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ABSTRACT Chromosome-scale genome assembly of the yeast Saprochaete ingens
CBS 517.90 was determined by a combination of technologies producing short (HiSeq X;
Illumina) and long (MinION; Oxford Nanopore Technologies) reads. The 21.2-Mbp ge-
nome sequence has a GC content of 36.9% and codes for 6,475 predicted proteins.

The yeast Saprochaete ingens was originally described as Candida ingens (1) and later
classified into the Magnusiomyces/Saprochaete clade (Dipodascaceae, Saccharomy-

cotina, Ascomycota). In this clade, teleomorphic and anamorphic stages were named
Magnusiomyces and Saprochaete, respectively. To investigate claims that Saprochaete
ingens and Magnusiomyces ingens do not represent different reproductive stages of the
same species but rather distinct taxa (2–4), we sequenced the genome of S. ingens
ex-holotype strain CBS 517.90, isolated from a wine cellar in Western Cape Province,
South Africa (1), and compared it to the recently determined M. ingens genome (5).

The yeasts were grown overnight in yeast extract-peptone-dextrose (YPD) medium
(1% [wt/vol] yeast extract, 2% [wt/vol] peptone, and 1% [wt/vol] glucose) at 28°C, and
the genomic DNA was purified using a Genomic-tip 100/G (Qiagen) (6). A total of
111,042 long reads (mean, 13,586.5 nucleotides [nt]; median, 5,776 nt; longest read,
192,848 nt) totaling 1.5 Gbp (�71� coverage) were obtained with a MinION Mk-1B
device on an R9.4.1 flow cell, using ligation kit SQK-LSK109, and base called by ONT
Albacore (v. 2.3.1). A paired-end (2 � 151-nt) TruSeq PCR-free DNA library was se-
quenced on a HiSeq X Ten platform by Macrogen Korea, yielding 172,059,934 reads
(25.98 Gbp; �1,226� coverage). No additional read trimming or filtering was per-
formed. Unless otherwise noted, all tools were used with default parameters.

Eleven contigs of the initial long-read assembly (miniasm v. 0.3-r179 [7]; minimap2
v. 2.13-r852 [option -x ava-ont] [8]; polished by Racon v. 1.3.1 [option –include-
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unpolished] [9]) were compared with long-read assemblies by wtdgb2 v. 2.3 (options -g
20 m -x ont) (10) and Canu v. 1.7 (options genomeSize � 25m overlapper�mhap
utgReAlign�true) (11). Based on the comparison, four pairs of contigs were connected,
two contigs were extended to telomeres, and seven local misassemblies were cor-
rected. A short contig containing only ribosomal DNA (rDNA) repeats was discarded,
with and additional eight copies of rDNA present in contig 4. The resulting assembly
was polished with short reads (four iterations of pilon v. 1.21 [12]; BWA-MEM v.
0.7.17-r1188 [option -M] [13]). The rDNA repeat and the mitochondrial genome were
polished separately from the rest of the genome to avoid ambiguous alignments.

The assembly is 21.2 Mbp long and consists of five nuclear contigs (between 2.7 and
5.7 Mbp) and a mitochondrial genome (35.5 kbp). Nine nuclear contig ends are
terminated by telomeric repeats (CA3G5–8)n, indicating five chromosomes with one telo-
meric region missing from the assembly. Genes were annotated using Augustus v. 3.2.3
(option – uniqueGeneId�true) (14), with initial parameters estimated from Magnusio-
myces capitatus (5) and then trained on the 3,341 predicted S. ingens genes with at least
80% protein-level identity to their closest M. ingens ortholog. A total of 14 predictions
were discarded due to in-frame stop codons, resulting in 6,475 nuclear protein-coding
genes.

The nuclear genome comparison of S. ingens and M. ingens (Fig. 1A) shows that,
although the genomes exhibit a long-range synteny, the alignments are fragmented
and have only about 77% identity (median among alignments with at least 1,000
matches). The comparison thus demonstrates that, despite these two yeasts exhibiting
many common features, such as similar assimilation profiles (3, 4) and colony and cell
morphologies (Fig. 1B and C), they represent different species.

Data availability. The assembly has been deposited in ENA (accession no.
CABVLU010000000). Illumina and MinION reads have been deposited under accession
no. ERR3510534 and ERR3509916, respectively. The assembly and its annotation can
also be viewed interactively in a genome browser available at http://genome.compbio
.fmph.uniba.sk/.

FIG 1 (A) Nuclear contigs of S. ingens CBS 517.90 colored based on alignments to contigs of M. ingens NRRL Y-17630 (CBS
521.90) (5). The comparison was performed using Last Aligner v. 830 (option -E1e-10) (15), postprocessed by last-split to keep
only the best match at each M. ingens locus, and visualized using ggplot2 (16). (B) Differentiated colonies of S. ingens CBS
517.90 and M. ingens NRRL Y-17630 grown on yeast extract-malt extract-peptone (YM) plates (0.3% [wt/vol] yeast extract, 0.3%
[wt/vol] malt extract, and 0.5% [wt/vol] peptone) containing 1% (wt/vol) glucose at 28°C for about 2 weeks. (C) Nuclear and
mitochondrial DNA of S. ingens CBS 517.90 and M. ingens NRRL Y-17630 cells stained with 4=,6-diamidino-2-phenylindole (DAPI)
and visualized using an Olympus BX50 microscope.
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, Lang BF, Vinař T, Nosek J. 2019.

Genome sequence of the opportunistic human pathogen Magnusiomy-
ces capitatus. Curr Genet 65:539 –560. https://doi.org/10.1007/s00294
-018-0904-y.

6. Hodorova V, Lichancova H, Bujna D, Nebohacova M, Tomaska L, Brejova
B, Vinar T, Nosek J. 2018. De novo sequencing and high-quality assembly
of yeast genomes using a MinION device. London Calling, 24 to 25 May
2018, London, United Kingdom. https://nanoporetech.com/resource
-centre/de-novo-sequencing-and-high-quality-assembly-yeast-genomes
-using-minion-device.

7. Li H. 2016. Minimap and miniasm: fast mapping and de novo assembly
for noisy long sequences. Bioinformatics 32:2103–2110. https://doi.org/
10.1093/bioinformatics/btw152.

8. Li H. 2018. Minimap2: pairwise alignment for nucleotide sequences. Bioin-
formatics 34:3094–3100. https://doi.org/10.1093/bioinformatics/bty191.
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