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The T cell immune responses in filarial infections are primarily mediated by CD4+ T cells
and type 2-associated cytokines. Emerging evidence indicates that CD8+ T cell responses
are important for anti-filarial immunity, however, could be suppressed in co-infections.
This review summarizes what we know so far about the activities of CD8+ T cell responses
in filarial infections, co-infections, and the associations with the development of
filarial pathologies.
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FILARIAL INFECTIONS: AN OVERVIEW

Filarial infections of animals and humans include lymphatic filariasis, onchocerciasis, loiasis, and
mansonellosis. Lymphatic filariasis is caused by Wuchereria bancrofti, Brugia malayi, and Brugia
timori, withW. bancrofti accounting for over 90% of such infections (1). The Onchocerca volvulus is
responsible for onchocerciasis, popularly called river blindness. The other disease-causing species of
filarial parasites are Loa loa andMansonella sp., causing loiasis and mansonellosis, respectively. The
life-cycle of filarial parasites is relatively complex with several distinct morphological stages in both
vector and mammalian hosts, as shown withW. bancrofti in Figure 1. For lymphatic filariasis (LF),
the most prominent pathological manifestations are mediated by immune responses against the
adult worms and infective stage larvae (2), leading to lymphedema and hydrocele (Figure 1). LF is
the second largest cause of disability globally and approximately 40% of the global disease burden of
lymphatic filariasis occurs in Africa (3). Current treatment strategies include mass drug
administration (MDA) regimens and vector control measures. The MDA programs involve the
yearly distribution of microfilaricidal drugs constituting single doses of 400 mg of albendazole
(ALB) plus either 150–200 mg/kg of ivermectin (IVM) or 6 mg/kg of Diethylcarbamazine (DEC)
administered together for 4–6 years. Tetracycline-based drugs such as doxycycline are used as
macrofilaricidal agents (4, 5). Vector control strategies have been used to effectively interrupt the
transmission of LF in certain countries (6).
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HELPER T CELLS IN ANTI-FILARIAL
IMMUNITY AND IMMUNOREGULATION:
AN OVERVIEW
T cell-mediated immune responses are major components of the
anti-filarial immunity, as per evidence from experimental animal
models and antigen stimulation studies (7–9). This T cell-
mediated response has been characterized by activities of both T
helper 1 and T helper 2 cytokines, depending on the stage of
parasite/infection (10–12). At the interplay of the Th1/Th2
activities are regulatory T cells (Treg) which may be
simultaneously active during the filarial infections (13, 14).
Thus, several scenarios of helper T cell responses could be
observed. First, the responses can be dominated by strong Th1
cytokines with diminished Th2 cytokine activity as a result of poor
regulation by Treg. Another scenario could involve a dominant
type 2 cytokine response with a marginal activity of Th1, due to
immunoregulatory activities. There could also be well-balanced
Th1/Th2 responses when Treg activities are sufficient. The
activities of primed CD4+ T cells involved in Onchocerca
microfilariae clearance in infected mice are dominated by Th2
responses (15). In the early stages of filarial infection, an increased
expression of Th1 cytokines, particularly triggered by antigen-
presenting cells have been reported (7). This suggests that the
initial responses against infective stage larva involve pro-
inflammatory responses induced by innate components
although the primary responses against the parasites are of Th2
phenotype. A large body of evidence shows that the interactions
with host innate cells involve toll-like receptors (16–18). The
Wolbachia induces dendritic cell activation and IFN-g secretion
which are correlated with increased TLR2 expression (19). Studies
with O. volvulus keratitis-infected mice demonstrated that IFN-g
increased expression of TLR2 on corneal macrophages which
triggered the production of TNF-a, interleukin-6 (IL-6), IL-1a,
Frontiers in Immunology | www.frontiersin.org 2
and IL-1b in macrophages (17). Moreover, TLR2 is involved in
dendritic cell activation, IFN-g secretion, and neutrophil
recruitment (17, 18). In addition to TLR2, the Wolbachia
induces innate immune responses through TLR4 and TLR6 and
involves MyD88 (18, 20). The W. bancrofti microfilaria sheath
protein directly interacts with TLR4 to mediate macrophage pro-
inflammatory responses (IL-6, TNF-a, and IL-1b) via NF-kB
activation (20, 21).

Reports by Mukherjee et al. (22) demonstrated thatW. bancrofti
sheath antigen promotes maturation and activation of dendritic
cells by directly interacting with TLR4. In the same study, the
matured dendritic cells promoted type-1 cytokines and regulatory T
cells (Treg) responses while proportions of Th2, Th17, IL-4, and IL-
17A were low (22). While the low Th2 responses could be a
characteristic of the sheath antigen, there is a possibility of
immunoregulatory activities by Treg. Studies have shown that the
Th2 responses to B. malayi adult worm antigen are enhanced upon
abrogation of Treg (23). Elsewhere, depletion of Treg promoted
Th1 responses without affecting Th2 proportions (24). The
Wolbachia surface protein promotes pro-inflammatory responses
in mice by increasing the production of Th17 cells while decreasing
the levels of Treg (25, 26). In addition, neutralizing CD25 and GITR
in B. malayi L3-infected mice elevated Th17 and IFN-g levels while
reducing IL-10 (26). Figure 2 summarizes the mediation of
cytokine responses through antigen-presenting cells during filarial
infections. This interplay of the type-1 and type-2 CD4+ T cell
responses in anti-filarial immunity and the immunomodulatory
actions of Treg have been extensively reviewed elsewhere (13, 14).

Here, we discuss the relevance of CD8+ T cells in the immune
responses against filarial parasites, based on documented evidence
from animal models and human subjects.We also discuss the roles
of CD8+ T cells in the development offilarial pathologies and their
possible involvement in immunomodulatory mechanisms during
filarial co-infections.
FIGURE 1 | Life-cycle of filarial parasites demonstrated with W. bancrofti and the associated filarial pathologies. (1) The vector transmits the infective-stage larvae
into the human when taking a blood meal. (2) The L3 mature into adult worms, which produce microfilariae (3). They migrate to the lymphatics and blood for
circulation. (4) The vector again takes up the microfilariae during a blood meal on an infected host. (5) The microfilariae develop into the L1 stage. (6) The L1 larvae
mature into L3 larvae, which migrate to the vector’s proboscis via the haemocoel. (1) The infected vector transmits the infective-stage larvae into the human host
during a blood meal. While in the host, inflammatory responses to live/dead parasites and immuno-regulatory mechanisms contribute to lymphedema and hydrocele.
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CD8+ T CELLS IN ANTI-FILARIAL
IMMUNITY

Evidence From Studies Involving Humans
There is currently insufficient evidence from human studies which
clarify the mechanisms of CD8+ T cell activities in anti-filarial
immunity. However, available data from studies in human subjects
demonstrate the elevated levels of CD8+ T cells during filarial
infections, thus, depicts potential roles in the immune responses
against filarial parasites or immunopathology. Kalinkovich and
colleagues examined a group of helminth-infected Ethiopian
immigrants in Israel and reported elevated CD8+ T cells in this
infected group (27). Moreover, W. bancrofti-infected individuals
reportedly had increased frequencies of activated CD8+ T cells
compared to non-infected subjects (28). From a cohort of 12
African adults with ocular onchocerciasis, Chan et al. found that
levels of CD8+ T cells were significantly elevated in the infected
group (29). There are additional reports that CD8+ T cells may have
regulatory roles during the induction of ocular inflammation by O.
volvulus antigen-specific CD4+ T cells (30).

Filarial antigen stimulation studies suggest that type 2 cytokines
mediate the cytotoxic activities of CD8+ T cells against filarial
parasites. In individuals with patent infections, CD8+ T cells
expressing antigen-specific type 1 cytokines (IFN-g, TNF-a, and
IL-22) were diminished, while levels of type 2 cytokine (IL-4, IL-9,
IL-13, and IL-21)-expressing CD8+ T cells were elevated (31).
Frontiers in Immunology | www.frontiersin.org 3
This may suggest that CD8+ T cell responses in patent LF
infections are mediated by antigen-specific type 2 cytokines (31,
32). Notwithstanding, treatment of the filarial infection changes the
CD8+ T cell cytokine secretion pattern, thus, the regulation of these
patterns of CD8+ T cell cytokine release is dependent on antigen
presence or disease state (31, 32). The activities of CD8+ are
modulated by IL-10 depending on the stage of infection (31, 32).
CD8+ T cells expressing IL-24 and IL-19 were increased while IL-26
expressing CD4+ T cells were diminished in asymptomatic infected
individuals compared to individuals presenting with pathology (32).
These regulation of parasite antigen-specific IL-19 and IL-24
expressing CD8+ T cells are more dependent on the stage of the
infection than on IL-10, IL-1b, and IL-23 as observed in the
regulation of CD4+ T cell response (31–33). Filaria antigen-
specific type-1 cytokines (TNF-a, IFN-g, IL-22) expressing CD8+

T cells were reportedly lower in asymptomatic infected individuals,
relative to individuals presenting with pathology (31). This evidence
supports the notion that CD8+ T cell responses in filarial infections
may be mediated by type 2 cytokines while filarial pathologies are
driven by type 2 responses, as a result of continuous antigen
presence and immunomodulation (Figure 3).

Evidence From Studies With
Animal Models
An early description of T cell-mediated immunity in
experimental filaria excluded contributions from CD8+ T cells
FIGURE 2 | Cytokine expressing profiles against filaria and immunoregulation. The filaria and their endosymbiont interact with TLRs on the APCs to induce pro-
inflammatory responses via NF-kB signaling. The CD4+ T cells expressing type-2 cytokines are involved in parasite clearance. Regulatory T cells are simultaneously
involved in modulating the Th1/Th2 responses.
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(34). b2-microglobulin deficient mice, which lack MHC class I
molecules and therefore do not elicit CD8+ T cell cytotoxicity,
were able to establish a resistance to the infective parasites of
B. malayi (34). Several in vivo immunization studies, however,
also suggested possible CD8+ T cell cytotoxic activities during
filarial infections. The B. malayi trehalose-6-phosphate
phosphatase antigen induced high levels of CD8+ T cells as
part of the host antigen-specific cellular immune responses (35).
Immunization of mice with B. malayi Wolbachia recombinase A
resulted in a significant expansion of CD8+ T cells in the host
spleen (36). Studies in TCR transgenic mice have also shown that
the O. volvulus antigens OvALT-2 and OvNLT-1 exert
suppressive effects on CD8+ T cell proliferation and cytokine
release (37). Recently, heterologous prime-boost vaccination
administration of B. malayi heavy chain myosin induced
enhanced CD8+ T cell expansion in mouse spleen (38).
Although CD8+ T cell levels are elevated during filarial
infections, it may be that CD8+ T cell-mediated immunity is
most relevant at the initial stages of the infections when the
parasite is establishing itself in the host. Babu and Nutman
explored the events of host immunity that occur in the early
stages following infection with live B. malayi L3 parasites and
reported that efficient CD8+ T cell responses are noticed at the
very early stages of infection (7). Studies with Onchocerca
lienalis-infected mice model demonstrated the contributions of
T cell-mediated immunity against microfilariae, which is
dominated by CD8+ T cells at the initial stages of the infection
Frontiers in Immunology | www.frontiersin.org 4
(15). The filaria-specific CD8+ T cells expressing cytokines
during filarial infections are summarized in Table 1.
CD8+ T CELLS AND ASSOCIATIONS WITH
FILARIAL PATHOLOGY

The degenerating filaria and its endosymbiont promotes pro-
inflammatory responses which drive the pathologies associated
with the disease. The interactions between the microfilariae (Mf)
and host macrophages result in the activation of pro-
inflammatory macrophage subtype which induces a pro-
inflammatory response (22, 40) aimed at promoting
microfilariae clearance (7, 41). However, the macrophage pro-
inflammatory responses executed by IL-6, TNF-a, IL-1b,
especially to dead parasites contribute to immunopathology (41).

The proportions of CD8+ T cells appear to vary during
asymptomatic infections and pathological infections, suggesting
that the activities of CD8+ T cells in filarial infections are
dependent on the stage of the infection. In terms of cellular
subsets, individuals presenting with chronic filarial pathologies
have elevated levels of activated CD8+ T lymphocytes when
compared to individuals with Mf only (42). Further analysis of
patient sera confirmed the elevation of soluble CD8+ T cells in
individuals with chronic LF pathology than those at an
asymptomatic Mf stage (43). Differential gene expression
analysis of blood samples from Loa loa-infected individuals
FIGURE 3 | The possible roles of CD8+ in filarial immunity. The protective effects of CD8+ T cells are mediated by type-2 cytokines and upon the persistence of the
filaria antigens, switch to pro-inflammatory type-1 responses which ultimately contribute to filarial pathology.
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originating from Cameroon, Gabon, and Nigeria have defined
the functional annotation of gene expression profiles in CD8+ T
cells (44). The responses to microfilaria antigens by CD8+ T cells
in endemic individuals were characterized by inflammatory-
driven attacks and cell death (44). Furthermore, studies in Loa
loa-infected rhesus monkeys suggest that CD8+ T cells may have a
role in the hypo-responsiveness to antigens of Loa loa parasites
(45). Studies in B. malayi-infected monkeys also showed that levels
of CD8+ T cells were increased in symptomatic models than in
asymptomatic ones (46).

CD8+ T cells expressing type 1 cytokine responses have been
associated with clinical filarial pathologies (2, 31). IFN-g- and
TNF-a-producing CD8+ T cells are known to promote filarial
pathology particularly through the stimulation of lymphangiogenic
growth factors and inflammatory cell migration (47–49). These
observations provide preliminary evidence on the involvement of
CD8+ T cells in filarial pathology. The pathophysiological onset of
filarial infections is believed to be driven at the cellular level via
inappropriate regulation of CD8+ T cell activation in an increased
pro-inflammatory-mediated fashion (31, 32), as summarized
in Figure 3.
ROLE OF CD8+ T CELLS IN FILARIAL
CO-INFECTION

Helminths are known to be master modulators of host immune
responses (50). The immunomodulatory benefits of helminths
are being exploited for therapeutic purposes against
inflammatory bowel diseases and autoimmunity (51). The
filarial immuno-regulatory influence on disease progression
and control has been demonstrated with several conditions,
including filarial-plasmodium co-infection (52), filarial-
mycobacterium co-infection (53), filarial-virus co-infections
(54) and allergic reactions (55).

Filarial-Virus Co-Infection
Given that both filaria and HIV infections compromise the host
immune system, one would anticipate that their co-existence
Frontiers in Immunology | www.frontiersin.org 5
would affect immune responses. It is established that type-1
responses mediate immunity to viruses (56), however, filarial
parasites mostly induce a type 2-dependent immunity in their
hosts and are capable of regulating these responses to enhance
their survival. The suppression of virus-specific CD8+ T cell
cytotoxicity in HIV-Schistosoma mansoni co-infected mice
models, with a corresponding delay in viral clearance, has been
reported previously (57). The Schistosoma-induced reduction in
cytotoxic T lymphocyte responsiveness to HIV antigens was
markedly due to diminished induction of IFN-g and IL-2, either
through direct IL-10 activit ies or parasite-induced
immunomodulation of innate cells (57). Similar findings in
norovirus-Trichinella co-infected mice have been reported,
where the modulation of viral-specific CD8+ T cell responses
was observed (58). This inhibition of antiviral immunity was
associated with innate immunomodulatory mechanisms during
virus-helminth co-infection (58). Thus, the efficiency of viral
immune responses can be suppressed during helminth-virus co-
infections, at least for S. mansoni and Trichinella spiralis.

Although the specific immunomodulatory influence filarial
parasites have on HIV co-infections in vivo is not clearly
established, several studies have provided insights into the
situation. Nielsen et al. (59) found no influence of HIV-W.
bancrofti co-infections on the modulation of anti-viral
immunity or virus clearance. Notwithstanding, adult B. malayi
antigen (BmA) influenced HIV-1 trans-infection of CD4+ T cells
in vitro (60). The HIV-1 trans-infection is a commonmechanism
of virus infection of CD4+ T cells by APCs such as dendritic cells
and macrophages. The inhibition of CD4+ T cell trans-infection
involves the blocking of HIV-1 capture and transfer through an
interaction between the BmA and dendritic cells, thus,
preventing the virus from interacting with dendritic cells (60).
The BmA, however, does not influence dendritic cell maturation,
cytokine production, and HIV-1 replication in CD4+ T-cells
(60). Although adult B. malayi antigens can influence HIV-1
trans-infection of CD4+ T cells, they have no deleterious impact
on dendritic cell-derived T helper cytokine profiles against the
virus (60). On the role of CD8+ T cells in filarial-
immunoregulation of viral infections, a considerable gap
TABLE 1 | CD8+ T cells expressing cytokines in response to filaria infections.

Main Finding Study
model

Experimental design CD8+ expressing cytokines Ref

Onchocerca volvulus antigens (OvALT-2 or OvNLT-1
displayed) suppressed CD8+ T cells-derived IL-2 and IFN-g
in mice

Mouse In vitro proliferation assay using TCR transgenic
mice

IL-2 and IFN-g
(37)

L. sigmodontis infection suppressed the function of CSP-
specific CD8+ T cells

Mouse immunization with a circumsporozoite protein (CSP)
fusion protein in L. sigmodontis-infected mice

IFN-g and TNF-a
(39)

B. malayi L3 stage induced CD8+ T cell-associated Th1
cytokines

Cell
culture

in vitro system of PBMC from unexposed individuals
stimulated with live L3 of B. malayi

IFN-g and TNF-a, GM-CSF, IL-1a,
and IL-8

(7)

Infected asymptomatic individuals have elevated frequencies
of CD8+ T cells expressing IL-4, IL-5, IL-9, IL-13, and IL-21
compared to individuals with clinical pathologies but lower
type-1 cytokine expressing CD8+ T cells

Cell
culture

B. malayi antigen stimulation of whole blood from
infected individuals

Infected asymptomatic infections:
(31)IL-4, IL-5, IL-9, IL-13, and IL-21

clinical pathology:
IFN-g, TNF-a, IL-22

CD8+ T cells expressing IL-19 and IL-24 are characteristic
of asymptomatic infections while IL-26 expressing CD8+ T
cells are associated with the clinical pathologies

Cell
culture

B. malayi antigen stimulation of PBMC from infected
individuals

asymptomatic infections:
(32)IL-19, IL-24

clinical pathology:
IL-26
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remains. Dietze et al. (54) studied the immunomodulatory effects
of filaria-virus co-infection using an Litosomodes sigmodontis-
Friend virus (FV) co-infected mice model. Both filaria-specific
and viral-specific humoral responses were diminished, but no
effect was found on CD8+ T cell response to FV infections. While
the viral infection did not affect the worm burden, the
L. sigmodontis infection resulted in increased viral loads due to
virus-specific antibody response suppression (54). According to
Gopinath et al. (61), the in vivo immunological interactions of
filaria-HIV co-infections could be properly modeled if cells of
individuals with pre-existing filarial infections are used rather
than inducing the filarial-immunity with antigens. By infecting
CD8+ T cell-depleted peripheral blood mononuclear cells from
filaria-infected individuals with HIV strains, an indication of
increased susceptibility to HIV infections were observed (61).

Filaria-Plasmodium Co-Infection
In addition to their co-endemicity in particular regions, malaria
parasites and some filarial parasites share similar transmission
vectors. Several studies have explored the possible alterations in
host immune responses as a result of filaria-plasmodium co-
infection (62, 63). Filarial parasites are well known to induce
immunosuppressive mechanisms in their human hosts by
impairing the production of pro-inflammatory cytokines
through the activities of Treg and related cytokines, IL-10 and
TGF-b (13, 31, 64). Under the hypothesis that the induced
immunosuppression by filarial alters the pro-inflammatory
onset of cerebral malaria (CM), Specht et al. (52) studied the
development of CM in malaria-infected-murine models with
previous filaria (L. sigmodontis) infection. CD8+ T cells are key
players in the progression of CM (65). In the co-infected model,
CD8+ T cell sequestration into the brain was significantly
reduced, which was corroborated with the observed reduction
in CM pathology (52). The filaria-induced IL-10 suppresses type-
1 cytokines which are known promoters of CM pathologies. In
addition, IL-10 mediates the accumulation of CD8+ T cells in the
spleen, thus, reducing its sequestration into the brain (52). Pre-
existing filarial infections in mice models can suppress the
production and functioning of CD8+ T cells induced by anti-
Plasmodium vaccination, although the implementation of a
heterologous prime/boost immunization regime could stop the
observed interference (39).

Filaria-Mycobacteria Co-Infection
Similar to malaria, tuberculosis and filarial infections share a
common endemic hotspot. Recent studies have explored the
immunoregulatory effect on filaria-mycobacteria co-infections
(66, 67), however, the precise influence on TB outcome and
progression remains open for further investigations. The
influence of filarial infections on Mycobacterium tuberculosis
and Plasmodium falciparum infections have been extensively
discussed elsewhere (68). Immunity in helminth infections is
mostly mediated by Th2 immune responses, whereas immune
responses toM. tuberculosis require type-1 cytokines (69). CD8+

T cells are known inducers of Th1 and Th17 associated
cytokines, which are critical components of host immunity
against TB (70). It is also well established that filarial parasites
Frontiers in Immunology | www.frontiersin.org 6
can modulate CD8+ T cells. The Mycobacterial antigen-specific
CD8+ T cell responses were down-modulated by the occurrence
of W. bancrofti infection in active pulmonary TB patients (53).
Both CD4+ and CD8+ Th1/Th17 cytokines were diminished in
the co-infected mice model, as a result of filaria-induced IL-10
modulation of the pro-inflammatory responses against the
mycobacterium (53).

Filarial Infections and Sepsis
In the initial phases of septic attacks, microorganisms mount a
robust pro-inflammatory immunity, a stage described as
systemic inflammatory response syndrome (SIRS) (71, 72). The
compensatory anti-inflammatory response syndrome (CARS)
phase immediately follows, which involves an increase in anti-
inflammatory molecules and apoptosis of activated immune cells
with a corresponding decrease in pro-inflammatory agents (73,
74). This dampens the strength of host adaptive immunity,
allowing possible infections with opportunistic microbes (74).
Moreover, CD8+ T cell cytotoxicity is reduced during the CARS
phase (75). Filaria parasites are known to down-modulate CD8+

T cell responses and trigger the production of anti-inflammatory
cytokines like IL-10 (50). Thus, the alteration of T-cell responses
during the SIRS and CARS phases in Escherichia coli-induced
septic mice model with chronic L. sigmodontis infection has been
recently explored (76). Interestingly, the weakening of CD8+ T
cell cytotoxicity through sepsis attack was not promoted by
chronic filarial infection (76).
HOW FILARIAL PARASITES COULD
RE-PROGRAM CD8+ T CELLS

The transcriptional factors that regulate CD8+ T cell phenotypes
and functions are important, particularly during chronic
infections (44). How fi larial parasites influence the
differentiation and subsequent proliferation of naive CD8+ T
cells is not clear and remain to be established. However, like all
other forms of CD8+ T cell activation, the presence of a suitable
peptide with an MHC class I molecule drives CD8+ T cell
proliferation and differentiation via cross-presentation, given
that the filarial parasites are extracellular. An effective CD8+ T
cell challenge has been implicated in the clearance against viral
infections (77) and helminth infections (78) and similar
mechanisms could be applied to filarial parasites. Given that
filarial pathogens live long in their host, sustained antigen
stimulation may alter the differentiation program of CD8+ T
cells and render them exhausted as previously documented in
other infection scenarios (77, 78). These exhausted CD8+ T cells
are functionally poor since they have reduced lethal impact
against their targets. In essence, this could be a possible
scenario in filarial infections, where some compromises could
be achieved to reduce tissue damage since filarial worms
generally survive for at least 10 years in the host. Exhausted
CD8+ T cells are predominant in chronic infections (77, 79).

Experimental investigation of the functional relevance of
regulatory CD8+ T cells during infection has advanced,
following growth in phenotypic characterization of CD8+ T
September 2021 | Volume 12 | Article 714052
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cells subtypes. Activated CD8+ T cells release granzyme B, which
plays a seminal role during cytotoxic functions. More recently,
granzyme B in the regulatory T cell compartment has been found
to mediate the suppression of antigen-specific CD8+ T cells in
viral infection (77). In the same study, increased numbers of
antigen-specific CD8+ T cells in the lungs of granzyme B-
deficient mice were observed, suggesting that granzyme B in
Tregs cells regulates either the initiation of antigen-specific CD8+

T cells responses or the down-modulation of terminal effector
cells or a combination of both. Further, granzyme B has been
implicated in enhancing susceptibility during the filarial
nematode, L. sigmodontis infection (78). Additionally, results
from field studies also suggest the suppressive role of granzyme B
in human onchocerciasis (79). In this study, the authors observed
a high expression of granzyme B and Foxp3 Tregs in the
generalized hyporeactive than the hyperreactive individuals (79).

Although the underlying mechanisms dictating CD8+ T cell
in the presence of filarial antigens is unknown, the fact that
increased expression of granzyme B has been associated with
immunomodulatory factors such as FoxP3 and TGF-b during
filarial infections are good indicators of some immunological
cross-talk with CD8+ T cell serving as a key player. Thus, we
speculate a possible interplay between CD8+ T cells and
granzyme B during filarial infection in a regulatory fashion
among individuals with patent infection. Soluble CD8 (sCD8)
released upon activation of CD8+ T cells has been documented to
reflect filarial disease severity (42, 43).
THE NEED FOR CD8+ T CELL INDUCTION
BY PROPHYLACTIC FILARIAL VACCINES

Currently, the main strategies for controlling filarial infections
are through an annual mass drug administration program,
management of morbidity, and vector control measures.
Despite the progress, millions of individuals are still at risk of
filarial infections in over 50 countries worldwide (80).
Prophylactic anti-filarial vaccines, replacing or combined with
drug therapies, are required to effectively eliminate filarial
infections worldwide (81, 82). The search for vaccine
candidates for filarial infections has been progressive over the
years (reviewed in 81–83), although there are currently no
approved consumable vaccines available for filariasis.

Immunization studies in animal models with filarial antigens
have provided evidence supporting the efficacy of prophylactic
vaccines against filarial infections (84). Several potential vaccine
candidates have been identified to offer a wide variety of T cell-
mediated responses as part of their protective arsenal against
filarial infections in experimental models (85–89). A common
observation is that multivalent and cocktail vaccine candidates
offer greater protection against filarial infections than single-
antigen vaccinations (85–89). This seems plausible, considering
the highly complex life-cycle of filarial parasites which involves
different stages of development. The majority of immunization
trials against filarial infections in experimental models
demonstrate induction of IL-2, IL-4, IL-10, IL-17, and IFN-g,
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indicating a balanced Th1/Th2 immunity (85–90). The efficacy
of these potential vaccine candidates in different animal models
ranges from 45% to 94% (83). The vaccine formulations usually
include filarial antigens such as heat shock protein 12.6 (86–88),
abundant larval transcript-2 (86, 88, 89, 91), tetraspanin large
extracellular loop (86–88), vespid allergen homologue (89, 91),
thioredoxin peroxide (86), calponin (92), disorganized muscle
protein-1 (93), and trehalose-6-phosphate phosphatase (35). In
addition to these antigens, adjuvants are added to formulations
to improve the vaccine-induced responses. The most used
adjuvants for antifilaria immunization formulations are alum,
tuftsin and TLR agonists (86, 94–97).

The developmental stages of filarial parasites are complex and
are known to regulate several aspects of the cell-mediated
immune responses mounted by the host. Emerging evidence
shows that CD8+ T cells contribute to immune responses against
the filaria parasites at the early stages of infection, but are highly
regulated to favor parasite survival (31). Given this, a very
plausible therapeutic approach would be to prime potential
prophylactic vaccine candidates to induce sufficient CD8+ T
cells and associated memory responses which can have
detrimental effects on the establishment of the parasites (15).
Identifying CD8+ T cell epitopes within filarial antigens could be
achieved through immunoinformatics predictions and
experimental validations or by screening a library of peptides
spanning the complete antigen sequence (83). Recently, our
group identified a CD8+ T cell peptide (146KPWENFMRV154)
within onchocystatin, as part of a multi-epitope vaccine
candidate for onchocerciasis, which demonstrates promising
potential based on bioinformatics analysis (98). For most
defined T cell antigens, the peptide sequences are usually
similar to the corresponding sequences in related filarial
parasites which may ensure cross-reaction (98–100).

To accelerate the introduction of filaria vaccines into clinical
practice, there is the need to enhance the immunogenicity of
potential candidates by boosting their ability to induce CD8+ T
cell responses. Vaccine development against filarial infections is
focused on multi-antigenic or cocktail vaccine formulations, and
their cytotoxic mechanisms can be enhanced by conjugating
peptides to adjuvants such as TLR ligands (101).
CONCLUDING REMARKS

The current understanding of CD8+ T cell-mediated immunity
against filarial parasites suggests a type 2-dependent immunity.
The CD8+ T cell cytotoxic activities appear to be effective in the
early stages of filarial infections. Available evidence from animal
models and human studies show that CD8+ T cells are involved
in the immunomodulatory mechanisms that drive the
pathogenesis of filarial infections. The mechanistic role of
CD8+ T cells in filarial pathology could be associated with its
poor regulation as a result of filaria-driven suppression, thus,
promoting the secretion of pro-inflammatory agents. In the
future, the ability to manipulate the CD8+ T cell response
could have major implications, especially towards developing
September 2021 | Volume 12 | Article 714052
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vaccines against filarial infections. Understanding the dynamics
of the CD8+ T cells response to infections would help define
manipulations that would be optimal for establishing protection
against these complex extracellular nematodes. Of note, the
recent advances regarding the importance of blocking T cell-
derived cytokines or receptors, for instance, provide compelling
evidence towards the development of potential therapeutics
(102), which could be explored in filarial infections. Here, we
have discussed evidence regarding the potential protection of
CD8+ T cells against filarial infections as well suppression of
same during co-infections; thus, suggesting a need for further
studies in the future.
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