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While pituitary adenylate cyclase activating polypeptide (PACAP) signaling in the

hypothalamic ventromedial nuclei (VMN) has been shown to regulate feeding, a challenge

in unmasking a role for this peptide in obesity is that excess feeding can involve

numerous mechanisms including homeostatic (hunger) and hedonic-related (palatability)

drives. In these studies, we first isolated distinct feeding drives by developing a

novel model of binge behavior in which homeostatic-driven feeding was temporally

separated from feeding driven by food palatability. We found that stimulation of the VMN,

achieved by local microinjections of AMPA, decreased standard chow consumption in

food-restricted rats (e.g., homeostatic feeding); surprisingly, this manipulation failed to

alter palatable food consumption in satiated rats (e.g., hedonic feeding). In contrast,

inhibition of the nucleus accumbens (NAc), through local microinjections of GABA

receptor agonists baclofen and muscimol, decreased hedonic feeding without altering

homeostatic feeding. PACAP microinjections produced the site-specific changes in

synaptic transmission needed to decrease feeding via VMN or NAc circuitry. PACAP into

the NAc mimicked the actions of GABA agonists by reducing hedonic feeding without

altering homeostatic feeding. In contrast, PACAP into the VMN mimicked the actions

of AMPA by decreasing homeostatic feeding without affecting hedonic feeding. Slice

electrophysiology recordings verified PACAP excitation of VMN neurons and inhibition of

NAc neurons. These data suggest that the VMN and NAc regulate distinct circuits giving

rise to unique feeding drives, but that both can be regulated by the neuropeptide PACAP

to potentially curb excessive eating stemming from either drive.
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INTRODUCTION

A fundamental barrier in treating obesity is the challenge associated with isolating individual
feeding drives. Understanding these could lead to the identification and development of potential
new treatments based on the mechanisms underlying each unique form of caloric intake. Discrete
forms of obesity, binge eating, or other eating disorders may differentially stem from pathological
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changes in circuitry underlying feeding typically driven by
homeostatic needs (e.g., hunger-driven feeding) or hedonic
motivations for highly palatable foods (e.g., palatable-driven
feeding) (Lowe and Levine, 2005; Lowe and Butryn, 2007).
However, the degree to which potential anorexigenic substances
can suppress distinct feeding drives has been difficult to
determine because feeding in many preclinical models likely
involves multiple feeding drives. This is particularly problematic
with paradigms comparing the consumption of standard chow
and highly-palatable food in combination with food deprivation.
For example, in the limited-access binge model, subjects have
ad lib access to standard chow in conjunction with brief
access to a highly palatable food, which promotes binge eating
(Corwin, 2004; Corwin and Hajnal, 2005; Czyzyk et al., 2010).
While ad lib access to standard chow should limit hunger-
driven feeding, animals show self-induced food deprivation with
reduced consumption of the devalued standard chow (Corwin
and Buda-Levin, 2004). The potential that a confluence of
homeostatic and hedonic drives exists in this model is evident by
the observation that daily caloric intake and body weight remain
stable in this paradigm despite the addition of the high-caloric
food (Bake et al., 2014). In the current studies, we modified this
approach by restricting access to both diets in order to promote
conditions whereby hunger-driven consumption of standard
chow resulted in satiety prior to providing subjects access to
highly palatable food. By doing this, homeostatic and hedonic
drives are more clearly separated, which enabled us to examine
the cellular and molecular components of each feeding drive.

Using this new model of binge eating, we first sought to
characterize the cellular or regional contributions to hunger-
and palatable-driven feeding. Initially, we examined the impact
of VMN activation on feeding primarily driven by homeostatic
or hedonic feeding drives. Although the VMN have historically
been viewed as satiety centers regulating feeding behavior (King,
2006), it is unknown if the VMN-satiety signal also gates
feeding stemming from other distinct drives (e.g., palatable-
driven feeding). We then targeted subregions of the nucleus
accumbens (NAc), which has been principally linked to hedonic
drives; the degree to which the NAc regulates other motivations
to eat including homeostatic-based feeding is less well studied
(Baldo and Kelley, 2007; Johnson and Kenny, 2010; Baldo et al.,
2013). Each of these experiments is important because human
obesity can stem from either abnormal homeostatic feeding or,
over consumption of highly palatable foods even in the absence
of homeostatic need (Boggiano, 2016). Hence, these and future
studies have the potential to identify drive-specific circuitry, a
discovery that could help narrow attempts to outline the neural
basis for unique forms of obesity.

An additional objective was to examine the potential for
a single anorexigenic substance to modify the activity of
both NAc- and VMN-related circuitry through either hunger-
or palatable-feeding drives. Recently, we found that intra-
VMN administration of pituitary adenylate cyclase-activating
polypeptide (PACAP) markedly suppressed feeding and reduced
body weight even in fasted animals via the PAC1R receptor
subtype (Resch et al., 2011, 2013). Of the three PACAP receptors,
PAC1R is primarily involved in the hypophagic properties of

intra-VMN PACAP whereas the contribution of VPAC1 and
VPAC2 are not (Resch et al., 2013). While the VMN express
an abundant amount of PACAP mRNA, retrograde tracing
has revealed numerous extra-hypothalamic efferents including
PACAP containing projections from the medial amygdala and
lateral parabrachial (Resch et al., 2013). In the NAc, similar
retrograde studies show different PACAP containing efferent
projections to the NAc such as the medial prefrontal cortex
(unpublished data). PACAP is a highly conserved neuropeptide
that is often expressed in glutamatergic neurons and has
been primarily implicated in neurohormone signaling, learning
and memory, and neurodegenerative responses (Pellegri et al.,
1998; Zhou et al., 2002). Thus, it represents an interesting
molecular candidate because prior studies have shown that this
neuropeptide is capable of activating and inhibiting ionotropic
glutamate receptors (Macdonald et al., 2005; Toda and Huganir,
2015). For example, PACAP’s anorexic actions in VMN likely
augments glutamate signaling by potentiating NMDA receptors
(Resch et al., 2014b). Hence, the capacity for PACAP to produce
bidirectional changes in excitatory signaling may position this
poorly understood anorexigenic peptide to inhibit NAc-related
circuitry and suppress palatable-driven feeding while stimulating
VMN-related circuitry to restrict hunger-driven feeding.

MATERIALS AND METHODS

Animals
Male Sprague-Dawley rats (Harlan; Indianapolis, IN) weighing
350–400 g, were housed individually in either a BioDAQ feeding
system, a computer automated data acquisition system that
records food intake measurements using an algorithmic load cell
technology (Research Diets, New Brunswick, NJ) or standard
hanging wire cages under a 12:12 light/dark cycle. Feeding was
measured via the BioDAQ system or by weighing food bins
before and after experimental sessions (including spilled food).
Body weights were collected daily. All animal procedures were
approved by the Marquette University Institutional Animal Care
and Use Committee.

Diets
We used Harlan standard chow (SC; #8604; 32% protein, 54%
carbohydrate, 14% fat; 3.0 kcal/g) or a palatable western diet
(WD; #D12079B; Research Diets; New Brunswick, NJ; 17%
protein, 43% carbohydrate, 41% fat; 4.7 kcal/g). When indicated,
standard chow was flavored with either vanilla, almond (0.05%
pure vanilla extract, 0.05% imitation almond extract; The J.R.
Watkins Co; Winona, MN) or vehicle (water).

Cannulation Surgery and Microinjections
Surgery
Animals were anesthetized with ketamine/xylazine/
acepromazine (77:1.5:1.5 mg/ml/kg; i.p.). Twenty-six-gauge
bilateral guide cannulae (Plastics One; Roanoke VA) were
stereotaxically placed 2–3 mm above the ventromedial
nuclei (VMN; anterior/posterior, −2.5mm from bregma;
medial/lateral, ± 0.6mm from midline; dorsal/ventral, −6.2mm
from surface of the skull) or the nucleus accumbens (NAc;
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anterior/posterior, +1.6mm from bregma; medial/lateral, +2.2
from midline; dorsal/ventral,−4.8mm from surface of the skull)
and secured to the surface of the skull (Paxinos and Watson,
2007). Afterwards, brains were collected, immediately frozen
and embedded in OCT for analysis of cannula placement. Thirty
micrometers thick sections were Nissl stained and only those
with correct placements were included in the studies (Figure 5).

Microinjections
Pituitary adenylate cyclase activating polypeptide (PACAP;
50 pmol/0.25µl/side; California Peptide Research, Napa,
CA), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
(AMPA; 74.5 ng/side; Tocris Bioscience, Minneapolis, MN);
baclofen+muscimol (106.8 ng/5.7 ng/side; Tocris Bioscience,
Minneapolis, MN) or saline (vehicle) were microinjected into
the VMN (0.25µl/side) or NAc (0.5µl/side) over a 2 min period
(using a syringe pump) in gently restrained awake animals
followed by an additional minute to prevent backflow.

Restricted Feeding
At the onset of dark, animals (n = 12 total) were entrained (1
week/regimen) to various restricted feeding durations (2, 3, or
4 h/day in BioDAQ) using only SC. During the remaining 22,
21, or 20 h animals did not have access to food. Body weights
were recorded daily. In addition to the restricted feeding groups,
animals (n = 6/group) fed SC and WD ad libitum served as
control groups for feeding and body weight measurements.

Two-Meal Model (M1-M2)
Rats (n = 12/group) were entrained to consume their daily
SC intake in a 2-h period after the onset of the dark phase
(Meal 1; M1). After establishing consistent feeding patterns and
weight gain (40–50 kcal/2 h; bodyweight gain 2–3 g/day), animals
were offered a short 15min meal (Meal 2; M2) of either SC
or WD (n = 6/group) ∼30min following M1 for 7 days before
experimentation. Food intake and body weight measurements
were recorded in an additional group (n = 6/group) of rats that
were ad lib fed either SC or WD as additional control groups.

In separate studies, animals were entrained to the two-
meal model (M1-M2) for 5 days before undergoing VMN
or NAc cannulation surgery. VMN microinjections of vehicle
(n = 9–10/group), PACAP (n = 7/group), AMPA (n =

6/group), or baclofen+muscimol (n = 3/group) were separately
administered ∼30 min prior to either M1 or M2. Similarly,
NAc microinjections of vehicle (n = 9–10/group), PACAP (n =

9/group), baclofen+muscimol (n = 9/group), or AMPA (n =

3/group) were administered∼30min prior to M1 or M2.

Slice Electrophysiology
Rats were anesthetized by isoflurane inhalation and decapitated.
Coronal slices (250µm; n = 6–7 slices/brain region) containing
the VMNand theNAcwere cut using a vibrating slicer (VT1000S,
Leica) at 4◦C with a sucrose-based solution containing the
following: 220mM sucrose, 25mM NaHCO3, 2.5mM KCl,
1.25mM NaH2PO4, 0.5mM CaCl2, 7mM MgSO4, and 10mM
glucose. The slices were recovered in a sucrose-NaCl-based
solution containing the following: 68mM sucrose, 78mM NaCl,

25mM NaHCO3, 2.5mM KCl, 1.25mM NaH2PO4, 2mM
CaCl2, 1mM MgCl2, and 10mM glucose for 30 min at
room temperature. The slices were then transferred to artificial
cerebrospinal fluid (ACSF) containing the following: 125mM
NaCl, 2.5mM KCl, 2.5mM CaCl2, 1mM MgCl2, 1.25mM
NaH2PO4, 25mMNaHCO3, and 10mM glucose. The slices were
maintained in ACSF for at least 1 h before electrophysiology
recordings. All solutions are saturated with 95% O2 and 5% CO2.

Whole-cell or cell-attached recordings were made from
the VMN and NAc using patch-clamp amplifier Multiclamp
700B under infrared-differential interference contrast (DIC)
microscopy. The VMN is an egg-shaped region located in the
mediobasal hypothalamus adjacent to the third ventricle, and
the NAc is an area around the optic nerve about 200 µm
from the edge of the anterior commissure. Data acquisition was
performed using DigiData 1440A digitizer (Molecular Devices).
Glass pipettes (4–6 M�) were filled with an internal solution
containing (in mM): 140 potassium gluconate, 5 KCl, 10 HEPES,
2 MgCl2, 0.2 EGTA, 2 MgATP, 0.3 Na2GTP, and 10 Na2-
phosphocreatine (pH 7.4 with KOH). Signals were filtered at
2 kHz and sampled at 10 kHz. Spikes were driven by current
injections from −60 to 300 pA. PACAP (100 nM) was added to
the brain slices after the membrane potential was stable and
a baseline measurement (control) of spontaneous activity and
spike firing followed by application of PACAP to obtain within
cell treatment effects. Glutamate receptor antagonist CNQX
(10µM) and GABAA receptor blocker picrotoxin (50µM) were
present throughout all physiological recordings. Recordings
were performed at 32 ± 1◦C using an automatic temperature
controller (Warner Instrument).

Corticosterone (B) Radioimmunoassay
In a separate group of animals offered ad lib SC (n = 12) or
restricted SC access (2 h/day at the onset of the dark cycle;
n = 12) for 2 weeks, half were sacrificed at the onset of the
dark cycle (prior to eating), and the remaining half sacrificed 2 h
into the dark cycle or after the restrict feeding session. Plasma B
was measured from trunk blood using a radioimmunoassay (MP
Biomedicals, Santa Ana, CA).

Statistics
Data are presented as means ± standard error of the mean and
analyzed by ANOVA (with repeated measures when appropriate)
or Student’s t-test. Fisher LSD analysis was used for post-hoc
group comparisons using Sigma Plot 11 software (Systat Software
Inc.; San Jose, CA). p < 0.05= statistical significance.

RESULTS

Two-Meal Model (M1-M2) and Restricted
Feeding
The two-meal model tested food consumption in satiated vs.
hungry rats. After entrainment to a 2 h SC meal (M1), animals
were offered a second meal (M2; 15min) consisting of either SC
or WD (Figure 1A). Animals consuming WD during M2 (SC-
WD) consumed significantly more total daily calories than rats
receiving SC (SC-SC) [Figure 1A; DIET F(1, 183) = 78.428, p <
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FIGURE 1 | The two-meal paradigm maintained animals on restricted SC (standard chow) intake (M1; 2 h/day) followed by access to a second meal

(M2; 15 min/day) of SC (M1(SC)-M2(SC)) or a highly palatable diet (WD) shortly after M1, (M1(SC)-M2(WD)). (A) SC-WD displayed higher total food intake

(FI) levels than SC-SC animals (and ad lib fed SC or WD animals). (B) By day 12, satiated rats offered WD (SC-WD) consumed more calories than animals offered SC

(SC-SC). (C) Animals consuming WD (SC-WD) during M2 gained significantly more weight than animals offered SC (SC-SC) and gained more than ad lib fed SC and

WD animals. (D) Food intake levels of SC flavored with almond (Alm.) or vanilla (Van.) during M2 did no differ compared to unflavored SC and were significantly lower

than WD. (E) Left: SC food intake (FI) levels for 2, 3, or 4 h daily access; Upper-right: cumulative daily SC intake did not differ between 2, 3, or 4 h; Lower-right: 2 h

feeding periods resulted in significantly faster feeding rates compared to 3 or 4 h access. (F) Plasma B (corticosterone) levels in ad lib and restrict fed animals before

M1 and after the onset of dark and 2 h into the dark cycle (after M1). Data expressed as mean ± SEM. *p < 0.05.

0.001; DIET × TIME F(7, 183) = 13.279, p < 0.001]. Moreover,
Figure 1A shows SC-WD fed animals consumed more calories
than animals provided SC (58.6 ± 0.5 Kcal) and WD ad libitum
(74.9± 1.4 Kcal) demonstrating that 2 h restricted feeding or SC-
SC resulted in ∼25% reduction in daily caloric intake compared
to a SC ad lib fed animals and that SC-WD animals consumed
more calories than ad lib WD fed rats. By day 12, animals
consumed as many calories from WD during the 15-min M2 as
was consumed during the 2 h M1 (Figure 1B; p < 0.001) and as
a result gained significantly more body weight than rats receiving
SC for M2 [Figure 1C; DIET × TIME; F(6, 150) = 32.983; p <

0.001]. Notably, this increase was significantly greater than even
ad lib WD fed rats. A significant difference in body weight gain
was evident by the third presentation of WD for M2 compared
to the SC-SC group (p < 0.001; Figure 1C). In addition, SC-
WD animals gained body weight faster than animals maintained
on ad lib SC or WD (Figure 1C). To determine if the two-
meal model was a product of novelty, we offered SC made novel
by flavoring with either vanilla or almond extract (or control)
during M2. There were no differences in M2 intake over 3 days
access to flavored SC (Figure 1D; SC vs. almond p = 0.714;
SC vs. vanilla p = 0.902; almond vs. vanilla p = 0.807), which
contrasted the marked increase in palatable WD intake over the

same time period (Figure 1D; WD vs. SC, almond or vanilla
p < 0.001).

In order to develop a feeding paradigm that produced fully-
satiated animals (i.e., minimal homeostatic-based feeding), we
measured the total calories consumed during periods of 2–4 h
of restricted feeding in 1 min bins (Figure 1E). Interestingly,
total intake of SC did not differ in rats permitted 2, 3, or
4 h daily access [F(2, 35) = 0.781; p = 0.466]. As would be
predicted, animals provided 2 h access to SC ate at a faster
rate (kcal/min) compared to rats allowed 3 or 4 h access
[Figure 1E; F(2, 35) = 76.749; p < 0.001]. Restricted feeding
of SC at all durations was sufficient to produce a modest
weight gain (data not shown). We and others have shown
that animals entrained to 2 h of restricted feeding show
normal circadian rhythmicity and low basal and normal peak
levels of corticosterone (Figure 1B; <3µg/dl and >20µg/dl,
respectively) suggesting that they were not chronically stressed
(Krieger, 1980; Choi et al., 1998). In support, we confirmed
that circulating B levels did not differ between ad lib and 2 h
restrict fed animals (before and after their meal) during a period
of peak B activity [Figure 1F; FEEDING REGIMEN F(1, 23) =
0.017, p = 0.915; FEEDING REGIMEN × TIME F(1, 23) =

0.302, p = 0.589]. Taken together, we chose the 2-h restricted

Frontiers in Neuroscience | www.frontiersin.org 4 August 2016 | Volume 10 | Article 383

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Hurley et al. PACAP Gates Hunger and Palatability Feeding

feeding to ensure a state of satiety in the shortest amount of
time.

VMN Microinjections
Intra-VMN PACAP (Figure 5A for anatomy) administered prior
to M1 produced a significant reduction in SC consumption
during M1 compared to non-injected (No INJ) and vehicle
injected animals (Figure 2A; p < 0.001 for both). Intra-VMN
AMPA administration also significantly suppressed consumption
of SC during M1 (Figure 2A; AMPA vs. No INJ or vehicle, p <

0.001; baclofen+muscimol vs. No INJ, p = 0.148; vs. vehicle, p
= 0.282) indicating that PACAP and AMPA produced similar
behavioral actions in the VMN. Surprisingly, there were no
differences in the calories consumed during M2 of either SC or
WD when PACAP was administered prior to M1 (Figure 2A;
PACAP vs. No INJ, p= 0.624; vs. vehicle, p= 0.713) or just prior

FIGURE 2 | PACAP or AMPA microinjections into the hypothalamic

ventromedial nuclei (VMN) suppressed hunger-induced feeding (meal

1; M1) without affecting palatable food consumption (meal 2; M2). (A)

Intra-VMN PACAP or AMPA administered prior to M1 significantly suppressed

hunger-induced feeding of standard chow (SC) compared to

baclofen+muscimol, vehicle (saline), and non-injected controls, whereas there

were no significant treatment difference in the consumption of SC or palatable

diet (WD) during M2. (B) No changes in SC or WD consumption following

microinjections administered just prior to M2. Data expressed as mean ±

SEM. *p < 0.05.

to M2 (Figure 2B; PACAP vs. No INJ, p = 0.613; vs. vehicle, p
= 0.868). Baclofen+muscimol injections into the VMN did not
alter feeding during either M1 or M2 suggesting that PACAP
actions in the VMN are primarily excitatory. Every cannula
placement into the VMN was confirmed at the conclusion of the
study resulting in a 90% accuracy rate.

NAc Microinjections
NAc injections of PACAP (Figure 5B for anatomy), AMPA,
or baclofen+muscimol (prior to M1) had no effect on
feeding behavior during M1 [Figure 3A; F(4, 80) = 0.463;
p = 0.763]. However, intra-NAc injections of PACAP and
baclofen+muscimol significantly reduced WD intake during the
subsequent 15 min M2 compared to vehicle and non-injected
controls (Figure 3A; PACAP vs. No INJ, p < 0.001; vs. vehicle,
p < 0.002; baclofen+muscimol vs. No INJ or vehicle, p < 0.001).
Similarly, PACAP and baclofen+muscimol administered just
prior to M2 also suppressed WD intake (Figure 3B; PACAP vs.

FIGURE 3 | PACAP and baclofen+muscimol microinjections into the

nucleus accumbens (NAc) suppressed palatable food consumption

(meal 2; M2) without effecting standard chow (SC) intake (meal 1; M1).

(A) No changes to SC intake following microinjections administered prior to

M1 compared to controls. However, intra-NAc PACAP or baclofen+muscimol

significantly reduced WD intake compared to AMPA, vehicle and non-injected

controls during M2. (B) Similarly, WD intake was reduced following PACAP

and baclofen+muscimol administration into the NAc just prior to M2. Data

expressed as mean ± SEM. *p < 0.05.
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No INJ or vehicle, p < 0.001; baclofen+muscimol vs. No INJ or
vehicle, p < 0.001). By contrast, AMPA administration into the
NAc prior to either M1 orM2 had no effect on food consumption
suggesting that PACAP actions in the NAc were inhibitory. Every
cannula placement into the NAc was confirmed at the conclusion
of the study resulting in a 90% accuracy rate.

Slice Electrophysiology
We determined whether PACAP affected action potential firing
rates in VMN and NAc slices. All recordings were made in the
presence of the glutamate receptor antagonist CNQX (10µm)
and the GABAA receptor blocker picrotoxin (50µm) to block
excitatory and inhibitory synaptic transmission. Cell-attached
patch clamp recordings were made on VMN neurons, which
displayed spontaneous action potential firing. Bath application
of PACAP (100 nM) significantly increased the frequency of
spontaneous action potential firing in VMN neurons [Figure 4A,
t(6) =−4.062, n= 7, p < 0.004, Paired t-test]. We next examined
whether PACAP also affected action potential firing in the NAc.
Since medium spiny neurons (MSNs) in NAc slices do not fire
spontaneous action potentials at resting membrane potential
(∼−80 mV), we made whole-cell current-clamp recordings
and evoked action potential firing by injecting depolarizing
current steps. Bath application of PACAP (100 nM) significantly
decreased the number of spikes in responses to depolarizing
current injections [Figure 4B, 120 pA, t(5) = 4.828, p < 0.005;
180 pA, t(5) = 4.620, p < 0.006; 240 pA, t(5) = 11.364, p <

0.001; 300 pA, t(5) = 5.937, p < 0.002, n = 6]. These effects
were independent of excitatory and inhibitory synaptic inputs as
these studies were conducted in the presence of both CNQX and
picrotoxin. Thus, PACAP increased spontaneous action potential
firing in the VMN whereas, it decreased evoked action potential
firing in the NAc.

DISCUSSION

Obesity can stem from excessive or binge-like consumption of
food generated by different homeostatic and hedonic-related

drives, each of which may involve distinct circuitry in the
brain. This study extends earlier findings revealing that
PACAP administration into the hypothalamic VMN markedly
suppressed feeding behavior (Resch et al., 2011, 2013) by
determining the capacity of this novel anorexigenic peptide to
regulate distinct forms of eating stemming from homeostatic
and hedonic feeding drives. To do this, we developed a novel
binge-eating paradigm (rapid consumption of a high volume
of food within a short time period) that would better isolate
distinct feeding drives. Using this paradigm, it is likely that
VMN activation suppressed the consumption of standard chow
(SC) in restrict-fed rats without altering palatable food intake
in a satiated rat. Inhibition of the NAc produced the opposite
outcome in that consumption of palatable food in a satiated
rat was reduced, while SC intake was not altered. Interestingly,
PACAP signaling in the VMN and NAc produced the precise
changes in synaptic transmission needed to suppress each form
of eating. Collectively, these data suggest that distinct feeding
drives may involve at least partially non-overlapping circuitry,
and that targeting PACAP signaling may be an effective strategy
at reducing both homeostatic and hedonic-related feeding.

Isolation of Homeostatic- and
Hedonic-Related Feeding Drives
A challenge in the study of the neurobiology of obesity is that
multiple feeding drives are likely simultaneously activated under
most experimental conditions thereby, obfuscating efforts to
identify the cellular or molecular basis of discrete feeding drives
(Lowe and Levine, 2005; Lowe and Butryn, 2007). Many rodent
models assess consumption of a highly-palatable food combined
with some degree of food deprivation, thereby demonstrating
the presence of multiple feeding drives even in those designed
to separate distinct drives. For example, in the limited-access
binge model, rodents are provided ad lib access to SC and
limited-access to palatable foods often high in both fat and sugar
(Corwin, 2004; Corwin and Hajnal, 2005; Czyzyk et al., 2010).
While ad lib SC intake should mitigate hunger-driven feeding
during the limited access to a highly palatable diet, rats display

FIGURE 4 | PACAP produced opposite effects on action potential firing in the VMN and NAc. (A) PACAP significantly increased the frequency of spontaneous

action potential firing in the VMN (n = 7, **p < 0.01 vs. control). (B) PACAP decreased the number of spikes in the NAc in response to depolarizing current injections

(120–300pA, n = 6, **p < 0.01 vs. control, ***p < 0.001 vs. control, Paired t-test). All physiological recordings were collected in the presence of CNQX and picrotoxin.
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FIGURE 5 | Photomicrographs of cannula placements (triangles, right)

and a representative Nissl stained section (30µm; left) of the VMN (A)

and NAc (B).

self-imposed deprivation evident by significantly decreased SC
consumption. Thus, both hunger- and palatability-driven feeding
drives are likely engaged during the limited access period. In the
current approach, we limited the co-existence of hunger-driven
and palatability-driven feeding drives by creating conditions
in which restricted-feeding produces heightened hunger-driven
feeding that is satiated with a low-palatable diet. It is important
to note that the study of the neural mechanisms underlying
feeding involving hunger- or palatability-related drives requires
the manipulation of these variables to understand the specific
contribution of each of these drives. There are three key design
aspects used to create this desired experimental condition. First,
subjects were restrict fed for 2 h; these conditions do not result
in overt increases in stress hormones (Choi et al., 1998) and has
previously been used by numerous others to enhance hunger-
driven feeding (Hagan and Moss, 1997; Denis et al., 2015;
Wei et al., 2015; Baldo et al., 2016). Confounding interactions
stemming from malnourishment in these animals is extremely
unlikely since rats with similar long-term caloric restriction
paradigms (25% reduction) show improved life expectancy and
health outcomes (Keenan et al., 1996, 2013). Second, SC was used
as the low-palatable diet, which is illustrated in other studies to
show diminished motivation for SC after exposure to a palatable
diet (South et al., 2014). Third, the duration of the 2-h restricted
feeding of SC was sufficient to produce satiety as evident by
the lack of increased consumption when the access period was

lengthened to 3 or 4 h. Hence, these conditions permit the study
of the cellular or molecular basis of hunger-driven eating that
culminates in a robust state of satiety.

In the next phase of the paradigm, palatability-driven feeding
was assessed by measuring feeding in satiated rats provided
additional access (15min) to either low- or high-palatable diets.
As expected, palatable food consumption significantly increased
compared to the minimal consumption of SC. Remarkably, the
average number of calories consumed of a highly-palatable food
by satiated rats (M2) was equivalent to the number of SC calories
consumed during the 2-h M1. This marked increase in the highly
palatable food is unlikely to be due to novelty or stimulus-specific
satiety since a similar increase was not obtained when SC was
made novel with either vanilla or almond flavorings (Figure 1D).
Hence, these conditions likely permit the study of the cellular or
molecular basis of palatable-driven feeding with limited influence
from hunger-driven eating.

VMN Gate Hunger but Not
Palatability-Driven Feeding
Historically, the VMN were thought to be critical components of
the brain’s “satiety center” (Kennedy, 1950) and later described
as the inhibitory counterpart to the lateral hypothalamus
(promoting feeding) in the dual-center hypothesis for motivated
behavior (Stellar, 1954). Recent studies continue to support the
VMN as key sites in the regulation of energy homeostasis by
demonstrating that specific genetic deletions in the VMN lead to
obesity (Kim et al., 2009), altered fMRI activity is evident in the
VMN after ingesting a glucose solution (Liu and Gold, 2003), and
a positive correlation between the degree of medial hypothalamic
damage and excess weight gain (Pinkney et al., 2002). However,
an important outstanding question is whether the satiety signal
from the VMN regulates multiple distinct feeding drives (e.g.,
hunger and palatability-driven feeding). Using the two-meal
paradigm, we found that VMN activation achieved by local
AMPA injections decreased consumption of SC in restrict-fed
rats but, surprisingly, it did not alter palatability-driven feeding.
While more work is needed to more thoroughly characterize
this effect, these findings are consistent with the conclusion that
hunger- and palatability-driven feeding involve at least partially
non-overlapping circuitry.

NAc Gates Palatability but Not
Hunger-Driven Feeding
The NAc has been strongly implicated in a wide-range
of motivated behaviors, including palatability-driven feeding
(Robbins and Everitt, 1996; Wise, 1998; Aragona et al., 2006;
Baldo and Kelley, 2007). However, an open question is whether
NAc-related circuitry are also involved in hunger-driven feeding,
in part because many studies measure intake when both hunger-
and palatability-related drives would be present. We found that
local inactivation of the NAc by baclofen+muscimol reduced
palatability-driven but not hunger-driven feeding. Our finding
that GABA agonists into the NAc did not reduce hunger-driven
consumption of SC is consistent with earlier work (Stratford and
Kelley, 1997). However, we are the first to show that inhibition
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of the NAc decreased hedonic-driven feeding in rats that were
accustomed to binge eating a palatable meal. While it is possible
that regions of the NAc or ventral striatum not impacted by
our manipulations may contribute to both forms of eating,
our results, at a minimum, reinforce the concept that each of
these feeding drives can involve unique circuitry. Illustrating
this point is the evidence that GABA agonist administration in
other regions of the NAc show increased feeding behavior (Basso
and Kelley, 1999). Thus, discretely mapping the anatomical
underpinnings of various feeding drives could provide key
insight into the etiology of eating behavior underlying distinct
forms of obesity. For example, individuals displaying excess
eating stemming from enhanced hunger-driven feeding vs. those
that display enhanced (or the inability to suppress) palatable-
driven feeding may express unique molecular and cellular
pathological changes that could be targeted by more focused
therapeutic intervention.

PACAP Gates Both Hunger- and
Palatability-Driven Feeding
In the NAc, microinjections of PACAP did not alter homeostatic
feeding but effectively reduced consumption of a highly palatable
diet. Specifically, intra-NAc PACAP only altered consumption of
high-fat, high-carb food in a satiated rat. The lack of an effect
on homeostatic feeding is unlikely to be due to an insufficient
dose or drug duration given that identical parameters were used
in the VMN to block homeostatic feeding and in the NAc
to block palatable feeding. Interestingly, the activation of NAc
efferents, all of which are GABAergic, is linked to multiple forms
of motivated behavior including palatability-driven feeding, as
described above (Robbins and Everitt, 1996; Wise, 1998; Aragona
et al., 2006; Baldo and Kelley, 2007). Thus, our observation
that PACAP in the NAc mimicked the behavioral effects of
GABA agonists suggests that PACAP likely inhibited at least
some of these circuits, although as discussed below, the precise
mechanism is unknown.

In the VMN, we found that microinjections of PACAP
reduced homeostatic but not hedonic feeding. In support,
PACAP microinjections into the VMN decreased consumption
only when rats displayed a pronounced hunger drive (e.g.,
following a 22 h fast). Once the animal achieved a state of
satiety, PACAP microinjections into the VMN did not alter
the consumption of either standard chow or a highly palatable
food source. Interestingly, PACAP in the VMN mimicked the
actions of AMPA microinjected into this structure. Given that
previous studies have established the VMN as a satiety center of
the brain in which activation of this structure reliably decreases
feeding, these collective results suggest that both PACAP and
AMPA excited VMN efferents involved with satiety. While our
experiments did not identify the type of cell impacted by PACAP,
previous studies have revealed that the majority of VMN cells
are glutamatergic (Bowers et al., 1998; Ovesjö et al., 2001). In
support, studies have shown highly dense expression of the
glutamatergic marker vGlut2 (Ziegler et al., 2002) with minimal
expression of non-glutamatergic cells.

Our finding that PACAP signaling in the VMN reduces
homeostatic but not hedonic feeding extends existing work
establishing the hypophagic and metabolic actions of this

neuropeptide. Although PACAP signaling has been implicated
in feeding behavior and body weight regulation for over 20
years (Morley et al., 1992; Chance et al., 1995), only recent
studies have begun to delineate its regional and mechanistic
details. PACAP administration into the VMN reduces ad lib
feeding without malaise specifically through the PAC1R receptor
subtype, while also increasing thermogenesis and spontaneous
locomotor activity (Resch et al., 2011). Likely as a result of
both the anorexia and the increased metabolic indices, PACAP
in the VMN results in dramatic body weight loss even after a
single acute administration (Resch et al., 2011, 2013). Moreover,
PACAP administration in the VMN increases both POMC
mRNA expression in the arcuate nuclei and fasting glucose levels
further illustrating a role for PACAP in the regulation of energy
balance.

Given the historical roles for the NAc in generating motivated
behaviors and the VMN in suppressing feeding, it would seem
that a molecule acting in each structure would need to have
the remarkable capability of inhibiting the NAc while activating
the VMN to regulate each form of eating. While more work
needs to be done to confirm these effects for PACAP, our data
are consistent with this type of region-specific regulation. In the
current study, we found that bath application of PACAP to VMN
slices increased action potential firing and that microinjections of
PACAP and AMPA produced the same behavioral effect. In the
NAc, PACAP appears to produce the opposite effect in that bath
application of PACAP to NAc slices decreased evoked potentials
andmicroinjections of PACAP into the NAcmimicked the effects
of baclofen+muscimol on feeding.

While the current results do not identify the molecular basis
for PACAP mimicking GABA agonists in the NAc and AMPA
in the VMN, previous work has shown that PACAP is able
to increase or decrease the activity of glutamate ionotropic
receptors, including NMDA (Shioda et al., 1997; Vaudry et al.,
2009; Toda and Huganir, 2015). Lastly, previous work has
also linked PACAP to other glutamatergic mechanisms, such
as system x−c (Resch et al., 2014a; Kong et al., 2016) and
activation of metabotropic glutamate receptors (Baker et al.,
2002, 2003), which may display region-specific differences in
expression (Gu et al., 2008). Regardless, these data show the
degree to which the complexity of the glutamate network can
differ across discrete brain regions yet be regulated by the same
neuropeptide, potentially revealing PACAP to be a powerful
regulator of caloric intake by both activating or inhibiting circuits
associated with satiety (e.g., VMN) and appetitive (e.g., NAc)
signals, respectively. Future studies will be needed to explore this
intriguing possibility.

Collectively, these data suggest that PACAP signaling
suppresses multiple feeding drives, which positions this novel
anorexigenic peptide as an important target in understanding
and possibly treating obesity. Toward the latter observation,
identifying therapeutic targets capable of modulating multiple
feeding drives may be especially important in the treatment of
obesity given the widely observed propensity for tolerance to
anti-obesity medications to have long-term utility (Fernstrom
and Choi, 2008), an effect that could be due to compensatory
changes across distinct drives. Thus, these findings may address
a fundamental barrier in treating obesity by better isolating
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individual feeding drives and demonstrating the potential for
PACAP signaling to regulate unique forms of overeating.
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