tissue [19,27,137,138]. Limited
unassisted in vivo tissue engraftment is often attributed to chondrogenic constructs’ inad-
equate endogenous expression of surface adhesion molecules [12,80,107,123,124,129,139].
Poor in vivo tissue site engraftment leads to construct delamination, loss of transplanted
cell viability, mechanical instability, and decreased integration with host tissue, common
precursors for fibrocartilage tissue formation [26] and suboptimal pre-clinical in vivo out-
comes [8,27,31,140,141]. Discrepancies between in vitro and in vivo pre-clinical results
may be partly due to the high variability among animal models employed [142–147], but
inferior engraftment and retention remain driving factors of pre-clinical failure regardless
of the model employed [26].

Cartilage tissue transplant failure is also attributed to insufficient interfacial proper-
ties [148]. Native hyaline cartilage exhibits a low coefficient of friction at the joint interface,
allowing free sliding of adjacent cartilage surfaces under high pressure during joint articu-



Cells 2021, 10, 643 9 of 22

lation [149,150]. To successfully replace hyaline cartilage at focal defect sites, transplanted
cartilage constructs must be able to not only adhere and engraft into the defect site, but
also present a suitable articulating surface that mitigates excessive frictional forces during
joint function. As superficial chondrocytes naturally produce lubricating agents, such as
lubricin and hyaluronic acid [31,151], some approaches focus on functionalizing the cells
within 3D structures to tailor their secretion abilities and recreate this lubricated articular
surface [7,152]. Other approaches, specifically those employing cell-seeded hydrogels,
focus on selecting scaffold biomaterials with low intrinsic coefficients of friction [31,153].
However, the inability of current constructs to both strongly adhere and recapitulate this lu-
brication interface increases associated friction during articulation, causing pain, abnormal
stress and wear on the transplant, and increased risk of tissue delamination [149].

Despite 3D cell delivery platforms being designed to create hyaline-like chondrogenic
constructs capable of engraftment and retention at the defect site, to date, no platform
has yielded robust evidence of success, necessitating further investigation in controlled
clinical trials to verify translational potential of these therapies [1,21,23,154]. A clear unmet
need persists for improved 3D MSC platforms that not only control 3D cellular interactions
in vitro to reliably yield more stable hyaline-like cartilage constructs, but also enhance their
adhesion for mechanical and physiological integration in vivo to better address current
translational limitations in MSC-based cartilage regeneration.

8. Cell Sheet Technology as a Transplantable 3D Tissue-Like Platform

Cell sheet technology supports fabrication of transplantable, scaffold-free, 3D, tissue-
like cell constructs [155–159] (Figure 3).
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The cell sheet technology developed by Okano et al. employs poly(N-isopropylacrylamide)
(PIPAAm)-grafted temperature-responsive culture dishes (TRCDs) that facilitate cell ad-
hesion and growth at 37 ◦C [158–160]. Below the PIPAAm lower critical solution tem-
perature (32 ◦C), cells spontaneously detach from the culture surface, bypassing typical
culture requirements for damaging enzymatic cell harvesting [160,162]. This temperature-
mediated detachment retains endogenous cell–cell and cell-ECM interactions and
preserves cellular environments, allowing cultured cells to be harvested as intact cell
sheets [83,156,157,160,162–164]. As cells are seeded and grown under adherent 2D condi-
tions, this abrupt temperature-mediated detachment prompts established cytoskeletal fila-
ments and retained ECM to naturally contract when released from culture surfaces [165,166].
This post-detachment cell sheet contraction spontaneously yields 3D, multi-nuclei thick,
scaffold-free cell sheet structures [12,161]. Cell sheet three-dimensionality can be further
controlled by cell sheet layering to produce tissues of specified thicknesses and cellular
densities, even combining cell sheets from different cell sources [157,167–170]. Cell sheet
post-detachment contraction and layering both increase 3D cellular interactions, areas
of hypoxia within the construct, and functionality relative to suspended cells and 2D
conditions [167,171,172].
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In addition to promoting 3D architecture with increased 3D cellular interactions, cell
sheets naturally retain innate surface receptors, ECM, and tissue adhesion capabilities,
allowing spontaneous engraftment to tissue sites and rapid initiation of direct cell–cell
communication [156,157]. Cell sheets fabricated from a wide range of cell sources have
been applied to a multiple tissue targets and show significant adhesion and localization
capabilities [157,173,174]. Specifically, for cartilage regeneration therapies, significant
translational work has focused on cell sheet technology approaches for repairing and
replacing hyaline cartilage using various cell sources and preparation methods (Table 2).

Table 2. Cell sheet tissue engineering cartilage regeneration studies.

Cell Source Study Type In Vitro
Chondrogenic Enhancement Refs.

Human articular chondrocytes In vitro Layering [172]

Articular chondrocytes
(human, rabbit)

In vitro/in vivo
(allogeneic rabbit) Layering [173]

Rat articular chondrocytes
and synoviocytes In vivo (allogeneic rat) Layering [175]

Rabbit articular chondrocytes
and synoviocytes In vivo (allogeneic rabbit) Layering [176]

Porcine articular chondrocytes In vivo (allogeneic minipig) Layering [177]

Human articular chondrocytes In vitro Co-culture with
synoviocytes + layering [178]

Human articular chondrocytes In vitro Co-culture with
synoviocytes + layering [179]

Human articular chondrocytes In vivo (xenogeneic
immunosuppressed rabbit)

Co-culture with
synoviocytes + layering [180]

Human articular chondrocytes
and synoviocytes In vivo (athymic rat) Co-culture with

synoviocytes + layering [181]

Autologous human articular
chondrocytes (with microfracture)

In vivo (autologous
human—small cohort

clinical study)

Co-culture with
synoviocytes + layering [182]

Rat articular chondrocytes In vitro/in vivo (allogeneic rat) None [183]

Human juvenile
polydactyly chondrocytes

In vitro/in vivo(xenogeneic
immunosuppressed rabbit) None [184]

Human juvenile
polydactyly chondrocytes In vivo (athymic rat) None [25]

Human endometrial
gland-derived MSCs In vitro Layering [171]

Human bone
marrow-derived MSCs In vitro Chondrogenic induction

medium + hypoxia (5% O2) [12]

Cell sheet technology employing chondrocyte sources has shown preliminary success
in both pre-clinical models and small cohort clinical studies [24,25,173,175–177,180–184].
Chondrocyte sheets adhere directly and spontaneously to cartilage tissue via retained
endogenous ECM and adhesion proteins. Notably, this strength of defect site adhesion
for the undifferentiated chondrocyte sheets is sufficient to allow initial defect retention
without suturing, and to withstand knee joint mechanical forces while maintaining long-
term localization of transplanted cells [24,173,177,180,182,185]. This engraftment capability
facilitates successful chondrocyte sheet induction of hyaline-like cartilage regeneration in
articular cartilage focal chondral defects by 4 weeks post-transplantation [24,25,173,177,180–182]
(Figure 4a–d).



Cells 2021, 10, 643 11 of 22

Cells 2021, 10, x  10 of 21 
 

 

Human juvenile polydactyly 
chondrocytes 

In vitro/in vivo(xenogeneic im-
munosuppressed rabbit) 

None [184] 

Human juvenile polydactyly 
chondrocytes 

In vivo (athymic rat) None [25] 

Human endometrial gland-de-
rived MSCs 

In vitro Layering  [171] 

Human bone marrow-derived 
MSCs 

In vitro 
Chondrogenic induction medium + hy-

poxia (5% O2) 
[12] 

Cell sheet technology employing chondrocyte sources has shown preliminary suc-
cess in both pre-clinical models and small cohort clinical studies [24,25,173,175–177,180–
183,184]. Chondrocyte sheets adhere directly and spontaneously to cartilage tissue via re-
tained endogenous ECM and adhesion proteins. Notably, this strength of defect site ad-
hesion for the undifferentiated chondrocyte sheets is sufficient to allow initial defect re-
tention without suturing, and to withstand knee joint mechanical forces while maintain-
ing long-term localization of transplanted cells [24,173,177,180,182,185]. This engraftment 
capability facilitates successful chondrocyte sheet induction of hyaline-like cartilage re-
generation in articular cartilage focal chondral defects by 4 weeks post-transplantation 
[24,25,173,177,180–182] (Figure 4a–d). 

 
Figure 4. Cell sheets adhere, remain localized, and induce cartilage regeneration in vivo without 
any additional support materials. Histological and immunohistochemical staining of rat knee 
cross-sections 4-weeks post cartilage sheet transplantation show close interfacing with the native 
cartilage and (a) areas of positive hyaline-like regeneration (Safranin-O), correlating to (b) reten-
tion and viability of human cells (hVimentin—brown color) in trochlear groove chondral defects. 
Regenerated tissue filling the defect at 4 weeks post-transplantation (c) macroscopically and (d) 
histologically (Safranin-O) (right corner boxes shows defect only controls) resembles native carti-
lage. Scale bars = 200 μm. Adapted and reprinted from Kondo M., Kameishi S., Grainger D. W. & 
Okano T. Novel therapies using cell sheets engineered from allogeneic mesenchymal stem/stromal 
cells. Emerg. Top. Life Sci. 4 (6): 677–689 (2020) with permission from Portland Press. 

9. Three-dimensional MSC Sheets as In Vitro Platforms for Fabricating Transplanta-
ble Hyaline-Like Cartilage 

Emerging cell sheet approaches prepare in vitro chondrogenically differentiated 
MSC sheets that are directly transplantable in vivo, which should support more rapid hy-
aline cartilage replacement at defect sites for future in vivo regenerative therapies. Relia-
ble fabrication of 3D MSC sheets increases cell–cell interactions, promotes hyaline-like 
chondrogenesis, and retains construct adhesion capabilities [12], all of which are essential 
to support robust and direct replacement of damaged or missing hyaline cartilage. Sheet-

Figure 4. Cell sheets adhere, remain localized, and induce cartilage regeneration in vivo with-
out any additional support materials. Histological and immunohistochemical staining of rat knee
cross-sections 4-weeks post cartilage sheet transplantation show close interfacing with the native
cartilage and (a) areas of positive hyaline-like regeneration (Safranin-O), correlating to (b) reten-
tion and viability of human cells (hVimentin—brown color) in trochlear groove chondral defects.
Regenerated tissue filling the defect at 4 weeks post-transplantation (c) macroscopically and (d)
histologically (Safranin-O) (right corner boxes shows defect only controls) resembles native carti-
lage. Scale bars = 200 µm. Adapted and reprinted from Kondo M., Kameishi S., Grainger D. W. &
Okano T. Novel therapies using cell sheets engineered from allogeneic mesenchymal stem/stromal
cells. Adapted with permission from Emerg. Top. Life Sci. 4 (6): 677–689 (2020). Copyright 2020
Portland Press.

9. Three-Dimensional MSC Sheets as In Vitro Platforms for Fabricating
Transplantable Hyaline-Like Cartilage

Emerging cell sheet approaches prepare in vitro chondrogenically differentiated MSC
sheets that are directly transplantable in vivo, which should support more rapid hya-
line cartilage replacement at defect sites for future in vivo regenerative therapies. Reliable
fabrication of 3D MSC sheets increases cell–cell interactions, promotes hyaline-like chondro-
genesis, and retains construct adhesion capabilities [12], all of which are essential to support
robust and direct replacement of damaged or missing hyaline cartilage. Sheet-enhanced
3D cellular interactions specifically benefit MSC chondrogenesis in vitro, resulting in stable
hyaline-like phenotypes and delayed hypertrophic transitions compared to standard pellet
cultures [12]. Cell sheet 3D manipulation affords greater control over the induction of
pro-chondrogenic 3D cell–cell and cell-ECM interactions and increased control of the final
chondrogenic cell sheet characteristics (Figure 5).

Cell sheet technology employs multiple manipulation techniques for promoting spe-
cific pro-chondrogenic interactions. Post-detachment cell sheet contraction, occurring
spontaneously following temperature-mediated detachment from adherent culture, and
sheet multilayering are primary strategies used to control and influence cellular interactions
and MSC chondrogenic differentiation in scaffold-free cell sheet forms [25,157,167–172]
(Figure 5a). Cell sheet contraction can be modified by changing cell seeding density, cul-
ture time, MSC source, or use of removable support membranes [155,166,167,186]. Cell
sheet multilayering has also been utilized extensively in various cell sheet tissue engineer-
ing applications [167,169,170,187,188]. Specifically, multilayering chondrocyte sheets has
been shown to directly increase 3D cellular interactions, promoting enhanced chondro-
genic characteristics within those sheets [173,178,179]. Moreover, layering endometrial
cell sheets increased glycosaminoglycan and collagen development within as little as
24 h [171] (Figure 5b). This multilayering manipulation should facilitate similar control of
3D cellular interactions within MSC-derived sheets, as well as construct thickness and
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density. These factors directly impact the oxygen tension and hypoxic conditions within
the MSC construct, stimulating more controlled transitions to hyaline-like phenotypes
in vitro. Multilayering may also prompt more rapid chondrogenesis, decreasing MSC-
derived hypertrophic characteristics commonly associated with extended in vitro media
induction [18,103].
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These manipulation techniques increase chondrogenic potential of the MSCs as shown with (a) Safranin O staining and (b)
Type II collagen immunohistochemical (IHC) staining. For graphs in (a), error bars represent means ± standard deviations
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(accessed on 1 March 2021).

In addition to promoting stable hyaline-like chondrogenesis in vitro, MSC sheets retain
strong adhesion capabilities after chondrogenic differentiation [12]. Post-differentiation
temperature-mediated harvest does not damage cell sheet characteristics, thereby allowing
maintenance of critical adhesion molecule expression for cells along the basal side of the
sheet. MSC-derived hyaline-like cell sheets can strongly adhere to fresh ex vivo cartilage
tissue and rapidly initiate mechanical and biochemical signaling interactions between the
cell sheet and adjacent native cartilage [12]. Based on previous adhesion studies conducted
with chondrocyte sheets [173] and their successful integration and maintained adhesion
in vivo [24,177,180,182], these adhesion capabilities of chondrogenically differentiated
MSC sheets are expected to promote similar stable engraftment and enhanced cellular
communication in this environment.

Cell sheet in vitro chondrogenesis studies support prior assertions that three-dimensional
cell interactions play essential roles in fabrication and stability of in vitro hyaline-like
cartilage. Furthermore, cell sheet manipulation techniques allow greater control over these
3D cellular interactions and related hypoxic culture conditions, while maintaining known
cell sheet adhesion capabilities. Additional application of hypoxic culture conditions for
chondrogenic induction not only significantly increases the MSC sheets’ chondrogenic
capacity, but should also condition them for the hypoxic in vivo environment, allow-
ing greater retention of cellular functionality post-transplantation. These chondrogenic
capacity and adhesion capabilities position MSC cell sheet technology as a prospective
next-generation platform for fabricating future translational allogeneic MSC therapies
offering direct, unassisted transplantation of hyaline-like cartilage constructs for improved
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future articular cartilage regeneration. To improve upon current cell-based approaches for
cartilage regeneration in human defects, these implanted MSC-derived cartilage sheets
will have to demonstrate key regenerative behaviors in vivo, notably: complete filling
of the focal defect, lateral and basal integration with the host tissue, lasting retention of
hyaline-like phenotypes within the defect, and mechanical properties similar to native
cartilage once integrated.

10. Summary

Articular cartilage defects represent inciting events and a significant cause of degenera-
tive joint disease with inevitable progression to generalized OA [28,33–35]. Although many
clinical therapies exist for treating these defects, none achieve lasting, robust regeneration
of hyaline cartilage [1,4,43,76]. Advanced cell therapy products are continually being de-
veloped to address the limitations of current clinical therapies, but few have shown much
clinical promise to date in practically addressing diverse chondral defects [1,21,23,154].
Overall, tissue engineering cartilage therapies are still largely limited in their control over
in vitro cellular interactions necessary for producing robust hyaline-like cartilage and
inconsistent in vivo engraftment, hindering integration with the host tissue and lasting
replacement of hyaline cartilage [23,124,129]. Some 3D MSC-based approaches, specifically
those employing banked, standardized allogeneic MSCs within scaffold-free 3D constructs,
offer very promising platforms for producing cartilage constructs in vitro via controlled
3D structures and key cellular interactions that are capable of inducing reliable, rapid
regeneration of hyaline-like cartilage in vivo in articular cartilage focal defects.

Although in vitro chondrogenic differentiation is extensively published for pellet
cultures, cell seeded scaffolds, and scaffold-free high-density seeding cultures [14–16,87],
these 3D constructs are limited in their abilities to achieve both robust hyaline-like differ-
entiation and direct, unassisted transplantation to defect sites [1,21,23,154]. To address
these concerns, cell sheet tissue engineering constructs afford improved control of 3D
cellular interactions, maintenance of chondrogenic characteristics via established manip-
ulation techniques, and optimize endogenous adhesion abilities [83,156,157,160,162–164].
To date, autologous chondrocyte cell sheets have exhibited experimental and some clin-
ical success in adhering, surviving, and inducing regeneration in articular cartilage de-
fects [24,173,177,180,182,185,189]. These data provide an important precedent for further
development of cell sheet therapies that support more rapid cartilage regeneration. The
chondral regeneration field is currently transitioning toward the creation of single-stage,
immediately available cell-based chondral restoration options [21]. In this vein, cell sheet
tissue engineering employing allogeneic MSCs presents a unique platform capable of
(1) producing stable in vitro hyaline-like cartilage from banked MSCs, (2) providing an
off-the-shelf, pre-validated cartilage tissue construct without biomaterials support, and
(3) maintaining and sustaining endogenous cellular adhesion and signaling for direct
transplantation to cartilage tissues applicable to a broad patient population.

11. Future Perspectives

Despite decades of research on tissue engineering and MSC chondrogenesis, current
chondrogenic approaches are largely unable to reliably create stable hyaline-like cartilage
in vitro that is directly transplantable in vivo to a broad patient population. However,
cell sheet tissue engineering offers a unique scaffold-free platform to facilitate enhanced
in vitro hyaline-like differentiation, to support direct in vivo transplantation to defects
without biomaterials support. Combining cell sheet technology with allogeneic MSC
sourcing, specifically for MSCs that have been screened for cell potency and differentiation
capacity, should facilitate more rapid and reliable cartilage regeneration for a broader
patient population.

Although hundreds of MSC-derived cell therapy clinical trials are ongoing, no MSC-
based regenerative medicine applications have clinical validation for cartilage regeneration.
While causes for failure with these MSC therapies are not fully understood, the current
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inability to properly control cellular interactions and cellular phenotypes in vitro to reliably
yield stable hyaline-like cartilage, combined with poor tissue site engraftment and retention
in vivo necessary to restore normal cartilage functional properties through mechanical
and biochemical signaling, are central hypotheses. To improve upon cell-based and MSC
therapies, specific considerations and attention must be paid to (1) selecting and validating
appropriate cell sources, essential to regulatory and manufacturing challenges during
translation, (2) the importance of three dimensionality in tissue-like structures and its role
in inducing and maintaining 3D cellular interactions required for stable in vitro hyaline like
chondrogenesis, (3) robust engraftment and integration of the transplanted construct with
host tissue, and (4) the long-term stability of hyaline features in vivo without reversion to
fibrocartilage. Focusing on these essential performance specifications will support progress
in developing MSC-derived therapies that are both transplantable and phenotypically
stable as hyaline-like cartilage to robustly regenerating hyaline articular cartilage at the site
of articular cartilage defects.

Furthermore, future approaches may additionally enhance MSC chondrogenic poten-
tial and robust tissue regeneration and integration through the use of CRISPR or other gene
editing techniques [91,190–192] to bias MSCs using guided genetic instructions. Incorpo-
rating these modified allogeneic MSCs into established transplantable 3D cell sheets could
yield even more robust hyaline-like tissues with greater regenerative potential, but will
likely face greater regulatory scrutiny and manufacturing hurdles in their path to clinical
approval [45,78,193,194].
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