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Abstract

Plant roots are constantly exposed to a variety of abiotic stresses, and high salinity is one of

the major limiting conditions that impose constraints on plant growth. In this study, we

describe that OsMADS25 is required for the root growth as well as salinity tolerance, via

maintaining ROS homeostasis in rice (Oryza sativa). Overexpression of OsMADS25

remarkably enhanced the primary root (PR) length and lateral root (LR) density, whereas

RNAi silence of this gene reduced PR elongation significantly, with altered ROS accumula-

tion in the root tip. Transcriptional activation assays indicated that OsMADS25 activates

OsGST4 (glutathione S–transferase) expression directly by binding to its promoter. Mean-

while, osgst4 mutant exhibited repressed growth and high sensitivity to salinity and oxidative

stress, and recombinant OsGST4 protein was found to have ROS–scavenging activity in

vitro. Expectedly, overexpression of OsMADS25 significantly enhanced the tolerance to

salinity and oxidative stress in rice plants, with the elevated activity of antioxidant enzymes,

increased accumulation of osmoprotective solute proline and reduced frequency of open

stoma. Furthermore, OsMADS25 specifically activated the transcription of OsP5CR, a key

component of proline biosynthesis, by binding to its promoter. Interestingly, overexpression

of OsMADS25 raised the root sensitivity to exogenous ABA, and the expression of ABA–

dependent stress–responsive genes was elevated greatly in overexpression plants under

salinity stress. In addition, OsMADS25 seemed to promote auxin signaling by activating

OsYUC4 transcription. Taken together, our findings reveal that OsMADS25 might be an

important transcriptional regulator that regulates the root growth and confers salinity toler-

ance in rice via the ABA–mediated regulatory pathway and ROS scavenging.

Author summary

Plant roots are constantly exposed to a variety of abiotic stresses, and high salinity is one

of major limiting conditions that impose constraints on plant growth. Here, we show that
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transcription factor OsMADS25 positively regulates the root system development and tol-

erance to salinity and oxidative stress in rice plants. We also provide strong evidence that

OsMADS25 increases the ROS-scavenging capacity and proline accumulation by activat-

ing the expression of OsGST4 and OsP5CR directly. Moreover, OsMADS25 promotes

ABA–dependent abiotic stress–responsive regulatory pathway. In addition, OsMADS25

seems to promote auxin signaling by activating OsYUC4 transcription. Overall, enhanced

antioxidant responses and proline accumulation via the ABA–mediated regulatory path-

way, have been proposed to be crucial for OsMADS25 to regulate the salinity tolerance in

rice plants.

Introduction

Rapid root growth is due largely to rapid elongation of cells in plant root. After cell division,

newly formed cells begin the process of elongating and differentiation [1], which is regulated

by reactive oxygen species (ROS) homeostasis [2]. ROS are important signaling molecules that

affect many aspects of plant development such as the cell cycle, programmed cell death, hor-

mone signaling as well as the response to environmental stresses [3–6], and disruption in ROS

signaling leads to defects in these developmental processes [7].

Plant roots are constantly exposed to a variety of abiotic stresses, and high salinity is one of

major limiting conditions that impose constraints on plant root growth, as a stress that encour-

ages ROS production. In plants, apoplastic ROS, mainly generated by NADPH oxidase (Respi-

ratory Burst Oxidase Homologs, Rbohs), are toxic to plant cells at high concentrations and ROS

homeostasis must be strictly controlled by a delicate balance between ROS–producing and–

scavenging enzymes [8]. To minimize or prevent oxidative damage to cells by ROS and to main-

tain cellular redox homeostasis, plants have evolved defense systems that include ROS–scaveng-

ing enzymes, such as ascorbate peroxidase (APX), superoxide dismutase (SOD), catalase (CAT)

and glutathione peroxidase (GPX) [9]. Various studies have shown that the ROS–scavenging

enzymes are involved in tolerance to abiotic stress in plants [4,10,11]. A gain–of–function

mutant of Arabidopsis in which APX2 is constitutively overexpressed shows drought tolerance

and exhibits an improved efficiency of water use [12]. Transgenic Arabidopsis plants overex-

pressing OsAPXa or OsAPXb exhibit increased tolerance to salinity stress [13]. Constitutive

expression of OsGSTU4 (glutathione S–transferase) in Arabidopsis improves the tolerance to

salinity and oxidative stress [14]. Although the balance between ROS production and detoxifica-

tion is shown to be modulated by a large and complicated network, the precise mechanism

underlying ROS homeostasis in response to abiotic stresses in plants remains unclear.

Proline has been considered as a multi–functional molecule in plants, and numerous stud-

ies have demonstrated that the proline accumulation is enhanced in response to different abi-

otic stresses [15–17]. In plants, proline is synthesized by the pyrroline–5–carboxylate

synthetase (P5CS) and P5C reductase (P5CR) [18], which are induced by osmotic and salt

stresses and also activated by ABA [17,19]. As an osmoprotective molecule, proline is recog-

nized to protect cells against osmotic stress by increasing their antioxidant enzyme capacity,

suggesting its ROS–scavenging activity and acting as a singlet oxygen quencher [20]. Exoge-

nous proline treatment reduced Hg2+ toxicity in rice through scavenging ROS [21]. Corre-

spondingly, ROS accumulation was reduced in overexpression–P5CS transgenic tobacco

plants, in which proline levels were enhanced by accelerating of the proline biosynthetic path-

way [22,23]. By contrast, reduced proline levels in p5cs1 insertion mutants caused accumula-

tion of ROS and elevated oxidative damage [24].
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Abscisic acid (ABA) is a key regulator of both plant development and stress responses, and

has been shown to regulate a range of physiological processes including seed germination and

dormancy, root development, stomatal movements and tolerance to abiotic stresses [25–28].

ABA dramatically accumulates under osmotic stress such as drought and salinity, and plays

pivotal roles in the stress responses by modulating the gene expression and cellular processes

[26,29]. There is convincing evidence that ROS are also integral parts of ABA signaling net-

works [30,31]. In parallel to pattern–triggered ROS production, ABA also regulates ROS gen-

eration through plasma membrane–localized NADPH oxidases [32]. These ROS, as important

second messengers, are involved in ABA signaling pathway to regulate the physiological pro-

cesses [29,30]. In Arabidopsis, a double loss–of–function mutant rbohD/rbohF impairs ABA–

induced H2O2 production and stomatal closing, and ABA–mediated inhibition of root growth

[32]. In drought stress, ABA induces stomatal closure by stimulating ROS production in guard

cells by guard cell–specific NADPH oxidases [26]. 2C–type protein phosphatase ABA INSEN-

SITIVE2 (ABI2) interacts with GPX3 to regulate the redox state of guard cells in ABA and

drought stress responses [33]. ABI1 binds to phosphatidic acid which is produced by phospho-

lipase Da1, and phosphatidic acid interacts with RBOHD/F, stimulating ROS production [34].

Mutation of Phospholipase Da1 (PLDa1) failed to produce ROS in guard cells in response to

ABA [35]. Thus, ROS are important second messengers in ABA signaling in guard cells.

MADS–box transcription factors have been shown play crucial roles in the regulation of

developmental processes [36,37]. Recently, there are convincing reports that MADS–

box genes also participate in the regulation of hormones and the abiotic stress response. In

Arabidopsis, the mutation of flowering–time gene SOC1 confers freezing tolerance [38], and

AGL21 modulates osmotic stress tolerance by controlling the expression of ABI5 [39]. In rice,

OsMADS26 negatively regulates the resistance to pathogens and drought tolerance [40], while

OsMADS87 is involved in heat sensitivity [41]. Despite the recent progress that OsMADS25
regulates the root system development in rice in a nitrate–dependent manner [42], its function

in abiotic stress remains elusive. In this current work, we aim to reveal the regulatory roles and

possible mechanism of OsMADS25 in response to salinity stress in rice.

Results

Overexpression of OsMADS25 reduces the ROS levels in the roots in rice

OsMADS25 is preferentially expressed in the root during the growth period (S1A Fig). Here,

independent OsMADS25–overexpression transgenic lines (OE1 and OE2) and–RNAi lines

(RNAi1 and RNAi2) with significantly up–or down–regulated mRNA levels of OsMADS25
were produced, and the root system of OsMADS25 transgenic lines was indicated to change

greatly in standard 1/2 MS medium, compared with their wild–type counterparts (Fig 1A and

1B). Overexpression of OsMADS25 remarkably enhanced the primary root (PR) length,

whereas RNAi silence of this gene reduced PR elongation (Fig 1C). The root elongation is

inhibited by ROS via enhancing Rbohs expression, and silencing of RbohC accelerates root

elongation [7]. To test whether the roots of OsMADS25 transgenic lines have altered ROS lev-

els, we used the ROS–reactive dyes NBT and DAB to detect the levels of O2
– and H2O2 in PRs,

respectively. We found that OsMADS25–OE roots had the strong staining just in the first 1

mm of the root tip of PR, and the staining intensity started to decrease in the differentiation

zone and elongation zone behind the root meristem, with only weak staining observed at a dis-

tance of 3 mm from the root tip (Fig 1D). OsMADS25–RNAi roots also showed strong stain-

ing in the root tip as in the wild type; but the staining continued to be strong, and was also

detected in the differentiation zone and elongation zone of the root tip (Fig 1D), due to an

increase of H2O2 content in roots, compared to wild type (Fig 1E).
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In addition, OsMADS25 also greatly affected lateral root (LR) density (S1B Fig). The LR for-

mation is proposed to be divided into the initiation and emergence phases primarily [43]. Fur-

ther investigations on the developmental basis of LR by methylene blue staining showed that

the density of lateral root primordia (LRPs) was significantly increased in OsMADS25–OE

plants, whereas remarkably reduced in OsMADS25–RNAi lines, compared to that in wild type

(S1C and S1D Fig), which suggests that OsMADS25 might control LRP initiation in rice. We

also detected ROS accumulation in LRPs by DAB and NBT staining, respectively, and there

seemed to be no difference between OsMADS25 transgenic lines and wild type (S2 Fig).

Indeed, OsMADS25 also significantly affected shoot growth (S1E Fig). As expected, less ROS

accumulation was detected in 7–day–old shoots, mature leaves, as well as bracts of

OsMADS25–OE lines, but increased levels of ROS were deposited in the counterparts of

Fig 1. Root growth of OsMADS25 transgenic lines is correlated with the ROS levels. A. Seedlings of wild type and OsMADS25
transgenic lines grown in standard 1/2 MS medium for 5 days. Scale bars, 2 cm. B. Relative transcript levels of OsMADS25 in

OsMADS25 transgenic lines by qPCR analysis. C. Primary root length of 5–day–old wild type and OsMADS25 transgenic

seedlings. D. NBT and DAB staining for O2
– and H2O2, respectively, in the root tips of wild type and OsMADS25 transgenic lines

shown in image A. Scale bars, 1 mm. E. Quantification of H2O2 content in the roots of wild type and OsMADS25 transgenic plants

shown in image A. WT, wild type. RNAi1 and RNAi2, OsMADS25–RNAi transgenic lines. OE1 and OE2, OsMADS25
overexpression transgenic lines. NBT, nitroblue tetrazolium. DAB, 3, 3’–diaminobenzidine. Three independent experiments were

performed with similar results. Data are means ± SE (n = 10). The statistical significance of the measurements using one-way

analysis of variance (ANOVA) was determined using Student’s t-test. Asterisks indicate the significant difference between

OsMADS25 transgenic lines and WT plants (t–test,
�

P< 0.05,
��

P< 0.01 or
���

P< 0.001).

https://doi.org/10.1371/journal.pgen.1007662.g001
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OsMADS25–RNAi plants, compared to wild type (S1F–S1H Fig). Together, these data indicate

that OsMADS25 is required for maintaining cellular redox homeostasis, and down–regulated

expression of OsMADS25 enhances ROS accumulation, especially in the differentiation zone

and elongation zone of the root tip, which might affect the root elongation.

Overexpression of OsMADS25 enhances root cell elongation

ROS are important signaling molecules that regulate the root growth and development [6,44].

We wonder whether the root system architecture of OsMADS25 transgenic lines in standard

1/2 MS medium is the result of alteration in cell elongation. Then we investigated the epider-

mal cell length at day 5, when there was significant difference in the root elongation between

transgenic lines and wild type in standard 1/2 MS medium (Fig 2A). To ensure that we were

measuring comparable cells in wild type and OsMADS25 transgenic lines, the cells we mea-

sured were at the same distance, 8–10 mm from the root tip in the mature zone. We found

that, at this developmental stage, OsMADS25–RNAi roots had significantly shorter cells, but

OsMADS25–OE roots had remarkably longer cells than wild type (Fig 2B). At the same dis-

tance from the root tip, the epidermal cell length was reduced more than 30% in OsMADS25–

RNAi roots, whereas increased over 40% in OsMADS25–OE lines, compared to their wild–

type counterparts (Fig 2B). No significant difference of epidermal cell width was observed

between wild type and OsMADS25–OE lines (Fig 2C). These data suggest that OsMADS25
might modulate cell length by maintaining ROS homeostasis.

Overexpression of OsMADS25 reduces the sensitivity to H2O2 by regulating

the activities of ROS–scavenging enzymes

Overexpression of OsMADS25 reduced ROS accumulation in the roots, with a corresponding

increase in cell elongation (Figs 1 and 2). Thus, the potential role of OsMADS25 in maintaining

ROS homeostasis was further evaluated by exposing the plants to H2O2. It has been reported

that there is no significant difference in the root system growth between OsMADS25 transgenic

lines and wild type in modified 1/2 MS medium [with glutamine (Gln) as the N nutrition] [42].

Consistent with this, our results showed that the plant growth including PR elongation and LR

branching was not affected by OsMADS25 up–or down–regulation in modified 1/2 MS medium

(S3A–S3D Fig). Further, we investigated the LRP density and epidermal cell size of PR, and no

remarkable difference was observed between OsMADS25 transgenic plants and wild type (S3E–

S3I Fig). Meanwhile, OsMADS25 does not affect ROS accumulation in shoots, roots and LRPs

(S4 Fig). Thus, the modified 1/2 MS medium was used for investigating the responses of

OsMADS25 transgenic lines to H2O2, to exclude the effect of NO3
– on the root development. As

shown in Fig 3A–3C, in the absence of H2O2, the PR elongation and LR density between the

transgenic lines and wild type were highly similar; however, in the presence of 10 mM H2O2 for

7 days, the root growth in OsMADS25–RNAi lines was impaired severely, with decreased PR

elongation and LR formation, whereas not affected in OsMADS25–OE lines, compared to their

counterparts under control conditions. After exposed to H2O2 for 14 days, OsMADS25–OE

roots still exhibited superior growth status, but the root growth in OsMADS25–RNAi lines was

significantly repressed, compared to wild type (Fig 3A, 3E and 3F). The shoot growth in

OsMADS25–OE lines is also not affected by H2O2 treatment, while decreased remarkably in

RNAi lines, compared to that under control conditions (Fig 3D and 3G). The tolerance to oxi-

dative stress is closely linked to the ROS–scavenging capability. As shown in Fig 3H–3K, after

exposed to H2O2, the activities of ROS–scavenging enzymes such as CAT, APX, GPX and GR

were significantly enhanced in OsMADS25–OE roots, whereas not altered remarkably in

OsMADS25–RNAi lines, compared to their counterparts under control conditions, which led
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to an increase of H2O2 content (Fig 3L). Indeed, when exposed to H2O2, the expression of some

ROS producers as well as scavengers in transgenic lines was also altered. The transcript levels of

OsRbohs such as OsRbohF and OsRbohG were significantly elevated in OsMADS25–RNAi,

while reduced in OsMADS25–OE plants, compared to that in wild type in modified 1/2MS

medium (S5A and S5B Fig). For ROS scavengers, the expression of OsCATB and OsGST4 was

significantly enhanced in OsMADS25–OE lines, whereas reduced remarkably in RNAi lines

(S6A and S6B Fig).

OsMADS25 overexpression also reduced the sensitivity to H2O2 in standard 1/2 MS, indi-

cated by less inhibition on the shoot and root growth (S7A–S7E Fig), and had less ROS

Fig 2. Overexpression of OsMADS25 enhances the cell elongation. A. Propidium iodide (PI)–stained root epidermal cells of 5–day–old wild type and

OsMADS25 transgenic roots grown in standard 1/2 MS medium. Scale bars, 50 μm. B and C. Average epidermal cell length and cell width from 5–day–old wild

type and OsMADS25 transgenic roots shown in image A, respectively. To measure cell length, germinated seeds were grown in standard 1/2 MS medium for 5

days, and the roots were stained with PI followed by washing for twice with sterile water, then imaged with a Leica SP8 confocal microscope. Epidermal cell

length was averaged from at least 50 cells per root at a distance of 1 cm from the root tips from at least five roots examined for each treatment. Cell length was

measured using Leica SP8 software. WT, wild type. RNAi1 and RNAi2, OsMADS25–RNAi transgenic lines. OE1 and OE2, OsMADS25 overexpression

transgenic lines. Three independent experiments were performed. The statistical significance of the measurements using one-way analysis of variance

(ANOVA) was determined using Student’s t–test. Asterisks indicate the significant difference between OsMADS25 transgenic lines and WT plants (
�

P< 0.05,
��

P< 0.01 or
���

P< 0.001).

https://doi.org/10.1371/journal.pgen.1007662.g002
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Fig 3. OsMADS25 confers H2O2 tolerance by promoting ROS-scavenging capability. A. Root performance of wild type

and OsMADS25 transgenic seedlings in modified 1/2 MS medium (without nitrate, with 5 mM glutamine as the N

nutrition) with or without 10 mM H2O2 for 7 or 14 days. Scale bars, 1 cm. B–D. Measurement of primary root length,

lateral root number and shoot length of 7–day–old seedlings shown in image A. E–G. Measurement of primary root

length, lateral root number and shoot length of 14–day–old seedlings shown in image A. H–K. Activities of antioxidant

enzymes of CAT, APX, GPX and GR in roots of 7–day–old seedlings shown in image A. L. Quantification of H2O2 content

in the roots of 7–day–old seedlings shown in image A. WT, wild type. RNAi1 and RNAi2, OsMADS25–RNAi transgenic

lines. OE1 and OE2, OsMADS25 overexpression lines. Three independent experiments were performed, and data are

means ± SE (n = 15). The statistical significance of the measurements using one-way analysis of variance (ANOVA) was
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accumulation (S7F Fig), as a result of increased activities of ROS–scavenging enzymes (S7G–

S7J Fig). The role of OsMADS25 in response to H2O2 was further investigated during seed ger-

mination. Almost all of the seeds were germinated on day 5 in the absence of H2O2, although

down–regulation of OsMADS25 clearly retarded seed germination (S7K and S7L Fig). How-

ever, after exposed to H2O2, the germination rate was significantly reduced in OsMADS25–

RNAi seeds, whereas increased in OsMADS25–OE seeds, compared to that in wild type (S7K

and S7L Fig). Together, these observations strongly support that OsMADS25 could reduce the

sensitivity to H2O2 during seed germination and post–germination growth by maintaining

ROS homeostasis in rice. In fact, the ROS–scavenging capability regulated by OsMADS25 was

also confirmed through transient expression in the leaf of Nicotiana benthamiana under salin-

ity stress (S8 Fig). These results suggest that OsMADS25 has the capability of maintaining ROS

homeostasis.

OsMADS25 binds with the CArG–box motif and directly activates the

transcription of OsGST4 in vivo
MADS–box proteins have been shown to regulate gene transcription by binding to a consen-

sus core element CArG–box [45]. In our study, multiple ROS–scavengers were found to be

potential targets regulated by OsMADS25 via ChIP–seq analysis (S2 Table). To further reveal

the regulatory mechanism of OsMADS25 in the tolerance to oxidative stress in rice, OsGST4,

one of the potential targets of OsMADS25 was further analyzed (S2 Table and Fig 4A). We

wondered whether OsMADS25 has the DNA binding activity on the promoter of OsGST4.

Interestingly, cis–element scanning of the ~2kb promoter region of OsGST4 showed one likely

OsMADS25–binding CArG–box site at –511 to –520 bp from ATG position of OsGST4 (Fig

4B). To confirm the binding specificity, we further performed EMSA using recombinant

OsMADS25 and an oligonucleotide containing the CArG–box motif located in OsGST4 pro-

moter region. As shown in Fig 4C, a supershifted band was observed when labelled DNA

probes containing the CArG–box motif was incubated with recombinant OsMADS25 (Lane

2), which means OsMADS25 was able to directly bind to the CArG–box motif. No super-

shifted signal was observed in the control sample containing only the labeled probe (Lane 1).

Moreover, we observed decreased signals when a 50–, 100–, or 200–fold excess of unlabeled

probe was added to the EMSA reaction as competitors (Lane 3–5,). Site mutations for the

CArG–box motif were performed to further confirm the OsMADS25–binding specificity.

When C and G in both ends of the CArG–box motif were mutated (mutation probe),

OsMADS25 binding signal was decreased drastically (Lane 6).

To explore if OsMADS25 possesses transcriptional–activation activity, yeast one–hybrid

assay was performed. The full–length cDNA of OsMADS25 was fused in frame to GAL4 activa-

tion domain in the pGADT7 vector, and the sequence of OsGST4 promoter from –487 to –553

that harbours CArG–box motif was ligated into the pAbAi vector (Fig 4D). The yeast one–

hybrid assay showed that OsMADS25 directly interacts with the sequence of OsGST4 promoter

(Fig 4E). To confirm that OsMADS25 can regulate the expression of OsGST4 in vivo, we per-

formed transient transactivation assay in N. benthamiana. The sequence from –274 to –767 bp

in OsGST4 promoter was fused to the GUS reporter gene to use as the reporter, and OsMADS25,

driven by the CaMV35S promoter, was used as the effector (Fig 4F). The reporter and effector

plasmids were coinfiltrated into N. benthamiana leaves by Agrobacterium-mediated leaf disc

determined using Student’s t-test. Asterisks indicate the significant difference between OsMADS25 transgenic lines and

WT plants (
�

P< 0.05,
��

P< 0.01 or
���

P< 0.001).

https://doi.org/10.1371/journal.pgen.1007662.g003
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infiltration. As we have expected, the GUS reporter gene was activated by coexpressing

OsMADS25 with the sequence of OsGST4 promoter (Fig 4G). More importantly, the transcript

abundance of OsGST4 was found to be enhanced remarkably in OsMADS25–OE plants, but

reduced greatly in RNAi lines (Fig 4H), and the GST activity in OsMADS25–OE plants was

shown to be significantly higher, whereas lower in RNAi plants than that in wild type (Fig 4I).

Taken together, these results indicate that OsMADS25 directly acts upstream of OsGST4 and

activates its transcription by interacting with the cis–element.

Fig 4. Cis–element binding ability and transcriptional–activation assays of OsMADS25. A. Nucleotide frequency

distribution of the OsMADS25 core binding consensus sequence as determined ChIP–seq analysis. B. Schematic

diagram of OsGST4 promoter region showing the CArG–box motif. C. Electrophoretic mobility shift assays (EMSA)

indicating OsMADS25 binding specific CArG–box motif located in the promoter region of OsGST4. D. Schematic

diagrams of the effector and reporter used in the yeast one–hybrid assay. E. Transcriptional–activation assays showing

OsMADS25 having transactivation activity in yeast. Panel (I) shows yeast cells containing distinct effector and reporter

constructs grown on an SD/-Ura medium without AbA (–Ura; –AbA). 1. pGADT7–p53/p53–AbAi (positive control);

2. pGADT7/p53–AbAi; 3. pAbAi–mOsGST4/pGADT–OsMADS25; 4. pAbAi–OsGST4/pGADT–OsMADS25. Panel

(II) shows that yeast cells shown in panel (I) cultured on SD/–Ura medium containing 200 ng ml-1 AbA (–Ura; +AbA).

F. Schematic diagrams of the effector and reporter used for transient transactivation assay in Nicotiana benthamiana.

G. Transactivation activity detected by GUS staining after reporter and effector plasmids coinfiltrated into the leaves of

N. benthamiana. H. The transcript levels of OsGST4 in 7–day–old wild type and OsMADS25 transgenic roots by qPCR

analysis. I. Measurement of GST activity in 7–day–old wild type and OsMADS25 transgenic roots. WT, wild type.

RNAi1 and RNAi2, OsMADS25–RNAi transgenic lines. OE1 and OE2, OsMADS25 overexpression lines. Three

independent experiments were performed. Data are means ± SE (n = 10). The statistical significance of the

measurements using one-way analysis of variance (ANOVA) was determined using Student’s t-test. Asterisks indicate

the significant difference between OsMADS25 transgenic lines and WT plants (
�

P< 0.05,
��

P< 0.01 or
���

P< 0.001).

https://doi.org/10.1371/journal.pgen.1007662.g004
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osgst4 mutant has reduced ROS–scavenging capability and tolerance to

H2O2

Having elucidated OsMADS25 modulating root growth by regulating ROS scavenging via

binding to the promoter region of OsGST4, we further provided convincing evidence to sup-

port a positive role of OsGST4 in ROS scavenging in rice. A loss–of–function rice mutant that

harbors a T–DNA insertion in OsGST4 was obtained (Fig 5A and 5B). OsGST4 contains three

exons and two introns and is 5180 bp in total length, and the T–DNA insertion position is –

417 bp from ATG, which caused the deletion of a 16–bp fragment (Figs 5A and S9A). Scarce

transcripts of OsGST4 were detected in osgst4 by qPCR analysis (Fig 5C).

The contribution to plant growth and oxidative stress tolerance made by OsGST4 was eval-

uated. OsGST4 is expressed in various tissues (S9B Fig). As shown in Fig 5D–5G, the growth of

osgst4 was remarkably inhibited, and the PR elongation, LR formation and shoot growth were

significantly reduced in 7–day–old seedlings in standard 1/2 MS medium, compared to wild

type (DJ). At maturity, mutation of OsGST4 affected plant growth severely, and the plant

height was reduced over 40% in osgst4, compared to the wild–type counterpart (Fig 5H and

5I). It is notable that the seed setting rate in osgst4 was also drastically reduced, with much

higher blight grain rate and lower seed germination rate than wild type (Figs 5J, 5K and S9C).

We then detected the ROS levels in osgst4. When exposed to H2O2 or NaCl, osgst4 accumu-

lated significantly higher levels of ROS than wild type (Fig 5L and 5M). Moreover, the response

to oxidative stress showed that osgst4 exhibited more sensitivity to H2O2 or NaCl, and the leaf

chlorosis in osgst4 was remarkably much quicker than that in wild type (Fig 5N and 5O), as a

result of higher levels of ROS accumulation. As a strong support for this evidence, recombi-

nant OsGST4 was shown to have the ROS–scavenging capability in vitro and improve the tol-

erance to oxidative stress in Escherichia coli (S9D Fig). These results suggest that the growth

impairment and hypersensitivity to oxidative stress observed in osgst4 may result from the

enhancement of ROS levels, due to reduction of ROS–scavenging capability by OsGST4
knockout.

Overexpression of OsMADS25 enhances the salinity tolerance in rice

Plants overexpressing–OsMADS25 reduce the sensitivity to H2O2 (Fig 3), and the transcript

levels of OsMADS25 were remarkably enhanced in response to H2O2 and NaCl (Fig 6A). Thus,

the function of OsMADS25 in response to NaCl was explored during seed germination and

post–germination growth. There was no significant difference in seed germination between

wild type and OsMADS25 transgenic lines in the absence of NaCl (Figs 6B and S10A). After

exposed to 150 mM NaCl, seed germination in OsMADS25–RNAi lines was significantly

inhibited, with only about 45% seeds germinated on day 5. Whereas, the inhibition of seed ger-

mination in OsMADS25–OE lines by NaCl is not severely, and 78% of seeds germination rate

was observed, compared to 53% for wild type (Figs 6B and S10A). As to post–germination

growth, wild type and OsMADS25 transgenic plants grew normally with the similar chloro-

phyll levels in normal condition (Fig 6C and 6D). However, when exposed to salinity, the signs

of stress were much severer in OsMADS25–RNAi lines, which exhibited serious chlorosis and

wilting of the leaves, whereas the chlorosis of the OsMADS25–OE leaves was more delayed

than that of wild type (Fig 6C). The total chlorophyll content, which reflects the presence of

chlorosis, was reduced by 30% in the OsMADS25–OE lines, but 49% and 72% in wild–type

and RNAi plants, respectively, compared with that in the untreated plants (Fig 6D). Consistent

with the salinity–sensitive phenotype, the detached leaves of OsMADS25–RNAi lines showed

a quicker rate of bleaching than that of wild type (Fig 6E). Under salinity conditions, MDA

content, which reflects membrane injury and lipid peroxidation, was significantly elevated in
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OsMADS25–RNAi lines, whereas affected less severely in OsMADS25–OE lines in compari-

son with that in untreated plants (Fig 6F). There is also increasing evidence that plants accu-

mulate proline and osmotic solutes to regulate their osmotic potential during salinity stress,

which are important for protecting cells against increased levels of ROS under stress [46,47].

As shown in Fig 6G, although salinity stress greatly promoted the proline content in the leaves,

OsMADS25–RNAi lines and wild type accumulated less proline than OsMADS25–OE plants,

respectively. Under normal conditions, there was no significant difference in accumulation of

soluble sugars between transgenic lines and wild type; however, under salinity stress, the con-

tent of soluble sugars in RNAi lines was remarkably reduced, whereas not changed signifi-

cantly in OsMADS25–OE lines in comparison with that in wild type (Fig 6H). These results

suggest that OsMADS25 overexpression significantly improves salinity tolerance during seed

germination and seedling growth in rice.

The abiotic stress led to ROS accumulation and ROS–associated oxidative injury. Accumu-

lation of ROS in OsMADS25 transgenic plants treated by NaCl was then determined by DAB

and NBT staining, respectively. After the seedlings were grown in 150 mM NaCl for 3 days,

weak staining by DAB and NTB was observed in the leaves of OsMADS25–OE plants, com-

pared to that in wild type (Fig 6I), which is in accordance with their performance under salin-

ity stress. The tolerance to salinity stress closely links to the activities of ROS–scavenging

enzymes [10]. As shown in Fig 6J, after exposed to salinity stress, the activities of antioxidant

enzymes in OsMADS25–OE lines were significantly enhanced, whereas not changed remark-

ably in wild type and RNAi lines, compared to their counterparts in untreated plants (Fig 6J).

It is well recognized that ABA promotes stomatal closure to avoid water loss under various

drought and salt stresses. Delayed wilting of the leaves observed in OsMADS25–OE lines in

the presence of salinity prompted us to check the ratio of open stomata in response to exoge-

nous ABA. As shown in S10B and S10C Fig, after exposed to exogenous ABA, compared to

wild type, the ratio of open stomata in OsMADS25–OE leaves was significantly reduced,

which suggests that overexpression of OsMADS25 might result in slower water loss in leaves.

Together, these data indicate that overexpression of OsMADS25 could enhance the ability of

adaption to salinity stress by regulating the cellular ROS levels.

Overexpression of OsMADS25 improves root system development under

salinity stress

To further evaluate the role of OsMADS25 on root development under salinity stress, germi-

nated seeds were grown in modified 1/2 MS medium including 150 mM NaCl. The root

growth were not significantly affected by OsMADS25 up–or down–regulation under control

conditions (S11A–S11C Fig). However, after exposed to 150 mM NaCl for 7 days, the

impairment of root growth in RNAi plants was much severer than that of wild type, whereas

OsMADS25–OE plants showed less repression in PR length and LR density than wild type

Fig 5. osgst4 mutant exhibits defective growth and reduced tolerance to oxidative stress. A. Schematic diagram indicating the T–

DNA insertion site in genomic region in osgst4. B. Genotyping of osgst4 T2 seedlings performed via PCR analysis. C. Transcript levels of

OsGST4 in wild type (DJ) and osgst4 mutant by qRT–PCR analysis. D. Seven–day–old seedlings of DJ and osgst4 mutant grown in

standard 1/2 MS medium. Scale bar, 4 cm. E–G. Measurement of primary root length, lateral root number and shoot length in image D.

H. Plant architecture of DJ and osgst4 mutant at mature stage. Scale bar, 10 cm. I–K. Comparison of plant height, seed setting rate and

germination rate, respectively, between DJ and osgst4 mutant in image H. L and M. Quantification of H2O2 content in the shoot and root

of 7–day–old seedlings in response to H2O2 or NaCl, respectively. N and O. Detached leaves from 4–week–old DJ and osgst4 plants

exposed to 100 mM H2O2 or 150 mM NaCl for 3 days to indicate the oxidative stress tolerance. NBT, nitroblue tetrazolium. DAB, 3, 3’–

diaminobenzidine. Three independent experiments were performed. Data are means ± SE (n = 30). The statistical significance of the

measurements using one-way analysis of variance (ANOVA) was determined using Student’s t-test. Asterisks indicate the significant

difference between OsMADS25 transgenic lines and WT plants (
�

P< 0.05,
��

P< 0.01 or
���

P< 0.001).

https://doi.org/10.1371/journal.pgen.1007662.g005

OsMADS25 modulates root growth and confers salinity tolerance by the ABA pathway and ROS scavenging

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007662 October 10, 2018 12 / 32

https://doi.org/10.1371/journal.pgen.1007662.g005
https://doi.org/10.1371/journal.pgen.1007662


OsMADS25 modulates root growth and confers salinity tolerance by the ABA pathway and ROS scavenging

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007662 October 10, 2018 13 / 32

https://doi.org/10.1371/journal.pgen.1007662


(S11A–S11C Fig). Corresponding to the root growth, the shoot growth in RNAi plants was

also inhibited remarkably, leading to a significant decrease in the dry weight per plant (S11D

and S11E Fig). Further we detected the activities of ROS–scavenging enzymes as well as ROS

accumulation after exposed to NaCl. The activities of antioxidant enzymes in OsMADS25–OE

lines were significantly increased, whereas not altered remarkably in wild type and RNAi lines,

compared to that in untreated plants (S11F–S11I Fig). Accordingly, higher levels of ROS were

found to be deposited in RNAi plants, while OsMADS25–OE line accumulated less ROS than

wild type (S11J and S11K Fig). In parallel to ROS accumulation, the transcription of ROS-pro-

ducers and ROS-scavengers was observed to change greatly (S5C and S6C Figs). Indeed, when

grown in standard 1/2 MS medium including 150 mM NaCl, the root and shoot growth inhibi-

tion in OsMADS25–OE plants was also less severe than that in wild type (S12A–S12C Fig).

Meanwhile, OsMADS25–OE lines had higher activities and expression levels of ROS-scaven-

gers (S12D–S12H Fig), whereas had lower expression of ROS-producers than wild type (S12I

Fig), after exposed to salt stress. Together, our findings suggest that OsMADS25 is an impor-

tant regulator in improving plant root adaption to salinity stress by regulating the ROS levels.

OsMADS25 elevates ABA sensitivity and mediates ABA response in rice

The phytohormone ABA serves as an endogenous messenger during stress responses in plants

[26]. In order to determine whether OsMADS25 is involved in the plant response via the ABA-

dependent regulatory pathway, the biological function of OsMADS25 in the response of post–

germination growth to ABA was evaluated. In the absence of exogenous ABA for 7 days in

standard 1/2 MS medium, OsMADS25–OE lines exhibited superior growth status, whereas

the growth of RNAi lines was restrained, in comparison with wild type (Fig 7A and 7C–7E).

Interestingly, in the medium supplemented with 5 μM ABA for 7 days, the growth of

OsMADS25–OE seedlings was inhibited more severely than wild type, with remarkably

reduced root and shoot growth (Fig 7B–7E), which suggests that the growth of OsMADS25–

OE lines is arrested by ABA; by contrast, OsMADS25–RNAi lines exhibited less sensitivity to

ABA than OsMADS25–OE plants, with longer PR and shoot than wild type (Fig 7B–7E). In

ABA for 14 days, OsMADS25–OE plants were still more sensitive to ABA than wild type and

OsMADS25–RNAi plants, especially the shoot growth (Fig 7F–7J). In addition, when seeds

were geminated in standard 1/2 MS medium with 5 μM ABA, the germinative–growth in

OsMADS25–OE lines was also strongly repressed, whereas RNAi lines were less sensitive,

compared to wild type (S13A–S13C Fig). Together, these results indicate that OsMADS25
increases the sensitivity to ABA during germinative–growth and post–germination growth,

implying that OsMADS25 might play an important role in ABA response.

To elucidate the role of OsMADS25 in regulation of salinity tolerance in ABA–dependent

pathway, the transcript levels of ABA–dependent stress–responsive genes OsZIP23, OsZIP46,

Fig 6. OsMADS25 contributes to the salinity tolerance of rice. A. Time course of OsMADS25 transcription induced by 100mM H2O2 and

150 mM NaCl via qPCR analysis. B. Comparison of seed germination rate between wild type and OsMADS25 transgenic lines in the presence

of 150 mM NaCl. C. Phenotype of wild type and OsMADS25 transgenic seedlings exposed to salinity stress for 7 days. Scale bars, 5 cm. D.

Measurement of chlorophyll content in wild type and OsMADS25 transgenic seedlings exposed to salinity stress for 7 days. E. The detached

leaves exposed to 150 mM NaCl for 3 days to indicate the salinity tolerance of wild type and OsMADS25 transgenic lines. F–H. Measurement

of the content of MDA, proline and soluble sugar in wild type and OsMADS25 transgenic seedlings exposed to salinity stress for 7 days. I.

DAB and NBT staining for the leaves from wild type and OsMADS25 transgenic seedlings exposed to salinity stress for 7 days, respectively, to

indicate ROS levels. Scale bars, 2 cm. J. Activities of ROS–scavenging enzymes CAT, APX, GPX and GR in wild type and OsMADS25
transgenic roots exposed to salinity stress for 7 days. WT, wild type. RNAi1 and RNAi2, OsMADS25–RNAi transgenic lines. OE1 and OE2

OsMADS25 overexpression transgenic lines. NBT, nitroblue tetrazolium. DAB, 3, 3’–diaminobenzidine. Three independent experiments

were performed, and data are means ± SE (n = 15). The statistical significance of the measurements using one-way analysis of variance

(ANOVA) was determined using Student’s t–test. Asterisks indicate the significant difference between OsMADS25 transgenic lines and WT

plants (
�

P< 0.05,
��

P< 0.01 or
���

P< 0.001).

https://doi.org/10.1371/journal.pgen.1007662.g006
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OsTRAB1, OsLEA3, OsABI5, OsP5CS1 and OsP5CR were investigated. Notably, the transcrip-

tion of these genes were shown to be up–regulated in OsMADS25–OE lines under salinity

stress (Fig 7K), which suggests that OsMADS25 might be a transcriptional activator of these

abiotic–stress associated genes in the ABA–mediated regulatory pathway; thus, up–or down–

regulation of OsMADS25 altered the expression of the set of genes.

ABA elevates ROS production by regulating the plasma membrane NADPH oxidases

RBOHD and RBOHF [32]. We wonder whether exogenous ABA also affects ROS levels in

OsMADS25 transgenic lines. The result showed that, without ABA, higher levels of ROS were

accumulated in OsMADS25–RNAi roots in standard 1/2 MS medium, whereas less ROS in

Fig 7. OsMADS25 increases the ABA sensitivity of rice. A and B. Phenotype of wild type and OsMADS25 transgenic seedlings

grown in standard 1/2 MS medium with or without 5 μM ABA for 7 days. Scale bars, 2 cm. C–E. Statistical analysis of primary root

length, shoot length and lateral root number of wild type and OsMADS25 transgenic seedlings, respectively, in images A and B. F

and G. Phenotype of wild type and OsMADS25 transgenic seedlings grown in standard 1/2 MS medium with or without 5 μM ABA

for 14 days. Scale bars, 2 cm. H–J. Statistical analysis of primary root length, shoot length and lateral root number of wild type and

OsMADS25 transgenic seedlings, respectively, in images F and G. K. Relative transcription levels of key genes involved in ABA–
dependent stress response pathway in 2–week–old wild type and OsMADS25 transgenic seedlings. To investigate the effect of ABA

on rice growth, germinated seeds were grown in standard 1/2 MS medium with or without 5 μM ABA. WT, wild type. RNAi1 and

RNAi2, OsMADS25–RNAi transgenic lines. OE1 and OE2, OsMADS25 overexpression transgenic lines. Three independent

experiments were performed, and data are means ± SE (n = 15). The statistical significance of the measurements using one-way

analysis of variance (ANOVA) was determined using Student’s t–test. Asterisks indicate the significant difference between

OsMADS25 transgenic lines and WT plants (
�

P< 0.05,
��

P< 0.01 or
���

P< 0.001).

https://doi.org/10.1371/journal.pgen.1007662.g007
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OsMADS25–OE roots was detected than that in wild type (S13D and S13E Fig). By contrast,

with 5 μM ABA treatment for 3 days, NBT and DAB staining was clearly weakened in the

roots of OsMADS25–RNAi lines, but OsMADS25–OE lines exhibited the strongest staining

(S13D and S13E Fig). Moreover, after a 3–d continuous ABA treatment, significantly more

ROS had accumulated in the leaves of OsMADS25–OE lines in standard 1/2 MS medium, but

less ROS was detected in OsMADS25–RNAi lines than that of wild type (S13F–S13G Fig),

which suggests that exogenous ABA reduces ROS accumulation in RNAi lines, but enhances

ROS levels in OsMADS25–OE lines. Along with the fact that OsMADS25–OE roots are more

sensitive to ABA (Fig 7), it could be proposed that, ROS may function in the downstream of

ABA–mediated regulatory pathway in regulating root elongation, and the enhancement of

ROS–scavenging capability by OsMADS25 may be, at least partially, mediated by ABA–medi-

ated regulatory pathway.

OsMADS25 directly activates the transcription of OsP5CR
OsMADS25–OE plants exhibited increased tolerance to salinity and accumulated much higher

levels of proline than wild type (Fig 6). The transcripts of OsP5CR, responsible for proline bio-

synthesis, were also shown to be more abundant in OsMADS25–OE plants than that in wild

type, whereas significantly reduced in OsMADS25–RNAi lines, in response to salinity (Fig 7K).

Moreover, ChIP–seq analysis showed that OsP5CR is a candidate target regulated by

OsMADS25 (S2 Table). Then, EMSA was performed to test whether OsMADS25 has DNA

binding specificity for the OsP5CR promoter with two CArG–box motifs (Fig 8A). As shown in

Fig 8B, a shifted band was clearly detected when probe 2 (P2) in the OsP5CR promoter region

was incubated with OsMADS25 protein (lane 2); by contrast, no shifted bands were observed

when the probe 1 (P1) were incubated with recombinant OsMADS25 (lane 6). Competition

assay and probe mutation confirmed that this binding was specific (lane 3–5). We then explored

whether OsMADS25 directly regulates OsP5CR expression in vivo. The firefly luciferase

reporter driven by OsP5CR promoter (OsP5CRPro::LUC) and Renilla luciferase driven by 35S

promoter (35S::REN; as an internal control) were constructed in the same plasmid (Fig 8C).

After transiently expressed in rice protoplasts, the LUC and REN activities were then measured

and the LUC activity was normalized to REN activity. As shown in Fig 8D, coexpression of 35S::

OsMADS25 with OsP5CRPro::LUC increased the LUC/REN ratio, and LUC activity was approxi-

mately 1.75–fold of that in the control (Fig 8D). Thus, our data indicate that OsMADS25 is an

upstream transcriptional regulator of OsP5CR. This result suggests that OsP5CR expression acti-

vated by OsMADS25 directly might be involved in the response to salinity.

OsMADS25 might be involved in auxin signaling to regulate root system

architecture

Auxin plays critical roles in the root growth and development, and ROS have been proposed to

act as important signals during auxin–regulated LR initiation and emergence [48–50]. There is

significant difference in the root system development between OsMADS25 transgenic lines and

wild type (Fig 1), which suggests that up–or down–regulation of OsMADS25 might alter the

auxin signaling. OsYUCCA4 (OsYUC4), responsible for auxin biosynthesis, was found to be the

potential target of OsMADS25 through ChIP–seq analysis (S2 Table). Knock down of OsYUC4
seems to impair plant growth in rice [51]. We wonder whether OsMADS25 regulates the tran-

scription of OsYUC4 in vivo, and then the LUC activity was measured by transient coexpression

of OsYUC4Pro::LUC and 35S::OsMADS25 in rice protoplasts (S14A Fig). LUC activity in proto-

plasts transformed with LUC under the control of the OsYUC4 promoter was 2.76–fold of that

of the control (S14B Fig), which suggests that OsMADS25 might elevate auxin biosynthesis by
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activating OsYUC4. We then detected the transcript levels of genes involved in auxin biosynthe-

sis and signaling. As shown in S14C Fig, the expression of OsYUC4, OsARF1 and OsARF16 was

increased significantly in OsMADS25–OE lines, while reduced in OsMADS25–RNAi lines.

However, for OsIAA14, the mRNA levels were remarkably reduced in OsMADS25–OE lines

but enhanced in RNAi lines (S14C Fig), which suggests that the overexpression of OsMADS25
might promote the auxin signaling. When plants are exposed to environmental stresses, stress-

induced accumulation of ROS might alter auxin signaling [52–54]. In combination of induced

expression of OsMADS25 by NaCl and H2O2 (Fig 6A), it is supposed that auxin signaling pro-

moted by OsMADS25 might a positive regulator of stress tolerance.

Fig 8. OsMADS25 is a transcriptional activator of OsP5CR. A. Schematic diagram of OsP5CR promoter region showing the

CArG–box motifs. B. Electrophoretic mobility shift assays (EMSA) indicating OsMADS25 binding specific CArG–box motifs. C.

Schematic diagrams of the effector and reporter used for transient transactivation assays in in rice protoplasts. REN, Renilla
luciferase; LUC, firefly luciferase. D. Transactivation activity reflected by LUC activity of LUC/REN ratio. Data are means ± SE

(n = 6). Probes P1 and P2 indicated oligonucleotides used for EMSA. Fragments F1, F2 and F3 indicated DNA fragments used for

transcriptional–activation assays. The statistical significance of the measurements using one-way analysis of variance (ANOVA)

was determined using Student’s t–test. Asterisks indicate the significant difference between treatment and control (
�

P< 0.05,
��

P< 0.01 or
���

P< 0.001).

https://doi.org/10.1371/journal.pgen.1007662.g008
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Discussion

OsMADS25 confers salinity tolerance by enhancing antioxidation capacity

and proline biosynthesis

Numerous studies have revealed the involvement of ROS–scavenging capacity in plant toler-

ance to salinity stress [10,55]. In accordance with these above findings, OsMADS25–OE plants

showed increased tolerance to salinity and oxidative stress, with a corresponding increase in

the activities of antioxidant enzymes and a decrease in ROS accumulation (Figs 3 and 6, S7

and S8). These results showed that the functions of OsMADS25 in salinity tolerance might be

associated with the regulation of antioxidation ability. GSTs are thought to play an important

role during oxidative stress in plant [56]. Up–regulation of PjGSTU1 from Prosopis juliflora in

tobacco confers drought tolerance and recombinant PjGSTU1 possesses GST and GPX activi-

ties [57]. In another report, mutation of Arabidopsis GSTU17 affected the accumulation of

GSH and ABA, and gstu17 exhibited ABA hypersensitivity during seed germination [58]. In

our study, OsMADS25 elevated the activities of several ROS–scavenging enzymes under oxida-

tive stress (Figs 3, 6, S7, S8, S11 and S12). As the strong evidence supporting OsMADS25 mod-

ulating ROS levels in rice, OsMADS25 acts upstream of OsGST4 and positively regulates its

expression in vivo (Fig 4). Moreover, recombinant OsGST4 has the ROS–scavenging capability

in vitro (S9D Fig). It is notable that the detached leaves of osgst4 mutant also exhibited much

higher sensitivity to oxidative and salinity stresses (Fig 5N and 5O). These results suggest that

the elevated activities of ROS–scavenging enzymes significantly contribute to lower ROS accu-

mulation and less oxidative damage in OsMADS25–OE lines, which is associated with the

improved tolerance to salinity stress.

The osmoprotective function of proline has been well known under environmental stresses,

although the correlation between proline accumulation and abiotic stress tolerance in plants is

not always apparent. Osmotic stresses activates proline biosynthesis, which is controlled by the

P5CS and OsP5CR [18]. Arabidopsis P5CS1 is induced by osmotic and salt stress and is acti-

vated by an ABA–dependent pathway and H2O2–derived signals [17,19]. Indeed, proline has

been shown to protect and stabilize ROS–scavenging enzymes and activate alternative detoxifi-

cation pathways. Recent research showed that the increased proline accumulation and salinity

tolerance induced by ABA results from the up–regulation of OsP5CR in rice [59]. In accor-

dance with these findings, in our study, altered ABA response and enhanced expression of

ABA–dependent stress–responsive genes were observed in OsMADS25–OE lines, coupled

with increased OsP5CR expression and proline accumulation (Figs 6G and 7K). These data

suggest that ABA–dependent regulatory pathway is linked to proline biosynthesis controlled

by OsP5CR in OsMADS25–OE lines.

ROS, ABA and proline, interact with each other?

In this study, we showed that OsMADS25 regulated root cell elongation by maintaining ROS

homeostasis, and the perturbed balance of ROS led to an excess of ROS and a corresponding

decrease in cell elongation in OsMADS25–RNAi plants (Figs 1 and 2). Corresponding to the

alteration of ROS levels, altered ABA sensitivity was also observed (Figs 7 and S13), which sug-

gests that ROS alteration is correlated to ABA sensitivity. It has been reported that alterations

in ROS levels can affect ABA biosynthesis and signaling, as well as change ABA sensitivity

[12,19,60], and ABA can also regulate the expression of ROS–producing and–scavenging

genes [61,62]. For instance, recent research reveals a link between ABA signaling and H2O2

production via G–proteins that are shown to promote H2O2 production but negatively regu-

late ABA response [63,64]. These data suggest that there are likely to be different mechanisms
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by which ABA signaling and ROS production interact and regulate each other. All of these

observations strengthen the link between the changed H2O2 levels and altered ABA response

in OsMADS25 transgenic plants (Figs 7 and S13). Previous reports demonstrated that salinity–

induced proline accumulation is dependent on ABA, which is also consistent with the proposal

that proline is associated with redox regulation and that might serve as an antioxidant [65,66].

In many cases, abitotic stress gives rise to various metabolic changes, known as elevated ROS

levels [9]. Along with increased ROS, ABA signaling and ABA–dependent proline accumula-

tion, have been proposed to be crucial components of cross tolerance to various stresses [67].

The interplay between auxin and the ABA–mediated regulatory pathway?

A crosstalk between ABA and ROS signaling has been proposed and the role of ABA in adap-

tive abiotic stress responses via redox metabolism has been elucidated [10,29,30]. ABA is often

recruited as the primary signal activating the transcription of stress–responsive genes [68], and

ABA–triggered ROS production is involved in this process [8]. OsMADS25 was induced by

oxidative stress (Fig 6A), therefore, there is a reasonably strong case that the induction of

OsMADS25 expression operates via the ABA–mediated regulatory pathway. ABA triggers a

signaling cascade that up–regulates a suite of abiotic stress–responsive genes [69,70], which

were also shown to be up–regulated in OsMADS25–OE lines under salinity (Fig 7K). Intrigu-

ingly, OsMADS25 expression was slightly inhibited by ABA (S15 Fig), which is consistent with

previous research [71]. Overall, the decreased ratio of open stomata in response to ABA, the

enhancement of ABA sensitivity and the transcription up–regulation of these genes in

OsMADS25–OE lines (Figs 7 and S10B and S10C) provide firm evidence for a positive role of

OsMADS25 in a stress–responsive ABA–mediated regulatory pathway. Thus, ABA enhances

the transcription and activities of ROS network genes, and defects in this network can also dis-

rupt the expression of stress–responsive ABA–dependent genes [33].

Crosstalk between ABA and auxin has been proposed that ABA-potentiating auxin-medi-

ated growth repression is considered as the result of promoted auxin signaling or increased

auxin flow and/or auxin levels by ABA [72]. For instance, the auxin signaling-defective

mutants have reduced sensitivity to ABA in the root elongation [73,74]. Alternatively, auxin

can also enhance ABA-mediated seed germination inhibition and leaf senescence under vari-

ous oxidative stresses [75,76]. These studies highlight coenhancement between ABA and auxin

signaling or auxin homeostasis during seed germination and seedling development [2,72]. In

accordance with these data described above, in our study, overexpression of OsMADS25
seemed to promote auxin signaling (S14 Fig), and OsMADS25–OE lines also showed increased

sensitivity to exogenous ABA (Figs 7 and S13). As a fact, besides genes for antioxidant enzymes

and proline biosynthesis, genes for auxin biosynthesis and auxin signaling as well as calcium

signaling were potential targets regulated by OsMADS25, indicated as ChIP-seq analysis (S2

Table), which suggests that salinity tolerance conferred by OsMADS25 might be the result of

crosstalk of multiple cell signaling pathways.

Based on our results, our overall proposition is that, salinity stress produces ROS as well as

induces OsMADS25 expression. OsMADS25 directly activates the transcription of OsGST4
and ABA-dependent OsP5CR to increase antioxidant responses and proline accumulation, in

combination with ABA–dependent abiotic stress–responsive regulatory pathway, to fulfill

ROS-scavenging; besides, OsMADS25 might regulate the root growth via auxin signaling,

which enhances ABA signaling in oxidative stress, thereby explaining the positive role of

OsMADS25 in the root growth and salinity tolerance in rice (Fig 9).
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Fig 9. Proposed working model for OsMADS25 in the regulation of growth and salinity tolerance in rice. Salinity stress produces ROS as well as

inducesOsMADS25 expression. OsMADS25 directly activates the transcription of OsGST4 and ABA–dependent OsP5CR to increase antioxidant

responses and proline accumulation to fulfill ROS-scavenging, in combination with ABA–dependent abiotic stress–responsive regulatory pathway;

besides, OsMADS25 might regulate the root growth via auxin signaling, which also enhances ABA signaling in oxidative stress, thereby accounting for

the positive role of OsMADS25 in the growth and salinity tolerance in rice.

https://doi.org/10.1371/journal.pgen.1007662.g009
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Materials and methods

Plant materials and stress treatments

Rice (Oryza sativa L. ssp. japonica cv. Nipponbare) was used as wild type for physiological

experiments and genetic transformation. The T–DNA insertion mutant line PFG_3A–11112.L

(osgst4) in an Oryza sativa ssp japonica cv Dongjin (DJ) background was obtained from

RiceGE (the Rice Functional Genomics Express Database) in Korea. Plants were grown in a

greenhouse under a 14–h photoperiod (300 μmol photons m−2 s−1) at 30˚C. For the phenotype

analysis during post–germination growth, germinated seeds were grown on standard 1/2 MS

medium or modified 1/2 MS medium (without nitrate, with 5 mM glutamine as the sole N

nutrition). For salinity stress testing, seedlings were grown in modified 1/2 MS medium con-

taining 150 mM NaCl, 10 mM H2O2 or 5 μM ABA. For oxidative stress of detached leaved,

100 mM H2O2 was used. For salinity stress in soil, germinated seeds were grown in pots (about

1 dm3) containing filled mixture of soil and vermiculite (1:1). After 7 days of growth, plants

were irrigated every 3 days with 200 mL of 200 mM NaCl solution. The control plants were

irrigated with 200 mL water every 3 days. For the seed germination or germinative–growth

assays under stress, the seeds were placed on filter paper moistened with NaCl (150 mM),

H2O2 (10 mM) or ABA (5 μM) solutions, and seed germination and germinative–growth in

water as control. The germination rates were recorded daily.

Vectors construction and plant genetic transformation

For overexpression vector, the ORF of OsMADS25 was cloned into pCAMBIA1301, driven

under the 35S promoter. We used the pENTR/D–TOPO vector system to construct RNAi vec-

tor [77]. Genetic transformation of rice was performed using Agrobacterium–mediated meth-

ods [78]. Primers for DNA vectors construction and transformants screening are listed in S1

Table.

Stomatal observation

Full expanded young leaves of 5 day-old rice seedlings with or without 50μM ABA treatment

in MES–KCl buffer (50 mM KCl, 10 mM MES-KOH, pH = 6.15) for 2 h were used for stomatal

observation. Stomatal closure was monitored by Hitachi SU3500 scanning electron micro-

scope with a −40˚C cool stage.

ROS assays

We used nitroblue tetrazolium (NBT) staining to detect O2
– and 3, 30–diaminobenzidine

(DAB) staining for H2O2, as described previously [7]. H2O2 quantification was performed

according to the method as described previously [79]. The hydrogen peroxide detection kit

was used. Briefly, 10 mg plant tissue samples were snap frozen in liquid nitrogen and homoge-

nized, and 200 μl lysate was added and centrifuged at 12,000 g at 4˚C for 3–5 minutes. The

supernatant was taken for subsequent measurement. After taking 50 μl supernatant to a

96-well plate, 100 μl of hydrogen peroxide detection reagent was added, and the reactive solu-

tion was mixed gently by vortexing and incubated for 30 minutes at room temperature. Then

A560 wavelength was measured, and the hydrogen peroxide concentration was calculated

from the standard curve.
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Measurement of chlorophyll, proline, soluble sugar, and malondialdehyde

(MDA) content

Leaves from plants exposed to salinity stress for 7 days were used to measure chlorophyll, pro-

line, soluble sugars and MDA levels, and plants grown in normal conditions were used as con-

trol. Total chlorophyll content was determined by the protocol as described previously [80].

Briefly, 100 mg of fresh leaves were homogenised in liquid nitrogen, and 5 ml of 80% acetone

was added. After being incubated in dark for 1 h, the reaction mixture was centrifuged at

12,000 g for 3 min. The supernatant was used to measure the absorbance spectrophotometri-

cally at 645 and 663 nm against 80% acetone as blank. The chlorophyll content was determined

as follows: Total chlorophyll (μg/ml) = 20.2 (A645) + 8.02 (A663).

Free proline content was measured using the reported method [30]. Tissue samples of 1 g

were pulverized in liquid nitrogen and homogenized in a 3% aqueous solution of sulfosalicylic

acid. The samples were then centrifuged at 12,000 g for 15 minutes at 37˚C and 2 ml of the

supernatant was taken. An equal amount of acidic ninhydrin and glacial acetic acid were

added, and the reaction mixture was kept in boiling water for 1 h. The reaction was stopped on

ice, and 4 ml of toluene was added to the reaction mixture to collect the material separated

from the aqueous phase. The absorbance of toluene was measured at 520 nm and the proline

standard curve was used to calculate the proline content.

Soluble sugar content was determined by the anthrone method [81]. Briefly, after fresh leaf

samples were homogenized with deionized water, the mixture was filtered and treated with 5%

phenol and 98% sulfuric acid, and the absorbance at 485 nm was determined with a

spectrophotometer.

MDA content was determined as previously described [81]. Approximately 0.1 g of leaf

samples were ground in 10 ml of 10% trichloroacetic acid (TCA). The homogenate was centri-

fuged at 10,000 rpm for 20 min. The reaction mixture containing 2 ml of extract and 2 ml of

TBA was heated at 95˚C for 30 min, quickly cooled on ice, and then centrifuged again at

10,000 g for 20 min. The absorbances at 450, 532, and 600 nm were determined using an ultra-

violet spectrophotometer.

Antioxidant enzyme activity assays

Fresh leaf samples were used for enzyme extraction. All operations were carried out at 4˚C.

CAT activity was measured according to the method as described previously [82]. Decrease in

absorbance of H2O2 was measured in 1 ml of reaction mixture containing 10 mM H2O2 and

20 μl of enzyme extract in 50 mM of K3PO4 buffer (pH = 7). Specific enzyme activity was

expressed as l mole of H2O2 decomposed min-1 mg protein-1. The activities of APX and gluta-

thione reductase (GR) were determined by the reported method [83]. The reaction mixture of

1 ml comprised of 0.5 mM ascorbate, 0.1 mM H2O2, 0.1 mM EDTA, K3PO4 buffer (pH = 7)

and 10 μl of enzyme extract. Decrease in absorbance was observed spectrophotometrically at

290 nm at 25˚C. One unit of enzyme activity was expressed as the amount of enzyme required

to oxidise 1 μM of ascorbate minute-1 g tissue-1. The specific activity of GR is determined by

analysing the decrease in absorbance at 340 nm. One ml reaction mixture used for the assay

contained 50 mM K3PO4 buffer (pH = 7.8), 1 mM EDTA, 1 mM oxidized glutathione (GSSG)

and 25 μl enzyme extract. The reaction was started by adding 0.1 mM NADPH. Enzyme activ-

ity was expressed as μmol of NADPH oxidised min-1 mg protein-1.

GST activity was determined according to the protocol as described previously [84]. The

reaction mixture contained 100 mM Tris-HCl buffer (pH = 6.5), 1.5 mM GSH, 1 mM 1–

chloro–2, 4–dinitrobenzene (CDNB), and enzyme extract in a final volume of 0.7 ml. The

enzyme reaction was initiated by the addition of CDNB and the increase in absorbance was
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measured at 340 nm for 1 min. The activity was calculated using the extinction co-efficient

of 9.6 mM−1 cm−1. GPX activity was investigated by measuring the increase in absorbance

at 436 nm, by the method as described previously [85]. The reaction mixture was prepared

in 50 mM K3PO4 buffer (pH = 7) with 9 mM guaiacol, 10 mM H2O2 and 33 μl of enzyme

extract. The enzymatic activity of GPX is expressed as the amount of enzyme required to

produce 1 μmol guaiacol dehydrogenation product min-1 mg protein-1.

Propidium iodide (PI) staining procedures

For confocal microscopy analysis, root tips of 5–day–old seedlings were stained with PI at a

concentration of 10 mg/ml for 5 minutes, and then washed three times with double–distilled

water. After staining and mounting, all root tips were viewed using a Leica confocal laser

microscope.

RNA extraction, semi–quantitative and quantitative real–time PCR

(qPCR) analysis

Total RNA was extracted using TRIzol reagent. Reverse transcription and qPCR analysis were

performed as described previously [86]. The specific primers used for expression analysis are

listed in S1 Table.

Transcriptional activation assay in yeast

The Matchmaker Gold Yeast One–Hybrid Library Screening System (Clontech) was used to

examine protein binding. A fragment from OsGST4 promoter region containing the CArG–

box motif was cloned into the pAbAi vector to act as the reporter. The reporter plasmid was

introduced into the yeast strain Y1HGold, and the background AbAr expression of the reporter

strain was tested. The ORF of OsMADS25 was fused in–frame with the GAL4 activation

domain of the one–hybrid vector pGADT7, forming pGAD–OsMADS25 as the effector. The

reporter strain was transformed with pGADT7 or pGAD–OsMADS25. Primers for DNA vec-

tor construction are listed in S1 Table.

Transient transactivation in N. benthamiana and dual–luciferase assay

We used pGreenII cloning vectors to construct transactivation vectors [87]. The ORF of

OsMADS25 was cloned into pGreenII 62–SK to act as the effector. For reporter construction,

pGreenII 0800–LUC or pGreenII 0800–GUS was used. pGreenII 0800–GUS was generated

from pGreenII 0800–LUC by substituting LUC with GUS in the restriction enzyme site of

XbaI.

The promoter sequence of OsGST4 was cloned into pGreenII 0800–GUS, acting as the

reporter, and the empty vector pGreenII 0800–GUS acts as the control. The vectors were indi-

vidually transformed into the A. tumefaciens strain EHA105. Transient transactivation in the

leaves of N. benthamiana was performed according to the reported method [88], with minor

modification. Briefly, the detached leaves of 4–week–old N. benthamiana plants were

immersed into the mixture of Agrobacterium culture containing the effector or reporter,

respectively. Then the leaves together with Agrobacterium culture were first subjected to soni-

cation and later vacuum infiltrated in fresh Agrobacterium culture. Co–cultivation of Agrobac-
terium–infected leaves in standard 1/2 MS medium containing acetosyringone for 2 d. GUS

histochemical staining was detected as described previously [89]. Primers used for DNA vec-

tors construction are listed in S1 Table.
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The promoter sequence of OsP5CR or OsYUC4 was cloned into pGreenII 0800–LUC,

respectively, acting as reporters. Serial constructs harboring LUC under the control of different

regions in OsP5CR promoter (F1: -269~-710; F2: -787~-1117; F3–269~-1117) in the pGreenII

0800–LUC vector were generated as reporters. For OsYUC4, the fragment form -1486~-2139bp

including CArG-box motif in OsYUC4 promoter was used for construction of reporter. The

Renilla luciferase (REN) gene driven by 35S promoter was used as an internal control. The

OsMADS25 in pGreenII 62–SK construct described above was used as the effector. Rice shoot

protoplasts were prepared and transformed using a polyethylene glycolcalcium–mediated

method [90]. Firefly LUC and REN activities were surveyed with a Dual–Luciferase reporter

assay kit (Promega), and the LUC activity, normalized to REN activity, was determined. All

primers used for these constructs are listed in S1 Table.

Electrophoretic mobility shift assays (EMSA)

To produce the recombinant protein, the ORF of OsMADS25 was fused in–frame with His in

pET32a and expressed in E. coli DE3 (BL21) cells, and the target recombinant OsMADS25 was

purified. Oligonucleotide probes containing CArG–box motifs were synthesized and labeled

with using a Biotin 3’ End DNA Labeling Kit (Thermo Scientific). For EMSA experiment

assays, 30 ng of purified His-OsMADS25 recombinant protein, 400 fmol of biotin-labeled

annealed oligonucleotides, 2 μl of 10× binding buffer (100 mM Tris, 500 mM KCl, and 10 mM

DTT, pH 7.5), 1μl of 50% (v/v) glycerol, 1μl of 100 mM MgCl2, 1μl of 1 μg/μl poly (dI-dC), 1 μl

of 1% (v/v) Nonidet P–40, and double–distilled water to a final volume of 20 μl. For competi-

tion assays, 20 pmol (50×) or 40 pmol (100×) of unlabeled probe was added to the reactions.

The mixture was incubated at 25˚C for 20 min, electrophoresed on 6% (w/v) polyacrylamide

gels, and then transferred to N+ nylon membranes (Millipore). Biotin-labeled DNA was

detected using the LightShift Chemiluminescent EMSA kit (Thermo Scientific, 20148).

Accession numbers

Sequence data from this article can be found in RICEGE or GenBank/EMBL databases under

the following accession number: OsMADS25 (Os04g0304400); OsRbohA (Os01g53294); OsR-

bohB (Os01g25820); OsRbohC (Os05g45210); OsRbohD (Os05g38980); OsRbohE

(Os01g61880); OsRbohF (Os08g35210); OsRbohG (Os09g26660); OsRbohH (Os12g35610);

OsRbohI (Os11g33120); OsCu/Zn–SOD (Os03g0351500); OsMn–SOD (Os05g0323900);

OsCATB (Os06g0727200); OsAPX1 (Os03g0285700); OsFe–SOD (Os06g0143000); OsGR

(LOC4331112); OsGTS4 (Os01g0353400); OsP5CS1 (Os05g0455500); OsP5CR

(Os01g0948400); OsPOX1 (Os01g0263300); OsLEA3 (Os05g0542500); OsABI5

(Os01g0859300); OsTRAB1 (LOC4345807); OsYUC4 (Os01g0224700).

Supporting information

S1 Fig. Overexpression of OsMADS25 enhances later root density as well as reduces ROS

levels in rice leaves and bracts. A. Expression profile of OsMADS25 during the growth stage

(n = 3). B. Lateral root density of 5–day–old wild type and OsMADS25 transgenic seedlings. C

and D. Lateral root primordium formation in 5–day–old primary roots of wild type and

OsMADS25 transgenic lines. Scale bar, 1 mm. E. Shoot length of 5–day–old wild type and

OsMADS25 transgenic seedlings. F–H. Quantification of H2O2 content in the shoots of 5–
day–old seedlings grown in standard 1/2 MS medium, or leaves and bracts of 2-month-old

plants grown in soil. LB, leaf blade; Ro, root; LS, leaf sheath; In, inflorescence. WT, wild type.

RNAi1 and RNAi2, OsMADS25–RNAi transgenic lines. OE1 and OE2, OsMADS25 overex-

pression transgenic lines. Data are means ± SE (n = 15). The statistical significance of the
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measurements using one-way analysis of variance (ANOVA) was determined using Student’s

t-test. Asterisks indicate the significant difference between OsMADS25 transgenic lines and

WT plants (t–test,
�

P< 0.05,
��

P< 0.01 or
���

P< 0.001).

(TIF)

S2 Fig. ROS accumulation in lateral root primordia of seedlings grown on standard 1/2

MS medium. Five–day–old primary roots stained by DAB or NBT to indicate O2
– and H2O2

accumulation in lateral root primordium, respectively. Scale bars, 1 mm. Red arrows indicate

lateral root primordia. WT, wild type. RNAi1 and RNAi2, OsMADS25–RNAi transgenic lines.

OE1 and OE2, OsMADS25 overexpression transgenic lines.

(TIF)

S3 Fig. OsMADS25 does not affect the root growth in modified 1/2 MS medium. A. Five–

day–old seedling in modified 1/2 MS medium (without nitrate, with 5 mM glutamine as the N

nutrition). Scale bars, 2 cm. B–D. Measurement of primary root length, lateral root density

and shoot length in image A. E–F. Lateral root primordium formation in 5–day–old primary

roots. Scale bars, 1 mm. G–I. Propidium iodide (PI)–stained root epidermal cells from 5–day–

old seedlings and measurement of cell length and width. Red arrows indicate lateral root pri-

mordia. WT, wild type. RNAi1 and RNAi2, OsMADS25–RNAi transgenic lines. OE1 and OE2,

OsMADS25 overexpression transgenic lines. Data are means ± SE (n = 15).

(TIF)

S4 Fig. ROS accumulation the shoots, roots and lateral root primordia in modified 1/2 MS

medium. A–B. Quantification of H2O2 content in 5–day–old shoots and roots in modified 1/2

MS medium (without nitrate, with 5 mM glutamine as the N nutrition), respectively. C–D. Pri-

mary roots stained by DAB or NBT to indicate O2
– and H2O2 accumulation in lateral root pri-

mordia in modified 1/2 MS medium, respectively. Scale bars, 1 mm. Red arrows indicate

lateral root primordia. WT, wild type. RNAi1 and RNAi2, OsMADS25–RNAi transgenic lines.

OE1 and OE2, OsMADS25 overexpression transgenic lines. Data are means ± SE (n = 15).

(TIF)

S5 Fig. Transcript levels of OsRbohs in roots in response to 10 mM H2O2 or 150 mM NaCl

by qPCR analysis. Seedlings were grown in modified 1/2 MS medium (without nitrate, with 5

mM glutamine as the N nutrition) for 24 hours. The data represent the means ± SE of three

biological replicates. Three replica experiments were performed.

(TIF)

S6 Fig. Transcript levels of ROS-scavengers in roots in response to 10 mM H2O2 or 150

mM NaCl by qPCR analysis. Seedlings were grown in modified 1/2 MS medium (without

nitrate, with 5 mM glutamine as the N nutrition) for 24 hours. The data represent the

means ± SE of three biological replicates. Three replica experiments were performed.

(TIF)

S7 Fig. OsMADS25 reduces the sensitivity to H2O2 during seed germination as well as

post-germination growth in standard 1/2 MS medium. A and B. Seven–day–old seedlings

grown in standard 1/2 MS medium without or with 10 mM H2O2. Scale bars, 2 cm. C–E. Mea-

surement of primary root length, lateral root number and shoot length shown in images A and

B, respectively. F. Quantification of H2O2 content in the roots in images A and B. G–J. Activi-

ties of antioxidant enzymes of CAT, APX, GPX and GR in roots shown in images A and B. K

and L. Comparison of seed germination in the presence of 10 mM H2O2. Scale bars, 1 cm.

WT, wild type. RNAi1 and RNAi2, OsMADS25–RNAi transgenic lines. OE1 and OE2,

OsMADS25 overexpression transgenic lines. Data are means ± SE (n = 15–30). The statistical
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significance of the measurements using one-way analysis of variance (ANOVA) was deter-

mined using Student’s t-test. Asterisks indicate the significant difference between OsMADS25
transgenic lines and WT plants (t–test,

�

P< 0.05,
��

P< 0.01 or
���

P< 0.001).

(TIF)

S8 Fig. The ROS–scavenging capability of OsMADS25 in vivo. Transient expression of 35S::

OsMADS25 in the leaves of four–week–old Nicotiana benthamiana plants via Agrobacterium-

mediated infiltration, and then treated by 150 mM NaCl for 3 days. H2O2 accumulation was

indicted by DAB staining.

(TIF)

S9 Fig. Expression pattern of OsGST4 and ROS-scavenging activity of recombinant

OsGST4. A. Sequencing result of flanking sequence and identification of insertion site in the

genomic region of osgst4. B. Expression profile of OsGST4 during the growth stage. C. Com-

parison of grains between DJ and osgst4, indicating blight grain rate enhanced in osgst4. Scale

bar, 0.5 cm. D. ROS–scavenging capability of recombinant OsGST4 in vitro. (i) Growth

response to H2O2 of Escherichia coli. (ii) Assay of ROS–scavenging capability of recombinant

OsGST4 protein. WST, a water-soluble tetrazolium salt reagent, which can be efficiently

reduced by superoxide to a stable water-soluble formazan dye with high molar absorptivity. X

axis refers to the concentration of recombinant OsGST4. Data are means ± SE (n = 3). Aster-

isks indicate the significant difference between pET-32a-OsGST4 and pET-32a (t–test,
�

P< 0.05,
��

P< 0.01 or
���

P< 0.001).

(TIF)

S10 Fig. OsMADS25 overexpression enhances the salt tolerance. A. Seed germination of

wild type and OsMADS25 transgenic lines in the presence of 150 mM NaCl. Scale bars, 1 cm.

B. Stomatal aperture of leaves of 5-day-old seedlings observed with a scanning electron micro-

scope. Bars, 20 μm. C. Frequency of open stomata. WT, wild type. RNAi1, OsMADS25–RNAi

transgenic line. OE1, OsMADS25 overexpression transgenic line. Data are means ± SE

(n = 80–100). The statistical significance of the measurements using one-way analysis of vari-

ance (ANOVA) was determined using Student’s t-test. Asterisks indicate the significant differ-

ence between OsMADS25 transgenic lines and WT plants (t–test,
�

P< 0.05,
��

P< 0.01 or
���

P< 0.001).

(TIF)

S11 Fig. Germinative growth of transgenic seedlings in the modified 1/2 MS medium sup-

plemented with 150 mM NaCl. A. Three–day–old seedlings grown in modified 1/2 MS

medium (without nitrate, with Gln as N nutrition) without or with 150 mM NaCl. Scale bars, 2

cm. B–E. Measurement of primary root length, lateral root number, shoot length and dry

weight per plant shown in image A, respectively. F–I. Activities of antioxidant enzymes of CAT,

APX, GPX and GR in shoots shown in image A. J and K. Quantification of H2O2 content of

seedlings in image A. WT, wild type. RNAi1 and RNAi2, OsMADS25–RNAi transgenic lines.

OE1 and OE2, OsMADS25 overexpression transgenic lines. Data are means ± SE (n = 15). The

statistical significance of the measurements using one-way analysis of variance (ANOVA) was

determined using Student’s t-test. Asterisks indicate the significant difference between

OsMADS25 transgenic lines and WT plants (t–test,
�

P< 0.05,
��

P< 0.01 or
���

P< 0.001).

(TIF)

S12 Fig. Germinative growth of transgenic seedlings in standard 1/2 MS medium supple-

mented with 150 mM NaCl. A. Three–day–old seedlings grown in standard 1/2 MS medium

without or with 150 mM NaCl. Scale bars, 2 cm. B and C. Measurement of the length of
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primary root and shoot shown in image A, respectively. D–G. Activities of antioxidant

enzymes of CAT, APX, GPX and GR in shoots shown in image A. The statistical significance

of the measurements using one-way analysis of variance (ANOVA) was determined using Stu-

dent’s t-test. Asterisks indicate the significant difference between OsMADS25 transgenic lines

and WT plants (t–test,
�

P< 0.05,
��

P< 0.01 or
���

P< 0.001). H and I. Transcript levels of

ROS-producers and ROS-scavengers in seedlings exposed to NaCl in image A. The data repre-

sent the means ± SE of three biological replicates, and three replica experiments were per-

formed. WT, wild type. RNAi1 and RNAi2, OsMADS25–RNAi transgenic lines. OE1 and OE2,

OsMADS25 overexpression transgenic lines. Data are means ± SE (n = 15).

(TIF)

S13 Fig. Comparison of the sensitivity to ABA between wild type and transgenic lines dur-

ing germinative–growth in standard 1/2 MS medium. A. Three–day–old seedlings grown in

standard 1/2 MS medium without or with 5 μM ABA. Scale bars, 2 cm. B and C. Measurement of

the length of primary root and shoo shown in image A, respectively. D and E. Root system stained

with DAB or NBT to indicate the ROS levels under normal conditions or exposed to 5 μM ABA

for 14 days. F and G. The leaves stained with DAB or NBT indicate the ROS levels exposed to

5 μM ABA for 14 days. WT, wild type. RNAi1 and RNAi2, OsMADS25–RNAi transgenic lines.

OE1 and OE2, OsMADS25 overexpression transgenic lines. Data are means ± SE (n = 15). The

statistical significance of the measurements using one-way analysis of variance (ANOVA) was

determined using Student’s t-test. Asterisks indicate the significant difference between

OsMADS25 transgenic lines and WT plants (t–test,
�

P< 0.05,
��

P< 0.01 or
���

P< 0.001).

(TIF)

S14 Fig. OsYUC4 transcription is activated by OsMADS25 in vivo. A. Schematic diagrams

of OsYUC4 promoter region showing the CArG–box motif and the effector and reporter used

for transient transactivation assay in rice protoplasts. REN, Renilla luciferase; LUC, firefly lucif-

erase. B. Transactivation activity reflected by LUC activity of LUC/REN ratio. Data are

means ± SE (n = 6). C. The transcript levels of the genes responsible for auxin biosynthesis and

signaling. Data are means ± SE (n = 3). WT, wild type. RNAi1 and RNAi2, OsMADS25–RNAi

transgenic lines. OE1 and OE2, OsMADS25 overexpression transgenic lines. The statistical sig-

nificance of the measurements using one-way analysis of variance (ANOVA) was determined

using Student’s t-test. Asterisks indicate the significant difference between OsMADS25 trans-

genic lines and WT plants (t–test,
�

P< 0.05,
��

P< 0.01 or
���

P< 0.001).

(TIF)

S15 Fig. Time course of OsMADS25 transcription induced by 20 μM ABA via qPCR analy-

sis. The data represent the means ± SE (n = 3). Three replica experiments were performed.

(TIF)

S1 Table. Primer and probe sequences used in this study.

(DOC)

S2 Table. Potential targets regulated OsMADS25 might be involved in oxidative stress and

growth and development.
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