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A chromium-resistant fungus isolated from contaminated air with industrial vapors can be used for reducing toxicCr(VI) toCr(III).
This study analyzes in vitro reduction of hexavalent chromium using cell free extract(s) of the fungus that was characterized based
on optimal temperature, pH, use of electron donors, metal ions and initial Cr(VI) concentration in the reaction mixture. This
showed the highest activity at 37∘C and pH 7.0; there is an increase in Cr(VI) reductase activity with addition of NADH as an
electron donor, and it was highly inhibited by Hg2+, Ca2+ and Mg2+, and azide, EDTA, and KCN.

1. Introduction

Chromium (Cr) toxicity is one of the major causes of
environmental pollution emanating from tannery effluents.
This metal is used in the tanning of hides and leather,
the manufacture of stainless steel, electroplating, and textile
dyeing and used as a biocide in the cooling waters of nuclear
power plants, resulting in chromium discharges causing
environmental concerns [1]. Cr exists in nine valence states
ranging from −2 to +6. Of these states, only hexavalent
chromium [Cr(VI)] and trivalent chromium [Cr(III)] have
primary environmental significance because they are the
most stable oxidation forms in the environment [2]. Both
are found in various bodies of water and wastewaters [3].
Cr(VI) typically exists in one of these two forms: chromate
(CrO
4

−2) or dichromate (Cr
2
O
7

−2), depending on the pH
of the solution [3]. These two divalent oxyanions are very
water soluble and poorly adsorbed by soil and organic
matter, making them mobile in soil and groundwater [2].

Both chromate anions represent acute and chronic risks to
animals and human health since they are extremely toxic,
mutagenic, carcinogenic, and teratogenic [4]. In contrast to
Cr(VI) forms, the Cr(III) species, predominantly hydroxides,
oxides, or sulphates, are less water soluble, mobile (100 times
less toxic) [5], and (1,000 times less) mutagenic [6]. The
principal techniques for recovering or removing Cr(VI),
from wastewater are chemical reduction and precipitation,
adsorption on activated carbon, ion exchange, and reverse
osmosis, in a basic medium [7]. However, these methods
have certain drawbacks, namely, high cost, low efficiency,
and generation of toxic sludge or other wastes that require
disposal and imply operational complexity [8].

An alternative to these methods is the removal of heavy
metal contaminants by microorganisms. The metal removal
ability of microorganisms, including bacteria [2, 6, 8, 9],
microalgae [7, 10], and fungi [1, 11], has been studied exten-
sively. Fungi, in general, are well known for their ability
to biosorb and bioaccumulate metals [1, 11, 12] and have
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also been reported to be involved in reduction (biotrans-
formation) of Cr(VI) to Cr(III) form [11–13]. The common
Cr(VI) detoxification mechanisms reported in Cr-resistant
microorganisms are periplasmic biosorption and intracellu-
lar bioaccumulation and biotransformation through direct
enzymatic reaction [14, 15] or indirectly withmetabolites [16].
In Cr(VI)-resistant filamentous fungi, such as Paecilomyces
[13], Aspergillus and Penicillium [17], and Trichoderma [18],
the Cr(VI) detoxification through transformation of Cr(VI)
to Cr(III) form was observed due to cellular metabolism
processes based on the reducing power of carbon sources.
On the other hand, bioreduction of Cr(VI) has been demon-
strated in several bacterial species including Pseudomonas sp.
[19], Escherichia coli [20], Bacillus sp. [21], Desulfovibrio sp.
[22], Microbacterium sp. [23], and Shewanella sp. [24], some
fungi like A. niger and A. parasiticus [11], Paecilomyces [13],
Fusarium sp. [25], Paecilomyces lilacinus [26], and Hypocrea
tawa [27], and the yeasts Candida maltosa [28], Pichia sp.
[29] and Candida utilis [30]. Direct microbial reduction of
Cr(VI) to Cr(III) is the most promising practice with proved
expediency in bioremediation.

The objective of this study was to analyze in vitro
reduction of Cr(VI) by cell free extracts of Penicillium sp.
resistant to Cr(VI).

2. Experimental

2.1. Microorganism and Culture Conditions. A chromate-
resistant filamentous fungus was isolated from polluted air
with industrial vapors, near the Chemical Science Fac-
ulty, located in the city of San Luis Potośı, Mexico, in
Petri dishes containing modified Lee’s minimal medium
(LMM, [31]) (with 0.25% KH

2
PO
4
, 0.20% MgSO

4
, 0.50%

(NH
4
)
2
SO
4
, 0.50% NaCl, and 0.25% glucose) supplemented

with 500mg/L K
2
CrO
4
; the pH of the medium was adjusted

and maintained at 5.3 with 100mMol/L citrate-phosphate
buffer. The cultures were incubated at 28∘C for 7 days. The
strain was identified based on its morphological structures
such as the color, diameter of the mycelia, and microscopic
observation of formation of spores [32]. Fungal cultures
grown in thioglycolate broth were used as primary inocu-
lums.

2.2. Cr(VI) Reduction by Resting Cells of Penicillium sp.
Culture suspensions of Penicillium sp. were grown for 4 days
in 100mL thioglycolate broth (pH 7.0) and harvested by
centrifugation at 3000×g at 4∘C; cell pellets (10mL) obtained
on centrifugation were washed twice with 100mMpotassium
phosphate buffer (pH 7.0) and resuspended in the same
buffer. Triplicates of these suspended cell pellets were spiked
with Cr(VI) concentrations of 2–10mg/100mL, vortexed for
30min, and incubated at 30∘C for 6 h. Heat-killed (2mL)
culture pellets were used as control. After 6 h incubation, the
tubes were centrifuged, and 100 𝜇L aliquots were withdrawn
from each sample to estimate the remaining Cr(VI) by 1,5-
diphenyl carbazide (DPC) method [33].

2.3. Cr(VI) Reduction by Permeabilized Cells of Penicillium
sp. Bacterial culture of Penicillium sp. was grown for 4 days,
harvested, and washed with potassium phosphate buffer (pH
7.0) as described above. The suspended culture pellets were
treatedwith 0.2% (w/v) sodiumdodecyl sulphate, 0.2% tween
80, (v/v), 0.2% Triton X-100 (v/v), and 0.2% toluene (v/v),
by vortexing for 30min to achieve cell permeabilization.
Permeabilized cell suspensions (0.5mL) were then added
with 2–10mg/100mL of Cr(VI) as final concentrations and
incubated for 6 h at 30∘C. Experiments with each set of
permeabilization treatment and Cr(VI) concentrations were
performed in triplicates.

2.4. Preparations of Cell-Free Extracts. Cell-free extracts
(CFE) of Penicillium sp. were prepared by modifying the pre-
viously published protocols [34]. Fungal suspensions grown
for 4 days in 400mL thioglycolate broth were harvested
at 3000×g at 4∘C for 10min, washed, and resuspended in
100mM potassium phosphate buffer (pH 7.0). The culture
pellets thus obtained were resuspended in the 5% (v/v) of
the original culture volume in 100mM potassium phosphate
buffer (pH 7.0).These cell suspensions were placed in ice bath
and disrupted using an Ultrasonic Mini Bead Beater Probe
(Densply) with 15 cycles of 60 sec for each one. The sonicate
thus obtained was then centrifuged at 3000×g for 10min
at 4∘C. The pellet was resuspended in 100mM potassium
phosphate buffer (pH 7.0, and this is the CFE).

2.5. Chromate Reductase Assay. Enzymatic chromate reduc-
tion was estimated as described previously using a standard
curve ofCr(VI) 0–30mM[34]. Assaymixturesweremodified
from those described in previous studies [34]. The reac-
tion system (1.0mL) was made up of varying Cr(VI) final
concentrations (5–30mM) in 700𝜇L of 100mM potassium
phosphate buffer (pH 7.0) added with 250𝜇L aliquots of CFE
for chromate reduction and 50 𝜇L of NADH. The system
volume of 1.0mL was kept constant for all experiments.

Chromate reductase activity was measured at 37∘C at
different pH values using several buffers (100mMphosphate-
citrate, pH 5.0; 50mM phosphate, pH 6.0–8.0, and 50mM
TRIS-HCl, pH 8-9). The effect of temperature was studied by
measuring chromate reductase activity at different incubation
temperatures between 20 and 60∘C, at pH optimum. The
CFE samples were also treated with several metal ions to a
final concentration of 1mM at optimal pH and temperature;
Na+, Ca2+, Cu2+, Hg2+, Mg2+, Cd2+, and Fe3+ were tested
by using 10mM solutions of Na

2
SO
4
, CaCl

2
, CuCl

2
, HgCl

2
,

MgCl
2
, CdCl

2
, and FeCl

3
. The electron donors tested were

NADH, glucose, sodium acetate, formic acid, citrate, cystin,
lactic acid, and ascorbic acid in a final concentration of
1mM, and the inhibitors were EDTA, KCN, NaN

3
, and 𝛽-

mercaptoethanol at the same concentration. Unit enzyme
activity for chromate reductase was derived as amount of
enzyme that reduces 1mMol of Cr(VI) per min at 37∘C.
Specific activity was defined as unit chromate reductase
activity per minute per mg protein concentration in the CFE.
Protein concentrations were estimated using Lowry method
[35].
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Figure 1: Resting cell assays for Cr(VI) reduction by Penicillium sp.
performed at initial concentrations of 0–10mg/100mL of Cr(VI),
pH 7.0 and 37∘C.
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Figure 2: Permeabilized cell assays for Cr(VI) reduction by Penicil-
lium sp. performed at initial concentrations of 28mM of Cr(VI), pH
7.0 and 37∘C.

3. Results and Discussion

3.1. Cr(VI) Removal by Resting Cell of Penicillium sp. The
resting cells of the fungus were expedient in reducing 0–
10mg/100mL Cr(VI) concentrations in 8 hours as shown
in Figure 1. The fungus removal was between 53% and 70%
(2–10mg/100/mL) of the metal, and these results resemble
those reported by A. niger and A. parasiticus [11] Fusarium
solani [25], Paecilomyces lilacinus [26], and the bacteria
Pseudomonas sp. [19]. Structural properties of the biosorbent
including the cellular support and other several factors are
known to affect the biosorption rate [36].

3.2. Cr(VI) Reduction by Permeabilized Cells of Penicillium
sp. The cell permeabilization increased the Cr(VI) reduction
by the resting cells, as the permeabilized cells with Triton
X-100 which could reduce 57%, Toluene 52%, SDS 47.4%,
and Tween 80, 40.4% (Figure 2) of 30mM Cr(VI) within
6 h, suggesting an efficient intracellular mechanism of chro-
mate reduction. The Cr(VI) reductase activity in CFE of
cells grown in absence of Cr(VI) was 94.07𝜇moles/min/mg
protein. These results indicate that the Cr(VI) reductase was
associatedwith the CFE. Fungal, yeast, and bacteria chromate
reductases have been localized either in CFE of A. niger and
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Figure 3: Effect of pH on Cr(VI) reductase activity in cell-free
extracts of Penicillium sp. determined in different buffers (pH 6.5–
9.0) with initial concentration of 5.6mM Cr(VI), at 37∘C.

A. parasiticus [11], Pichia jadinii M9, and Pichia anomala
M10 [37], Pichia sp. [29], and Bacillus sp. [21], and cytosolic
fraction of C. maltosa [28], Pichia sp. [29], and Pannonibacter
phragmitetus [38] and membrane fraction Pseudomonas sp.
G1DM21 [19], Bacillus megaterium [39], and Enterobacter
cloacae [40].

3.3. Effect of pH on the Chromate Reductase Activity. The
functioning of the chromate reductase of Penicillium sp. was
characterized in different in vitro conditions. To define the
optimal pH, the Cr(VI) reductase assays were carried in
potassiumphosphate, citrate phosphate, andTris-HCl buffers
of differential pH ranges; of the different buffers used the
potassiumphosphate buffer showed a characteristic pH curve
for the enzymatic activity with an optimum pH of 7.0, as
depicted from Figure 3, and these results resemble those
reported by the fungal A. niger and A. parasiticus [11] and
the yeast P. jadini M9 [37]. Other authors reported stability
between 7.0 and 7.4 for the bacteria Pseudomonas sp. G1DM21
[19], 6.5 and 7.5 in E. coli CFE [41], and in the range of 5.0 to
8.0 in Bacillus sp. [42].

3.4. Effect of Temperature on the Chromate Reductase Activity.
The optimal temperature for the Cr(VI) reductase activity
was 37∘C, but the reductase activitywas altered significantly at
20∘C (39%of inhibition), butwhen the assayswere performed
at 50∘C temperature the reductase activity we found 14.2%
of inhibition Figure 4. For P. jadinii M9, incubation at 55∘C
produced a reduction in activity of 55% [37]. In P. anomala
when incubated at 8∘C, a decrease in activity of 25% was
observed, and at 50∘C the activity was 50%. For A. niger and
A. parasiticus [11], Pseudomonas sp. G1DM21 [19], E. coli a
[41], and Bacillus sp. CFEs [42], the thermal stability was
of 30∘C [41, 42]. On the contrary, Pseudomonas putida CFE
probed to be more resistant, keeping its stability up to 50∘C
[43].

3.5. Effect of Different Metal Cations on the Chromate Reduc-
tase Activity. The effect of different metal cations on the
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Figure 4: Effect of temperature on Cr(VI) reductase activity in cell-
free extracts of Penicillium sp. with initial concentrations of 28mM
Cr(VI) at pH 7.0.

0
10
20
30
40
50
60
70
80
90

Na Mg Fe Ca Cd Cu Hg
Metal cations 

Sp
ec

ifi
c a

ct
iv

ity
 (m

m
ol

/m
in

/m
g 

pr
ot

ei
n)

 

Figure 5: Effect of different metal cations on Cr(VI) reductase
activity in cell-free extracts of Penicillium sp. at pH 7.0 and 37∘C.

chromate reductase activity of Penicillium sp. was determined
as exhibited in Figure 5. All the metal ions tested inhibit
the Cr(VI) reductase activity of the CFE of 12% with Cu2+
and 40.2% with Na+, and these results are different than
those reported by the yeast P. jadiniiM9 Chromate reductase
because only Cu2+ and Na+ produced an augmentation in
the activity of 63 and 30%, respectively [37], and all other
ions tested had an inhibitory effect but in different levels. A
decrease of 56.5% was observed with Hg2+, while addition
of Mg2+, Fe3+, Ca2+, and Cd2+ resulted in a decrease of
activity between 40% and 51%. In P. anomala M10 chro-
mate reductase, only Cu2+ produced a raise in activity of
a 31%. Inhibition by Hg2+ was higher in P. anomala and
Pseudomonas sp. than in Penicillium sp. with a decrease in
activity of 85% and 90%, respectively [19, 37]. Inhibition by
Ca2+ and Mg2+ was approximately 50%, while Fe3+ reduced
the activity by 32%. These results agree with those reported
forArthrobacter crystallopoietes [44], andBacillus sp. [42].On
the other hand, inhibition byHg2+ can be related to its affinity
to –SH ligands, then suspecting the presence of this chemical
group in the active site of the enzyme related to chromate
reductase activity [44].
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Figure 6: Effect of different electron donors on Cr(VI) reductase
activity in cell-free extracts of Penicillium sp. at pH 7.0 and 37∘C.

3.6. Effect of Different ElectronDonors on the Chromate Reduc-
tase Activity. The reductase activity increased on supple-
mentation in the reaction mixtures with electron donors.
All the electron donors analyzed increased the activity, and
the most efficient were ascorbic acid, NADH, glucose, and
citrate by 4.4, 4.0, 2.9, and 2.87 times, respectively (Figure 6),
and these results are like those reported by the yeasts P.
jadinii M9 and P. anomala Chromate reductase with NADH
[37] and Pseudomonas sp. with citrate, acetate, glucose, and
formate [19]. In previous reports on Bacillus sp., glucose has
been reported to act as an electron donor and has been
demonstrated to increase Cr(VI) reduction [45, 46], and also
formate-dependent Cr(VI) reductases have been reported in
Shewanella putrefaciensMR-1 [47]. Our work supports other
studies reporting NADH or NADPH-dependent enzymatic
reduction of Cr(VI) under aerobic conditions [19, 20, 37, 42,
43]. According to Ramirez-Dı́az et al. [48], the oxidation
of NADH donates an electron to the chromate reductase
enzyme, and then the electron is transferred to Cr(VI)
reducing it to the intermediate form, Cr(V), which finally
accepts two electrons from other organic substances to
produce Cr(III).

3.7. Effect of Different Respiratory Inhibitors on the Chro-
mate Reductase Activity. Respiratory inhibitors like azide
(1mM), EDTA (1mM), and cyanide (1mM) caused inhi-
bitions of 48%, 47%, and 32%, respectively (Figure 7), in
the Cr(VI) reductase activity; these results corroborate with
those obtained in previous studies, and it has been observed
that cyanide and azide partially inhibited purified chromate
reductase ofE. coliATCC33456 19, [20] and aerobic chromate
reduction by Bacillus subtilis [49] and inhibited more than
50% of membrane associated chromate reductase activity of
S. putrefaciens MR-1 [49] while no inhibition was observed
in CFE of Bacillus sp. ES29 [44]. Respiratory inhibitors act
on de novo protein synthesis or affect the respiratory chain
intermediates responsible for Cr(VI) reduction, wherein
Cr(VI) serves as a terminal electron acceptor [43].
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Figure 7: Effect of different inhibitors on Cr(VI) reductase activity
in cell-free extracts of Penicillium sp. at pH 7.0 and 37∘C.

4. Conclusion

The present study analyzed a very efficient Cr(VI) reductase
of Penicillium sp. Chromate reductase assays of the cell-free
extracts (CFE) have shown a high Cr(VI) reductase activity.
The Cr(VI) reduction potential of the resting cells was
increased by cell permeabilization. Optimum temperature
and pH of chromate reductase activity of the bacterium
were found to be 37∘C and 7.0, respectively, and activity was
enhanced in presence of 0.1mM NADH and other electron
donors. 1mMol of metal ions like Cu2+, Na+, Hg2+, Mg2+,
Fe3+, Ca2+, and Cd2+ and respiratory inhibitors resulted in
a decrease of the activity. Finally, the results of higher rates
of Cr(VI) reduction by the CFE, functionality of the Cr(VI),
indicate a potential application of Penicillium sp. for Cr(VI)
bioremediation.
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