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Abstract

A novel MS-based analytical method for simultaneous analysis of the antiviral drugs

acyclovir, its metabolite 9-carboxymethoxymethylguanine, ganciclovir, and

penciclovir in human serum is described. These antiviral drugs are active against her-

pes virus infections. Acyclovir and penciclovir are regarded as safe and effective med-

icines with mild side effects such as headache and gastrointestinal discomfort, and

ganciclovir is regarded as more toxic and is known to cause, for example, bone mar-

row suppression. Acyclovir’s main metabolite 9-carboxymethoxymethylguanine is a

presumptive neurotoxin and should be monitored in patients with impaired renal

function or in cases with neurotoxic symptoms. A sample was prepared using protein

precipitation with 1% formic acid in methanol containing isotopically labeled internal

standard. Chromatographic separation on a biphenyl column and mass spectrometric

detection were performed in multiple reaction monitoring (MRM) mode on a Xevo

TQ-S micro with ESI in positive ion mode, within 3 min. Inter-day assay accuracies

for the quality controls varied between 95 and 104% and intra-day assay between

93 and 105%. Inter-day and intra-day assay imprecision for the quality controls

ranged between 1.4 and 4.2% and 1.7 and 6.5% respectively. The lower limit of

quantification for all four substances was 0.156 μmol/L. It is an accurate and repro-

ducible method for therapeutic drug monitoring.
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1 | INTRODUCTION

Acyclovir (ACV), ganciclovir (GCV), and penciclovir (PCV) are

nucleoside analogues that share structural similarities with guano-

sine and are widely used for the treatment of herpes simplex,

herpes zoster, and cytomegalovirus (CMV) infections. ACV has

been life-saving in patients with herpes encephalitis and GCV in

patients with serious CMV infections. All three drugs can be

administered intravenously (IV). The oral bioavailability is low

(ACV, GCV) or nearly absent (PCV), and they are improved as

the prodrugs valacyclovir, valganciclovir, or famciclovir. In infected

cells, administrated drugs are converted to a monophosphate by

the viral thymidine kinase and thereafter by cellular enzymes to

the di- and triphosphorylated forms. The latter competitively
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inhibits viral DNA polymerase and terminates the viral DNA

chain.

GCV and PCV as well as the major part of ACV are excreted

unchanged by the kidneys. Approximately 5–15% of ACV is metabo-

lized in the liver by alcohol dehydrogenase to an ACV aldehyde and

further on via aldehyde dehydrogenase to the main metabolite

9-carboxymethoxymethylguanine (CMMG) (de Miranda et al., 1982;

Hellden et al., 2006).

Despite these antiviral drugs being available on the market for

several years, no therapeutic levels nor a reliable concentration-

toxicity relationship has been clearly defined for either of the sub-

stances. The use of therapeutic drug monitoring (TDM), for example,

for GCV, has therefore been questioned (Galar et al., 2021; Jager

et al., 2016; Scott et al., 2004). Too high a dose in renal-compromised

patients increases the probability of toxic drug levels, which is why

dose adjustment is necessary for patients with impaired renal function

to avoid the risk of accumulation resulting in toxic drug and metabo-

lite levels. The incidence of ACV-induced nephrotoxicity is approxi-

mately 10–15% (Bean & Aeppli, 1985; Lee et al., 2018; Ryan

et al., 2018) with frequent case reports every year since the early

1980s (Bach, 1987). For GCV, cases of neurotoxicity, hepatitis, and

bone marrow suppression have been reported, but relatively few

cases compared to the number of cases reported for ACV. It can be

hypothesized that toxicity symptoms in these cases can be difficult to

diagnose without TDM due to the similarity between side effects and

the disease.

We have previously shown that CMMG is consistently increased

in patients with ACV-induced neurotoxicity, mainly in patients with

acute or chronic kidney disease (Hellden et al., 2003). Recent publica-

tions have shown the utility of TDM in CMMG in bone-marrow

transplanted patients (Berry & Venkatesan, 2014; Brandariz-Nunez

et al., 2021; Lindstrom et al., 2019). In Sweden, measurements of

CMMG levels have been used as a marker of ACV-induced toxicity

since 1994 and helped many Swedish physicians to distinguish

between ACV toxicity and symptoms of viral encephalitis infections.

Even though TDM studies of GCV have provided contradictory

results, (Vezina et al., 2014; Wiltshire et al., 2005) promising results

have been shown in the prevention of drug toxicity as well as cases of

subtherapeutic drug concentrations not only in Sweden (Martson

et al., 2019; Martson et al., 2021; Peredo et al., 2015).

Previously published analytical methods for determination of

ACV and its metabolite CMMG have used HPLC in reversed-phase

mode for the separation followed by UV, UV-diode array, fluores-

cence detection, or MS (Dao et al., 2008; Darville et al., 2007;

Svensson et al., 1997; Urinovska et al., 2021; Weller et al., 2009). In

these publications, the most common reversed phases used for chro-

matographic separation have been various C8 and C18 phases with,

for example, HSS T3 tri-functionally bonded C18 ligands that promote

polar compound retention and are compatible with aqueous mobile

phases. As these antiviral compounds are fairly polar and include an

aromatic moiety, other reversed phases such as phenyl or biphenyl

could produce variations in retention and selectivity compared to the

traditional C8 and C18 phases. Previously, a phenyl-hexyl phase has

been used for the separation of seven antiretroviral agents (Zheng

et al., 2020). Because the polar nature of these compounds may result

in poor retention and peak shape when analyzed in reversed-phase

mode, chromatographic separation using hydrophilic interaction liquid

chromatography (HILIC) has also been attempted (Brown et al., 2002).

With the introduction of UHPLC and the use of sub-2 μm particle col-

umns, a reduction in separation time can be obtained while

maintaining separation efficiency. Combining the peak capacity of the

UHPLC column with the selectivity of the mass spectrometer gener-

ally results in increased sensitivity and reduced analysis time, particu-

larly for multicompound methods. Several methods exist for the

determination of ACV, GCV, and PCV in human plasma or serum, with

or without simultaneous determination of their corresponding pro-

drugs (Heinig et al., 2011; Kasiari et al., 2008; Schimek et al., 2018;

Shi et al., 2018; Xu et al., 2007; Yadav et al., 2009) but only a few

methods include the measurement of CMMG (Darville et al., 2007;

Svensson et al., 1997; Urinovska et al., 2021; Yang et al., 2007).

The aim of this work was to develop and validate a rapid, simple,

sensitive, and robust LC–MS/MS method for the quantification of

ACV, its metabolite CMMG, as well as GCV, and PCV in human serum

for the purpose of monitoring antiviral drug levels and diagnose toxic-

ity in critically ill patients.

2 | MATERIAL AND METHODS

2.1 | Chemicals and reagents

Analytical standards of ACV and PCV were purchased from Sigma-

Aldrich (St. Louis, MO, USA), CMMG was purchased from Toronto

Research Chemicals (Ontario Canada), and GCV was purchased from

Alschim (Illkirch, France). The internal standards

9-carboxymethoxymethylguanine-13C2-
15N (CMMG-IS) was pur-

chased from Toronto Research Chemicals and acyclovir-D4 (ACV-IS),

GCV-D5 (GCV-IS), and PCV-D4 (PCV-IS), from Alschim. Water was

purified with a MilliQ-gradient water purifying system from Merck

(Darmstadt, Germany). Methanol (LC–MS grade), ammonium acetate

(EMSURE®), formic acid (EMSURE®), and hydrochloric acid

(EMSURE®) were purchased from Merck and dimethyl sulfoxide

(DMSO) (BioUltra) from Sigma-Aldrich.

2.2 | Standards and quality control samples

Stock solutions of 1 mg/mL of ACV, GCV, and PCV, ACV-IS, GCV-IS,

and PCV-IS, respectively, were prepared in methanol with 1% (v/v) of

hydrochloric acid. Stock solutions of 1 mg/mL CMMG and CMMG-IS

were prepared in DMSO. Calibrators and quality controls (QCs) were

made by spiking ACV, CMMG, GCV, and PCV into drug-free serum

from healthy volunteers (blood donors from Linköping University Hos-

pital). A six-point calibration curve was prepared by spiking drug-free

serum with each of the analytes to a concentration of 160 μmol/L,

followed by a serial dilution to obtain the concentration of 40, 10, 2.5,
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0.625, and 0.156 μmol/L. QC samples were prepared by using sepa-

rate stock solutions by adding the four analytes to drug-free serum to

make the high-level QC at 120 μmol/L and was further diluted to

obtain the mid-level QC (OC-II, 20 μmol/L) and the low-level (QC-I,

0.5 μmol/L) respectively. An internal standard working solution

(5 μmol/L of ACV-IS, CMMG-IS, GCV-IS, and PCV-IS) was prepared in

methanol with 1% (v/v) formic acid.

2.3 | Sample collection

Samples from patients were collected in serum tubes containing no

anticoagulants and centrifuged for 10 minutes at 2,000g, after which

serum was transferred to a new tube prior to analysis or storage at

�20�C.

2.4 | Sample preparation

About 150 μL cold internal standard solution was added to 50 μL of

the calibration standard, QC or serum sample, vortexed briefly

followed by centrifugation at 15,000g for 5 min at 10�C. An amount

of 100 μL of the supernatant was transferred to a 96-well plate and

diluted with 100 μL of 1% formic acid in Milli-Q water followed by

mixing for 10 min.

2.5 | Chromatography and instrumentation

LC–MS/MS analysis was performed on an Acquity (Waters, Milford,

MA, USA) system equipped with a binary solvent manager, flow-

through needle (FTN) autosampler, and a mass spectrometer with an

electrospray interface (ESI) operating in the positive ion mode, XEVO

TQ-S micro. Chromatographic separation was performed at 40�C

using a Kinetex biphenyl column (100 � 2.1 mm, 100 Å pore size,

2.6 μm particle size) preceded by a pre-column, SecurityGuard™ Ultra

biphenyl 2*2.1 mm, all from Phenomenex (Copenhagen, Denmark).

The autosampler purge solution was 10:90 methanol:water, the nee-

dle wash solution was 80:20 methanol:water, and the injection vol-

ume was 2 μL. The four analytes and their internal standards were

separated in a gradient chromatographic run using a mobile phase

consisting of 10 mmol/L ammonium acetate pH 6.8 (A) and methanol

(B) at a flow rate of 0.5 mL/min over the total run time of 3 min. The

following mobile phase gradient was used: phase B was started at 2%

for 0.3 min, then increased to 25% from 0.3 to 2.0 min, further

increased to 75% from 2.0 to 2.5 min, after which it was returned to

the initial composition and equilibrated until 3.0 min.

The mass spectrometer was operated in positive ion mode. The

instrument conditions were as follows: capillary voltage, 1.3 kV; deso-

lvation gas flow and temperature, 1000 L/h and 500�C respectively;

the source temperature, 150�C; and the sample cone gas flow, 50 L/h.

All analytes and internal standards were detected using multiple

reaction monitoring (MRM) recording one quantifier ion, one qualifier

ion for each of the analytes, and a quantifier ion for the internal stan-

dards. The specific mass spectrometric settings for each compound

are presented in Table 1. Six-level calibration was performed before

every analysis, and concentrations were calculated using TargetLynx

software (MassLynx 4.1, Waters).

2.6 | Method validation

Validation of selectivity, linearity, sensitivity, accuracy, and precision

was performed according to the European Medicines Agency (EMA)

guidelines (EMA, 2012).

2.7 | Selectivity

Selectivity was assessed by analyzing serum samples from six differ-

ent drug-free individuals without the addition of internal standard or

analytes for evaluation of interference from endogenous components.

In addition, the drug-free serum sample was prepared with the inter-

nal standard working solution to evaluate purity and potential inter-

ferences affecting the analytes. Signal interference of less than 20%

of the LLOQ and 5% of the internal standard was considered accept-

able as per the EMA guidelines.

2.8 | Matrix effect, extraction recovery, and
process efficiency

Two methods were used to evaluate matrix effects. Qualitative

matrix effects were investigated by post-column infusion. The

analytes at a concentration of 1 μmol/L in methanol were infused at

a flow rate of 10 μL/min postcolumn. Simultaneously with the post-

column infusion, serum extracts (n = 6) were injected without the

internal standard or analyte. An increase or decrease in the continu-

ous signal at the expected retention time for each analyte or internal

standard indicates ion enhancement or suppression. Matrix effects

were also evaluated quantitatively together with recovery and pro-

cess efficiency according to Matuszewski et al. (Matuszewski

et al., 2003). ACV, CMMG, PCV, and GCV in concentration levels

corresponding to the six calibration levels (0.156, 0.625, 2.5, 10, 40,

and 160 μmol/L) and the internal standards, ACV-IS, CMMG-IS,

GCV-IS, and PCV-IS (5 μmol/L of each) were either dissolved

directly in water (set one) or added to serum samples from six drug-

free individuals after (set two) or before (set three) the extraction

procedure. The matrix effects were defined as the ratio between the

mean peak areas of sets one and two, expressed as percentages.

Consequently, a calculated value of 100% indicates no measurable

matrix effects. Recovery and process efficiency were determined in

a similar way by the division of set three by set two and set three

by set one, respectively. The calculated matrix effect should be

within the interval 85–115%, and the extraction recovery should be

more than 50% (Rudzki et al., 2018).
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2.9 | Calibration model

Calibration curves were constructed by plotting the analyte/internal

standard peak area ratio using the residual plot to compare linear and

quadratic curve fit, with or without weighting of 1/x, for each com-

pound resulting in a calibration curve with a coefficient of determina-

tion (r2) > 0.995.

2.10 | Lower limit of quantification

Six replicates of the lowest calibration point 0.156 μmol/L followed

by further dilution 1:1 with drug-free serum to 0.078 μmol/L (n = 6)

were analyzed to determine the lower limit of quantification (LLOQ).

Acceptable precision and accuracy were considered to be ≤ 20% and

80–120%, respectively (EMA, 2012).

2.11 | Accuracy and precision

The accuracy and precision of the method were determined through

repeated measurements of QC samples at three levels (n = 6). Intra-day

and inter-day assay precision and accuracy were performed in one run

and multiple runs, respectively. Accuracy was calculated as a bias, mean

measured concentration divided by spiked concentration * 100 and pre-

cision as the coefficient of variation (CV%). Mean inaccuracy should be

within 15% (20% for LLOQ) of nominal values for quality control sam-

ples. The imprecision should not exceed 15% (20% for LLOQ).

2.12 | Dilution integrity

To evaluate the dilution process performed on samples exceeding the

highest calibrator, drug-free serum (n = 5) was spiked to 250 μmol/L

and diluted fivefold with drug-free serum. According to EMA guide-

lines, accuracy should be within 85–115%, and precision should be

within ± 15%.

2.13 | Carry-over

Carry-over was assessed by injecting 10 sample extracts of the lowest

calibration standard, followed by a series of injections alternating

between the highest and lowest calibrators (n = 10 per level). A t-test

was used to compare the mean peak areas of the two sets of low cali-

bration standards. Carry-over was considered insignificant if p > 0.05

(Honour, 2011).

2.14 | Stability

A system suitability check was used regularly before every batch con-

firming retention time, peak area, height, width, and the signal-to-

noise ratio (S/N).

The stock solution and working solutions of antiviral drugs and

internal standards’ stability were evaluated after 6 months' storage at

�80�C. The long-term storage stability of the patient samples over a

time period of 6 months at �20�C was evaluated. Storage stability

was claimed if the bias between the freshly prepared samples and

samples stored for 6 months was ≤ 15%.

3 | RESULTS AND DISCUSSION

3.1 | Chromatography and sample preparation

Several C18, phenyl, and biphenyl stationary phases were tested in

combination with methanol or acetonitrile with additives such as

TABLE 1 The specific mass spectrometric settings for each substance and their corresponding internal standard

Substance ESI mode Retention time (min) MRM transitions (m/z) quantifier/qualifier Cone voltage (V) Collision energy (eV)

ACV + 1.40 226.10 > 152.00 12 10

226.10 > 134.95 12 28

CMMG + 0.74 240.03 > 152.00 4 12

240.03 > 134.95 4 30

PCV + 1.53 254.10 > 151.99 48 16

254.10 > 135.01 48 32

GCV + 1.08 256.10 > 152.01 12 12

256.10 > 134.95 12 32

ACV-IS + 1.38 230.13 > 152.00 2 10

CMMG-IS + 0.75 243.10 > 155.00 2 12

PCV-IS + 1.52 259.22 > 152.07 48 14

GCV-IS + 1.07 261.13 > 151.99 2 12

MRM transitions with protonated molecule and monitored fragments in positive mode. Retention time, cone voltage, and collision energy for each analyte.

Note: ACV, acyclovir; CMMG, 9-carboxymethoxymethylguanine; GAN, ganciclovir; PCV, penciclovir; and their analogous internal standards ACV-IS,

CMMG-IS, PCV-IS and GCV-IS; MRM, multiple reaction monitoring.
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ammonium acetate, ammonium formate, acetic acid, or formic acid.

Our experiment showed that the biphenyl phase provided changes

in selectivity relative to C18 with a methanolic phase, but with

acetonitrile-based phase the biphenyl behaved more similarly to a

C18, which has been shown by Appulage et al. (Appulage

et al., 2016). For these rather polar substances analyzed, in addition

to interaction driven by the hydrophobic effect a biphenyl phase can

give additional retention by π-π- and cation-π interactions compared

to a C18 phase. A mobile phase consisting of 10 mmol/L ammonium

acetate and methanol with a linear gradient on a biphenyl stationary

phase gave the optimum separation and peak shape symmetry of

the analytes with a chromatographic run time of 3 min. Based on

the pKa values of ACV, GCV, and PCV published on PubChem

(https://pubchem.ncbi.nlm.nih.gov/), and the pH of mobile phase A

(6.8) it can be concluded that these analytes are present in a neutral

state during the chromatographic run and that hydrophobic and

π-π-interactions are responsible for the selectivity/difference in

retention times. Log P values (Pubchem) of ACV, GCV, and PCV

show an increasing order following the retention order. The pKa

values reported for CMMG indicate that it will be present in a

charged state (�1) at pH 6.8 resulting in limited retention. The pre-

cipitation solvents acetonitrile and methanol in different combina-

tions with formic acid and zinc sulfate were used to investigate

which combination gave the best extraction recovery. Acetonitrile

and zinc sulfate were excluded due to low extraction efficacy and

broad and asymmetric peaks for all the analytes when the extract

was injected into the biphenyl column. The combination of 1%

formic acid with methanol as precipitation solvent and dilution of

the supernatant with 1% formic acid in ultrapure water before injec-

tion was chosen as it displayed significantly better extraction recov-

ery. Figure 1 shows a representative MRM chromatogram from the

serum extract of the calibration standard spiked with 0.156 μmol/L

of ACV, CMMG, PCV, and GCV.

3.2 | Selectivity

Analyzing serum from six drug-free individuals showed an absence of

endogenous interferences at the mass transitions at the retention

times for ACV, CMMG, GCV, and PCV. Drug-free serum spiked with

internal standards, ACV-IS, CMMG-IS, GCV-IS, and PCV-IS, showed

no interfering peaks for ACV, CMMG, GCV, and PCV.

3.3 | Matrix effect, extraction recovery, and
process efficiency

The qualitative matrix effect experiment showed no ionization sup-

pression regions that would interfere with ACV, CMMG, GCV, or

PCV. For CMMG, an ionization suppression region between 0.4 and

0.6 was found but with a retention time of 0.7 for CMMG and the use

of CMMG-IS ensured a valid measurement of the analyte (Figure 2).

For the quantitative experiment the mean extraction recovery, matrix

effect, and process efficiency are summarized in Table 2, in the stan-

dard concentration range 0.156–160 μmol/L and their corresponding

internal standards at 5 μmol/L. The extraction recovery within the

standard curve range was greater than 83.3%, for all compounds. For

the matrix effect, a variation between 76.3 and 93.6% was obtained

with a process efficiency of 67.6–87.7%. The extraction recovery for

the internal standards was greater than 86.2%. A variation between

81.8 and 93.4% was obtained for the matrix effect with a process effi-

ciency of 78.2–90.2%.

To further evaluate the quantitative matrix effect, recovery,

matrix, and internal standard normalized matrix factors were calcu-

lated. Absolute and compensated values for matrix effect and process

efficiency as well as variability of matrix effect at the six different cali-

bration levels are all summarized in Table 3. For uncompensated

matrix effects, the CV ranged from 0.7 to 3.5% and for IS normalized

matrix effects, the CV ranged from 0.5 to 3.3% for the six calibration

levels.

3.4 | Calibration model and LLOQ

A quadratic regression model with 1/x weighting was used for all

analytes for the concentration range 0.156–160 μmol/L, resulting in

correlation coefficients between 0.99962 and 0.99999. The rec-

alculated concentrations of each calibration standard were all within ±

5 (4.3)% of nominal values for all the analytes. LLOQ was determined

to a concentration 0.156 μmol/L equal to the lowest standard point

for the four substances.

3.5 | Accuracy and precision

Accuracy and precision of the analysis of QC samples at three concen-

tration levels for each compound are presented in Table 4. The mean

intra-day assay accuracy was 93 to 105% (n = 6), and inter-day assay

accuracy ranged from 95 to 103% (n = 6) for ACV, CMMG, GCV, and

PCV. CV of intra-day assay imprecision was 1.7–6.5%, and the inter-

day assay imprecision was 1.4–4.2%.

3.6 | Dilution integrity

Drug-free serum was spiked with a concentration of 250 μmol/L for

each of ACV, CMMG, GCV, and PCV and diluted to 62.5 μmol/L.

Accuracy and precision of the analysis were not affected as the five-

fold diluted samples were measured with an inaccuracy of < 9.6% and

imprecision < 7.1%.

3.7 | Carry-over

Application of the optimal washing procedure to prevent carry-over

effects and ensure the precision and accuracy of the method was
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tested. The alternate injections of highest calibration and lowest

calibration standard compared to 10 repeated injections of lowest

calibration standard were performed. Using the independent sample

t-test to compare the mean of the two sets of the lowest

calibration standards, the result in p-values was above 0.05 for all

analytes, indicating no significant carry-over, after extending the

time for the post-inject wash time from 6 to 12 s in the FTN injec-

tion system.

F IGURE 1 Representative multiple reaction monitoring (MRM) chromatograms from serum extract of calibration standard spiked with
0.156 μmol/L of each substance
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3.8 | Stability

The analytes and internal standards were found to be stable for 24 h

in autosampler at 5�C. Stock and working solutions of analytes and

internal standards were stable for 6 months at �80�C. Patient sam-

ples stored at �20�C were found to be stable for 6 months, after

being reanalyzed with freshly prepared calibration standards.

Unpaired two-sided t-test gave p-values of 0.827, 0.932, 0.999, and

0.929 for ACV, CMMG, GAN, and PNV, respectively, showing a good

stability for up to 6 months' storage.

3.9 | Application of method

To evaluate method applicability, serum samples from patients under-

going treatment for herpes virus infection with ACV (n = 10) or GCV

(n = 10) were analyzed.

GCV results ranged between 1.9 and 16.9 μmol/L (mean

12.6 μmol/L), ACV ranged between 2.2 and 31.0 μmol/L (mean

12.6 μmol/L), and CMMG 0.5–18.2 μmol/L (mean 3.4 μmol/L). Figure 3

shows serum samples collected during 24 h from a subject who was

administered a 200 mg tablet of ACV to study the formation of CMMG.

F IGURE 2 Qualitative matrix
effect for
9-carboxymethoxymethylguanine
(CMMG)
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4 | CONCLUSIONS

This work describes a fully developed and validated method for rapid

quantification of ACV, its metabolite CMMG, GCV, and PCV, with the

advantage of a short preprocessing, using a small amount of serum

and protein precipitation with 1% formic acid in methanol containing

corresponding isotopically labeled forms of the four substances ana-

lyzed as internal standards that result in high extraction recovery,

TABLE 4 Accuracy and precision for the quality controls for all included substances. From a single run on six replicates at each quality control
level (inter-day assay) and from six different days (intra-day assay)

Intra-day assay (n = 6) Inter-day assay (n = 6)

Substance

QC I QC II QC III QC I QC II QC III

0.5 μmol/L 20 μmol/L 120 μmol/L 0.5 μmol/L 20 μmol/L 120 μmol/L

ACV Mean 0.46 20.4 119.0 0.48 20.6 119.8

SD 0.021 0.59 2.0 0.007 0.50 2.7

Imprecision (CV%) 4.4 2.9 1.7 1.4 2.4 2.3

Accuracy (%) 93 102 99 95 103 100

CMMG* Mean 0.50 19.7 118.3 0.52 20.5 120.7

SD 0.026 0.55 2.8 0.022 0.58 2.8

Imprecision (CV%) 5.5 2.8 2.4 4.2 2.9 2.3

Accuracy (%) 100 98 99 105 102 101

PCV Mean 0.48 20.1 116.5 0.52 20.9 118.6

SD 0.028 0.60 2.8 0.011 0.63 2.4

Imprecision (CV%) 5.8 2.9 2.4 2.1 3.0 2.1

Accuracy (%) 97 105 97 104 104 99

GAN Mean 0.47 19.9 118.8 0.48 20.4 120.8

SD 0.030 0.57 2.3 0.008 0.52 3.0

Imprecision (CV%) 6.5 2.9 1.9 1.6 2.5 2.5

Accuracy (%) 94 100 99 96 102 101

Note: ACV, acyclovir; CMMG, 9-carboxymethoxymethylguanine; CV,coefficient of variation; GAN ganciclovir; Mean and SD in μmol/L; PCV, penciclovir;

QC, quality control.

F IGURE 3 Acyclovir (ACV) and

9-carboxymethoxymethylguanine
(CMMG) concentrations during a 24-h
sampling period collected from one
subject given a single 200-mg tablet
acyclovir
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minimized assay variation, and matrix effects. Further on, this study

shows an improvement compared to previous methods by the use of

a XEVO TQ-S micro for detection of the analytes with an LLOQ of

0.156 μmol/L for all four analytes. Optimal chromatographic perfor-

mance, including selectivity and peak shape, was achieved using a col-

umn with a biphenyl stationary phase, resulting in a chromatographic

runtime of 3 min. The novelty of using an alternative chromatographic

selectivity by the choice of a core-shell biphenyl stationary phase

demonstrated that this stationary phase could be an alternative even

for these rather polar antiviral drugs.

In all, the validated LC–MS/MS method presented for the deter-

mination of the total concentration of ACV and its metabolite CMMG

as well as GCV and PCV in human serum proved to be sensitive, spe-

cific, and accurate, making it suitable for therapeutic drug monitoring

of these substances to improve patient treatment.
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