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Abstract

To investigate the growth, physiological changes and mechanism of drought resistance of

Camellia oleifera GWu-2 under drought stress conditions, changes in the main growth and

physiological indices of GWu-2 under different water gradients were studied. Factor analysis

was used to study the differences between indicators under different water gradients, and

correlation analysis was implemented to analyze the relationship between different factors.

We observed that the growth state, enzyme secretion, stomatal morphology and leaf

osmotic adjustment substances were significantly affected by drought stress. In particular,

increases in leaf abscisic acid (ABA), indole acetic acid (IAA) and methyl jasmonate (MeJA)

contents under drought stress were negatively correlated with the stomatal opening degree,

and the ratio of ZR/GA3 was significantly correlated with the growth and physiological indi-

cators of GWu-2, indicating that different hormones respond differently to drought stress

and have different functions in the growth regulation and drought resistance of GWu-2. We

concluded that the drought resistance mechanism of GWu-2 was controlled by maintaining

root growth to obtain the necessary water, increasing the contents of osmotic substances of

leaves to maintain water holding capacity, reducing the transpiration of water by increasing

leaf ABA, IAA and MeJA content to close stomata and reducing the damage caused by

drought by increasing the activity of superoxide dismutase (SOD).

Introduction

Drought stress is one of the most serious threats to plants in arid and semiarid regions [1].

Drought not only leads to declining average crop yield but also causes plant death in severe

cases [2]. However, the responses vary from plant to plant under drought stress conditions,

and many plants can grow well under such conditions, indicating that plants have strong

drought resistance. Therefore, the study of physiological and ecological changes in plants

under drought stress has become a prerequisite for drought-resistant crop cultivation.
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Several scholars have conducted a large amount of research on the growth and physiological

and biochemical characteristics of plants under drought stress as well as the drought resistance

mechanism [3]. Numerous studies have shown that plants respond to drought threats by alter-

ing their metabolic rate, endogenous hormone content, carbon partitioning, and secretion of

osmotic regulating substances [4,5], and plants respond differently to drought stress and thus

exhibit different drought resistance [6–8]; thus, the mechanism of drought resistance changes

between different plants [9].

In drought conditions, plants will exhibit a decreased growth index in terms of biomass,

plant height, and root-crown ratio [10,11]. At the same time, certain changes will occur in the

roots. The number of lateral roots will increase and become larger. This change in carbon par-

titioning of plants can ensure a relative reduction in above-ground biomass in the arid state,

thereby reducing the water lost by transpiration, while the growth of lateral roots can increase

the contact area between plants and soil, so that water in the soil can be better utilized [12].

As leaves are an important organ of photosynthesis, their external morphological character-

istics can directly reflect the response of plants to drought stress, and these characteristics are

closely related to the degree of water deficit [13,14]. Under drought stress, plant leaf stomata

will close the first time to reduce water transpiration [15]. In addition, some adaptive changes

will occur in the plant leaf structure, such as reduced leaf thickness and reduced leaf moisture

content. These changes play important roles in enhancing water retention capacity, reducing

transpiration, and improving photosynthesis [16].

Accumulating osmotic adjustment substances and improving antioxidant capacity are two

important mechanisms for plants to survive under drought stress [6]. Under drought stress,

plants will reduce their osmotic potential by accumulating osmotic adjustment substances

such as Ca2+, valine, mannitol, betaine, soluble sugar, and soluble protein to regulate osmotic

balance to prevent osmotic stress from causing damage [17,18]. In addition, drought stress sig-

nals can be transmitted to the entire plant through the synthesis and transmission of endoge-

nous hormones and enzymes [3,19]. For example, plants can scavenge free radicals and

protect their cells in arid environments by increasing the activity of enzymes such as superox-

ide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) [20,21]. At the same

time, secretion of hormones such as abscisic acid (ABA), indole acetic acid (IAA), and zeatin

nucleoside (ZR) will change accordingly. These are sensitive hormones in plants under

drought stress and play important roles in regulating plant growth and development and

enhancing drought tolerance [22].

Therefore, the drought resistance of plants is complex and involves several interacting

properties, which are integrated in all aspects of plant growth and physiology. To understand

the drought resistance mechanism and drought resistance of plants, it is necessary to conduct

an experimental analysis of their physiological and growth elements.

Camellia oleifera is an important subtropical oil tree and an ecological tree in China. It is an

economic tree species in the red soil hilly region of southern China. However, seasonal

drought in the red soil region is severe, which has a great impact on the survival and growth of

Camellia oleifera in this region, often restricting its production and causing economic losses.

Gan Wu series Camellia oleifera is the main Camellia cultivar in Jiangxi Province. However,

thus far, there have been few studies on the drought tolerance of Gan Wu series Camellia olei-
fera, which has limited its scientific planting and promotion. Consequently, GWu-2, a widely

cultivated variety in the Gan Wu Camellia oleifera strain, was selected as the research object to

study the drought tolerance and drought resistance mechanism.

The growth indicators are as follows: root length, number of lateral roots, root dry weight,

above-ground dry weight, root-crown ratio, number of dead leaves, root-plant ratio, dry mat-

ter accumulation value, leaf thickness, upper and lower epidermis thickness, palisade tissue
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thickness, sponge tissue thickness, relative water content of leaves, stomatal length, stomatal

width, and stomatal opening degree. Physiological indicators in leaves include soluble sugar

(SS), soluble protein (SP), proline (PRO), superoxide dismutase (SOD), malondialdehyde

(MDA), abscisic acid (ABA), indole acetic acid (IAA), zeatin nucleoside (ZR), Gibberellin

(GA3), and methyl jasmonate (MeJA).

Materials and methods

Research area

The study area is located in the experimental site of Jiangxi Academy of Forestry, Nanchang

City, Jiangxi Province, China, 12 km from the urban area, at 28˚410N, 115˚480E, 40 m above

sea level, belonging to the mid-subtropical humid monsoon climate. The annual average tem-

perature is 17.30˚C, the monthly average temperature in July is 29.10˚C, and the extremely

high temperature is 40.60˚C. The average annual rainfall is 1713.5 mm, and the annual average

sunshine is 1778.6 h, greater than l0˚C, and the accumulated temperature is 4480–4590˚C.

Materials

Camellia oleifera seedlings were 2-year-old cutting seedlings, and the cuttings were from the

Germplasm Genebank of the Jiangxi Academy of Forestry. At the beginning of January 2016,

200 neat and disease-free Gwu2 Camellia oleifera seedlings were selected as test materials and

planted in flower pots for normal cultivation in the open air for approximately 5 months. On

the evening of July 7, 2016, all tested seedlings and the control group were water-drenched,

and the water control test began on July 8. The diameter and height of the culture pot were

24.00 and 20.00 cm, respectively, and the potting soil was prepared by mixing red loam soil

with chaff ash in a volume ratio of 5:1 (to improve the soil characteristics to be more conducive

to the growth of Camellia oleifera seedlings). Each Camellia oleifera variety was treated 4

times, each treatment was repeated 3 times, and 12 Camellia oleifera seedlings were tested each

time. At the same time, 4 pots of oil-free tea seedlings were set for each water gradient to deter-

mine the evaporation water consumption of the control groups.

Moisture control

The preliminary experiment results of drought resistance of Camellia oleifera showed that

when the soil water content was less than 20%, the leaves were slightly curled; when the soil

water content was approximately 10%, the leaves appeared to be wilting, the growth of young

leaves was affected, and some old leaves were shed; when the soil volume water content was

less than 6%, the leaves of Camellia oleifera permanently wilted and fell off. Consequently, four

moisture gradients were set, including a control group (with adequate water supply, W1), mild

drought stress (W2), moderate drought stress (W3), and severe drought stress (W4).

On the evening of July 7, 2016, all experimental seedlings and the control group were per-

meated with water, and the water control test began on July 8. At approximately 8:00 am on

July 10, 2016, the soil volumetric water content was measured with a soil hygrometer (a high-

precision soil moisture measuring instrument, IMKO, Germany). If the soil volume water con-

tent was in the range of 20% to 36%, the current weight of the potted seedlings was recorded; if

it was higher than 36%, the test was postponed until its water content was within the specified

range; if it was lower than 20%, water was added as appropriate until the water content was

within the specified range. The weight of the seedlings and their control group when the water

content reached the prescribed water content was recorded as a basis for replenishing the
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water lost by transpiration every night from 20:00 to 22:00. The water contents of all the soil

groups and the control group with sufficient water reached the set range on July 11.

After July 8, the drought stress group and the control group were no longer replenished

with water. According to the water content measurement method and water control method

of the normal water supply group, the water contents of the drought stress group and the cor-

responding control group were controlled according to mild, moderate and severe drought

stress (Table 2). The soil moisture contents of each drought treatment group and its control

group reached their specified soil moisture content ranges on July 17, July 19, and July 23,

respectively. After reaching the experimental moisture setting, all groups were immediately

sealed with plastic wrap to prevent evaporation of soil moisture. Water was added daily to

keep the soil water contents of the experimental and control groups within the range set by the

experiment. The measurement of various indicators officially started on July 26, and the test

end time was September 26.

The soil properties of potted plants are shown in Table 1, and moisture control information

is shown in Table 2.

Methods

Determination of plant height and ground diameter. The plant height and ground

diameter of all tested seedlings were measured at the beginning of the test (July 7, 2016) and at

the end of the test (September 26, 2016). Plant height was measured with a steel tape measure,

and ground diameter was measured with a Vernier caliper.

Determination of biomass

Measurement of biomass was carried out at the beginning (July 7, 2016) and end of the test

(September 26, 2016). At the beginning of the drought stress experiment, 4 to 5 seedlings with

similar growth characteristics were selected to determine the dry weight of the whole plant.

The roots, stems, and leaves of Camellia oleifera were separated at the end of the test, the total

root length was measured with a tape measure to calculate the sum, and the total number of

Table 2. Soil water gradients of all treatments).

Moisture control Field water holding

capacity (%)

Soil mass water

(%)

Soil volumetric water

(%)

Average soil water (volume water

content %)

Field water holding

capacity (%)

W1 (adequate water

supply)

39.00–73.00 14.00–26.00 20.00–36.00 25.26 ± 1.63 49.64 ± 3.20

W2 (mild drought

stress)

23.00–37.00 8.00–13.00 12.00–18.00 14.35 ± 1.00 28.20 ± 1.96

W3 (moderate drought

stress)

17.00–23.00 6.00–8.00 8.00–12.00 9.92 ± 0.40 19.49 ± 0.79

W4 (severe drought

stress)

12.00–17.00 4.00–6.00 5.00–8.00 7.17 ± 0.20 14.09 ± 0.40

Average soil volume water content and field water holding capacity were obtained from several random samples in the corresponding process (n = 5).

https://doi.org/10.1371/journal.pone.0235795.t002

Table 1. Physical properties and nutritional characteristics of experimental soil (g�kg–1).

Bulk density

(g�cm3)

Organic matter

(g�kg–1)

pH Total nitrogen

g�kg–1)

Total phosphorus

(g�kg–1)

Total potassium

(g�kg–1)

Available nitrogen

(mg�kg–1)

Available phosphorus

(mg�kg–1)

Available potassium

(mg�kg–1)

1.42 39.20 3.95 1.19 0.57 17.30 121.00 28.40 193.00

https://doi.org/10.1371/journal.pone.0235795.t001
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lateral roots was counted. Root fresh weight, root dry weight, leaf dry weight, and stem dry

weight were determined by balance.

Determination of the number of dead leaves. At the beginning of the drought stress test,

3 Camellia oleifera seedlings of each treatment group (including the control group) were

selected to determine the number of dead leaves. The number of dead leaves from each

selected Camellia oleifera seedling that naturally fell from the beginning to the middle of the

test was recorded.

Other indicators were calculated as follows:

Height-diameter ratio = plant height/ground diameter

Root-crown ratio = root dry weight/dry weight of above-ground part

Root-plant ratio = root dry weight/whole plant dry weight

Dry matter accumulation = biomass at the end of the test–initial biomass

Determination of structural characteristics of Camellia oleifera leaves. The leaf tissue

was observed by electron microscopy. In the middle of the experiment, 3 pieces of mature

leaves of Camellia oleifera shoots were collected, and the upper and lower parts of the leaves

were sampled on the left and right sides. The area was approximately 2 mm × 0.5 mm. Leaf

samples were immediately placed in a 2.5% glutaraldehyde solution with 0.1 mol�L–1 phos-

phate buffer (pH = 7.2), transferred to cleaned medical vials, and allowed to sink by vacuum

evacuation. These were stored in a refrigerator at 4˚C until use.

Electron microscopy of the leaf was processed according to the method of Ren [23]. The

samples were washed several times in phosphate buffer and then dehydrated with different

concentrations of ethanol, then dehydrated twice with 100% ethanol, and then placed in isoa-

myl acetate twice for 15 min each. After the treatment was completed, samples were placed in

a critical point dryer for drying and conductive treatment. Finally, samples were observed

using a scanning electron microscope to obtain data on thickness of leaf, thickness of upper

epidermis, thickness of lower epidermis, palisade tissue thickness, and sponge tissue thickness.

The length and width of the stomata were measured and calculated according to the scan-

ning electron micrographs of the lower epidermis of the leaves.

Stomatal opening degree ¼ Stomatal opening length � Stomatal opening width � p=4

Determination of osmotic adjustment and antioxidant substances in Camellia oleifera
leaves. In the middle of the trial (August 25, 2016), three samples were selected for each treat-

ment. A total of 10–15 mature leaves were collected from the directions of the east, west,

south, and north of the sample and mixed, and the mixed samples were then stored in an ultra-

low temperature refrigerator. The malondialdehyde (MDA), soluble sugar (SS), proline

(PRO), soluble protein (SP) contents and superoxide dismutase (SOD) activity in Camellia
oleifera leaves was measured by the thiobarbituric acid method, anthrone colorimetric method,

ninhydrin colorimetry, Maslan blue colorimetry, and nitrogen blue tetrazolium (NBT)

method, respectively. Each experiment was repeated 3 times, and the averages were taken as

the result.

Determination of endogenous hormones in Camellia oleifera leaves. The contents of

abscisic acid (ABA), indole acetic acid (IAA), zeatin nucleoside (ZR), gibberellin (GA3), and

methyl jasmonate (MeJA) in leaves were determined by enzyme-linked immunosorbent assay

(ELISA) according to Wu [24]. Each test sample of 0.5 g of oil tea was weighed, an appropriate
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amount of the sample extract was added, and then the sample was ground into a homogenate

under an ice bath, then transferred to a 10-ml centrifuge tube and placed in a refrigerator at

4˚C for 4 hours. After freezing, it was centrifuged for 15 minutes, and the supernatant was

taken. An appropriate amount of the extract was added to the precipitate and then returned to

the refrigerator at 4˚C for 1 hour. After centrifugation, the supernatant was combined, and the

volume was recorded. The supernatant was passed through a C-18 solid phase extraction col-

umn and then transferred to a 5-mL centrifuge tube and blown dry with nitrogen. Finally, the

methanol in the extract was removed, and the sample was diluted to the appropriate volume.

Data processing. All experimental results were averaged after removing the outliers. Sta-

tistical analysis and analysis of variance were performed with SPSS 22. ANOVA was used to

analyze the differences between indicators under different water gradients (using SPSS 22).

The graph was created using OriginLab 2016. The table was created using Word 2016.

Results

Effect of drought stress on growth characteristics of Camellia oleifera
The total root length, above-ground dry weight and dry matter accumulation of GWu-2 were

significantly decreased with the increased drought stress (Fig 1A and 1C; p<0.05). Compared

with W1 treatment, the total root length decreased by 11.2%, 15.4%, and 20.0%, respectively.

However, root dry weight and the number of lateral roots were not significantly affected by

drought stress. Fig 1B and 1D show that the root-crown ratio, root-plant ratio, average plant

height and average ground diameter were not significantly changed with the increased drought

stress (p<0.05).

Fig 2 illustrates that severe drought stress had a significant effect on the number of dead

leaves and the leaf relative water content of GWu-2 (p<0.05). With the increased drought

stress, compared with W1 treatment, the number of dead leaves increased 476.7%. Moreover,

the relative water content of leaves decreased with increasing drought stress and decreased sig-

nificantly under W3 and W4 treatments (p<0.05).

Correlation analysis between Camellia oleifera growth index and soil water content.

Table 3 shows that the growth factors plant height, plant height growth, ground diameter

growth, height-diameter ratio, total root length, root dry weight, above-ground dry weight, ter-

minal biomass, and dry matter accumulation of GWu-2 had positive correlations with soil

water content, and the numbers of lateral roots, root-crown ratio, root-to-plant ratio, and

number of dead leaves were negatively correlated with soil water content. In addition, there

were significant positive correlations between soil water content and plant height growth,

height-diameter ratio, total root length, and root dry weight.

Effects of drought stress on the stomatal characteristics of Camellia oleifera leaves. Fig

3 indicates that the stomatal opening degree gradually decreased as the degree of drought

increased. Under severe stress, the stomata of GWu-2 were damaged and subsided, and the epider-

mal cells became dried. However, Fig 4 illustrates that drought stress does not have a significant

correlation with the stomatal opening degree, stomatal length and width of GWu-2 (p<0.05).

The stomatal characteristics of GWu-2 under different water gradients (magnification of

500× and 2000×) are shown in Fig 3. The stomatal change trend under different water gradi-

ents is shown in Fig 4.

Correlation analysis between stomatal characteristic values of Camellia oleifera leaves

and soil water content. Table 4 illustrates that soil water content was significantly positively

correlated with stomatal opening degree of GWu-2 and negatively correlated with stomatal

width. The correlation coefficient between soil water content and stomatal opening degree was
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the highest, at 0.93. The correlation coefficient between soil water content and stomata length

was the lowest, at 0.06.

Fig 1. Growth of roots and biomass of Camellia oleifera under drought stress. W1: adequate water supply; W2: mild drought

stress; W3: moderate drought stress; W4: severe drought stress. Each indicator value is the average value (Mean±SEs, n = 3). For

the same type of observation indicators, different letters indicate statistically significant differences (p <0.05), same as below.

https://doi.org/10.1371/journal.pone.0235795.g001

Fig 2. Effects of different degrees of drought stress on leaf characteristics of Camellia oleifera. W1: adequate water

supply; W2: mild drought stress; W3: moderate drought stress; W4: severe drought stress. Each indicator value is an

average value (Mean±SEs, n = 3).

https://doi.org/10.1371/journal.pone.0235795.g002
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Effects of drought stress on the leaf structure of Camellia oleifera
Electron micrographs of the anatomical structure of GWu-2 under different water gradients

(magnified 200× or 160×) are shown in Fig 5. The changes in leaf structure under different

water gradients are shown in Fig 6.

Fig 5 indicates that drought stress had a certain effect on the arrangement and integrity of

cells in Camellia oleifera leaves, and the leaves showed a tendency to decrease in thickness. Fig

6 illustrates that drought stress had significant effects on leaf, sponge tissue, palisade tissue,

and lower and upper epidermal thickness of GWu-2 leaves (p<0.05), and with increased

drought stress, these indicators showed decreasing trends and had the largest decreases under

W4 treatment. Compared to W1 treatment, the leaf thicknesses of W2, W3, and W4 treat-

ments were reduced by 11.5%, 21.5%, and 31.4%, respectively; the lower epidermis thicknesses

were decreased by 11.4%, 21.6%, and 27.2%, respectively; the spongy tissue thicknesses were

decreased by 6.6%, 24.5%, and 34.9%, respectively; and the palisade tissue thicknesses were

decreased by 18.1%, 19.5%, and 29.8%, respectively.

Correlation analysis between Camellia oleifera leaf anatomical feature values and soil

water content. Table 5 indicates that there were positive correlations between the anatomical

characteristics of GWu-2 leaves and soil water content. Soil water content was significantly

positively correlated with leaf, lower epidermis, and sponge tissue thickness. The correlation

coefficient between soil water content and epidermis thickness was the largest, at 0.99. The

correlation coefficient with upper epidermis thickness was the lowest, at 0.81.

Effects of drought stress on osmotic adjustment substances in Camellia
oleifera leaves

Fig 7 illustrates that the SS, SP, PRO, and MDA contents and SOD activity of leaves increased

significantly with the increased drought stress. Among them, SS and SP contents and SOD

activity were significantly increased under each water gradient (p<0.05), while under W4

treatment, there were no significant increases in PRO and MDA contents in GWu-2 leaves

(compared with W3 treatment, p<0.05). With increased drought stress, compared with W1

treatment, the SS contents of W2, W3, and W4 treatments increased significantly, by 32.02%,

52.69%, and 106.05%, respectively; the SP contents increased by 47.45%, 59.20%, and 80.82%,

respectively; and SOD activity increased by 67.86%, 107.14%, and 172.29%, respectively. The

leaf PRO and MDA content changes increased to the maximum under W4 treatment, by

12.55% and 13.09%, respectively.

Table 6 indicates that there were high positive correlations between SS, SP, SOD, MDA,

and PRO (greater than or equal to 0.9). The relative water content of the leaves was positively

correlated with soil water content and negatively correlated with other indicators. The

Table 3. Correlation analysis results of growth indices of Camellia oleifera and soil water contents under different soil water gradients.

Index pH GD H-D ratio PHG NTR NLR RDW ADW R-C ratio R-P ratio Biomass DMA NDL

Water gradient 0.94 0.55 0.99�� 0.99�� 0.99�� –0.91 0.97� 0.94 –0.8 –0.81 0.95 0.85 –0.65

PH = plant height; GD = ground diameter; H-D ratio = height-diameter ratio; PHG = plant height growth; NTR = number of total roots; NLR = number of lateral roots;

RDW = root dry weight; ADW = above-ground dry weight; R-C ratio = root-crown ratio; R-P ratio = root-plant ratio; DMA = dry matter accumulation; NDL = number

of dead leaves.

�Correlation is significant at the 0.05 level (2-tailed).

��Correlation is significant at the 0.01 level(2-tailed).

https://doi.org/10.1371/journal.pone.0235795.t003
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correlation between relative water content of the soil and other indicators was the same as the

relative water content of the leaves.

Effects of drought stress on endogenous hormones in Camellia oleifera
leaves

Fig 8 illustrates that the ABA, IAA, ZR, GA3, and MeJA contents in GWu-2 leaves were signifi-

cantly affected by drought stress. With increased drought stress, the ABA and IAA contents in

GWu-2 leaves increased significantly (p<0.05). Compared with W1 treatment, under W2,

W3, and W4 treatments, ABA contents increased by 35.21%, 40.06%, and 71.04%, respectively,

and IAA contents increased by 62.35%, 40.45%, and 67.34%, respectively. GA3 content under

W3 treatment reached the largest value (compared with W1 treatment), increasing by 35.27%.

MeJA content under W2 treatment was the largest with the change of W1 treatment, increas-

ing by 87.88%. However, ZR and GA3 contents significantly decreased under W3 treatments

(compare to W4 treatment, p<0.05).

Table 7 indicates that SOD activity, SS content, and SP content were significantly positively

correlated with ABA content, while relative water content, dry matter accumulation, SS con-

tent, SP content, and SOD activity of leaves were significantly negatively correlated with ABA

content. Likewise, leaf relative water content and dry matter accumulation value were signifi-

cantly positively correlated with ZR/GA3, while root-crown ratio, SS, SP and SOD activity

were significantly negatively correlated with ZR/GA3.

Discussion

Effect of drought stress on the growth of Camellia oleifera
Plant roots play an important role in response to drought stress. Under drought stress condi-

tions, plant roots can quickly adjust to cope with water shortage [25]. In this experiment, as

the degree of drought increased, especially under W4 treatment, the dry matter accumulation

and total root length of GWu-2 were significantly decreased (Fig 1A and 1C), indicating that

under drought stress, the growth of both above-ground and underground parts of GWu-2 was

Fig 3. Electron microscope images of stomatal characteristics of Camellia oleifera leaves under different water

gradients.

https://doi.org/10.1371/journal.pone.0235795.g003

Fig 4. Trends of stomatal characteristic values of Camellia oleifera leaves under different water gradients. W1:

adequate water supply; W2: mild drought stress; W3: moderate drought stress; W4: severe drought stress. Each

indicator value is an average value (Mean±SEs, n = 3).

https://doi.org/10.1371/journal.pone.0235795.g004
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affected. However, the number of lateral roots and the root-crown and root-plant ratios of

GWu-2 did not decrease significantly (Fig 1B and 1C), indicating that under drought stress,

although the growth of GWu-2 was restrained, compared with the aerial parts, Camellia olei-
fera gives priority to the normal growth of the root system to maintain the contact area with

soil and to obtain the necessary water [12], which is consistent with other studies [26]. Correla-

tion analysis (Table 3) showed that the number of lateral roots was negatively correlated with

soil water content, and the correlation coefficient reached –0.91, further confirming this

conclusion.

The external morphological characteristics of the leaves can directly reflect the drought

stress response of the plant, and the external morphological characteristics of leaves are signifi-

cantly related to the degree of water deficit [11]. In the present study, the increased degree of

drought had a significant influence on the normal physiology and growth of leaves, and the

leaf thickness and relative water content of GWu-2 were significantly decreased (Figs 2B and

6). Moreover, under W4 treatment, the number of dead leaves significantly increased (Fig 2A),

and the damage to the GWu-2 leaf structure became more serious as the degree of drought

increased (Fig 5). These responses to drought stress indicate that the growth of GWu-2 leaves

was greatly affected by drought stress. In addition, ABA content will cause leaf detachment

and accelerate senescence [27]; thus, the increasing of ABA content (Fig 8) may be one of the

reasons for the increased dead leaves of GWU-2 under W4 treatment.

Effect of drought stress on Camellia oleifera stomata

As important organs for gas exchange in plants, the stomata are mainly distributed on the

lower epidermis of leaves, which is the main channel for water vapor loss and inflow and out-

flow of CO2, and stomata may close due to the effects of drought [28]. As Fig 3 shows, with

increased drought stress, the stomatal opening degree decreased; under W4 treatment, the sto-

mata of GWu-2 were damaged and subsided, and the epidermal cells became dried, indicating

that drought has a adverse effect on the stomata of GWu-2. However, drought stress did not

have a significant influence on the stomatal length and width of GWu-2 (Fig 4, p<0.05), indi-

cating that GWu-2 may reduce water transpiration by adjusting the stomatal opening degree

under drought stress [15]. Correlation analysis (Table 4) showed that the correlation coeffi-

cient between soil water content and stomatal opening degree was significantly positive, which

further confirmed this conclusion.

Effect of drought stress on Camellia oleifera leaf osmotic adjustment

substances, SOD and MDA

SS, PRO and SP are important osmotic adjustment substances in plants. Under drought stress,

the contents of these osmotic adjustment substances in plants usually increase, thus maintain-

ing the osmotic pressure and normal metabolism [29]. In this experiment, with increased

drought stress, the SS, PRO and SP contents of GWU-2 leaves increased significantly (Fig 7A

Table 4. Correlation analysis results of Camellia oleifera leaf stomatal characteristic indices and soil water content

under different soil water gradients.

Index Stomatal opening degree Stomata length Stomata width

Soil water 0.93� 0.06 –0.37

�Correlation is significant at the 0.05 level (2-tailed).

��Correlation is significant at the 0.01 level(2-tailed).

https://doi.org/10.1371/journal.pone.0235795.t004
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and 7D), consistent with the reports about rice [30] and winter wheat [31]. The changes in SS,

PRO, and SP content in GWu-2 leaves verified that regulation of the content of osmotic sub-

stances is one of the physiological mechanisms of Camellia oleifera adaptation to drought

stress. However, the responses of different kinds of osmotic adjustment substances to drought

stress may be different. Some scholars have pointed out that fructose and sucrose are more

effective in drought resistance than PRO [32]. In this study, the contents of SS and SP under

W4 drought stress were significantly increased relative to W3, while PRO content was not

increased, indicating that SS, PRO, and SP may have different contributions to the drought

resistance of Camellia oleifera.

SOD is a plant antioxidant enzyme [33], and MDA is one of the most important products

of membrane lipid peroxidation. The changes of their content under drought stress can reflect

Fig 5. Electron micrographs of characteristics of Camellia oleifera leaves under different water gradients.

https://doi.org/10.1371/journal.pone.0235795.g005
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the level of peroxidation of lipid membranes and the degree of damage to cell membranes as

well as the drought resistance of plants. In this experiment, with increased drought stress, the

SOD activity and MDA content significantly increased (Fig 7B and 7C), indicating that GWu-

2 resists drought stress by increasing leaf MDA content and SOD activity, consistent with

other research findings [34,35]. The negative correlations between soil water content and SOD

activity and MDA content of GWu-2 further confirmed this conclusion (Table 6).

Table 6 indicates that SOD activity and the SS, SP, PRO, and MDA contents of the leaves

were positively correlated and were significantly negatively correlated with the relative water

content of the leaves, indicating that the osmotic adjustment and antioxidant effects of GWu-2

in response to drought stress were synergistic, consistent with previous studies [36].

Effect of drought stress on Camellia oleifera leaf endogenous hormones

Changes in the contents of various endogenous hormones in plants have an important impact

on plant growth [37, 38]. Among them, ABA and MeJA are hormones that are sensitive to

stress in plants. Their effective accumulation in drought stress environments plays an impor-

tant role in regulating plant growth and stomatal opening or closing and enhancing drought

tolerance [39–41]. In this experiment, leaf ABA, IAA and MeJA contents were significantly

increased with the increase of drought stress and were negatively correlated with the stomatal

Fig 6. Thickness of leaf composition under different water gradients. W1: adequate water supply; W2: mild drought

stress; W3: moderate drought stress; W4: severe drought stress. Each indicator value is an average value (Mean±SEs,

n = 3).

https://doi.org/10.1371/journal.pone.0235795.g006

Table 5. Correlation analysis between anatomical characteristics of Camellia oleifera leaves and soil water content under different water gradients.

Index Leaf thickness Upper epidermis thickness Lower epidermis thickness Palisade tissue thickness Spongy tissue thickness Leaf relative water

Soil water 0.97� 0.81 0.99� 0.92 0.97� 0.95

�Correlation is significant at the 0.05 level (2-tailed)

��Correlation is significant at the 0.01 level(2-tailed).

https://doi.org/10.1371/journal.pone.0235795.t005

PLOS ONE Drought resistance of Camellia oleifera under drought stress

PLOS ONE | https://doi.org/10.1371/journal.pone.0235795 July 9, 2020 13 / 19

https://doi.org/10.1371/journal.pone.0235795.g006
https://doi.org/10.1371/journal.pone.0235795.t005
https://doi.org/10.1371/journal.pone.0235795


opening degree, on the contrary, ZR/IAA and ZR/GA3 were positively correlated with the sto-

matal opening degree (Fig 8 and Table 7), indicating that Camellia oleifera by controlling

ABA, IAA, and MeJA content as well as the ratio of hormones to control stomatal opening,

consistent with previous studies [42,43,44].

Fig 7. Osmotic adjustment substance content and superoxide dismutase (SOD) activity of Camellia oleifera leaves

under different water gradients. W1: adequate water supply; W2: mild drought stress; W3: moderate drought stress;

W4: severe drought stress; SS: soluble sugar; SP: soluble protein; MDA: malondialdehyde; PRO: proline; ABA: abscisic

acid. Each indicator value is an average value (Mean±SEs, n = 3).

https://doi.org/10.1371/journal.pone.0235795.g007

Table 6. Correlation analysis results of osmotic adjustment substance in Camellia oleifera leaves under different water gradients.

Index Soil water content SS SP SOD MDA Relative water of leaves PRO

Soil water content 1.00

SS –0.91 1.00

SP –0.99� 0.94 1.00

SOD –0.96� 0.99� 0.98� 1.00

MDA –0.96� 0.96� 0.95 0.98� 1.00

Leaf relative water 0.95 –0.98� –0.95 –0.99� –0.99�� 1.00

PRO –0.99�� 0.90 0.98� 0.96� 0.97� –0.95� 1.00

SS = soluble sugar; SP = soluble protein; SOD = superoxide dismutase; MDA = malondialdehyde; PRO = proline.

�Correlation is significant at the 0.05 level (2-tailed).

��Correlation is significant at the 0.01 level(2-tailed).

https://doi.org/10.1371/journal.pone.0235795.t006
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IAA, ZR, and GA3 are important hormones for plant growth [45]. Additionally, changes in

the contents of endogenous hormones in plants have important effects on plant growth and

are affected by the interactions of multiple hormones [46]. In this study, we observed that the

IAA, ZR, and GA3 contents in GWu-2 leaves increased significantly with increased drought

stress, consistent with the reports by Ding and Chen [47,48]. However, compared with W3

treatment, ZR and GA3 contents decreased under W4 treatment, indicating that different hor-

mones respond to drought differently and may play a different role in regulating growth and

drought resistance [49]. Although there were no significant correlations between physiological

Fig 8. Changes in endogenous hormone content in Camellia oleifera leaves under different water gradients. Each

indicator value is an average value (Mean±SEs, n = 3). ABA = abscisic acid; IAA = indole acetic acid; MeJA = methyl

jasmonate; ZR = zeatin nucleoside; GA3 = gibberellin.

https://doi.org/10.1371/journal.pone.0235795.g008

Table 7. Correlation analysis results between hormone in Camellia oleifera leaves and growth index.

Index ABA IAA MeJA ZR GA3 ZR/IAA ZR/GA3

Leaf relative water –0.95� –0.72 –0.44 0.62 0.16 0.82 0.96�

Root-crown ratio 0.92 0.68 0.29 –0.86 –0.50 -0.89 -0.96�

Dry matter accumulation value –0.95� –0.73 –0.36 0.83 0.44 0.91 0.98�

Plant height growth value –0.93 –0.89 –0.77 0.35 –0.16 0.80 0.90

Ground diameter growth value –0.82 –0.47 –0.14 0.64 0.25 0.65 0.87

Number of dead leaves 0.82 0.55 0.12 –0.95 –0.68 -0.84 -0.88

Stomatal opening degree –0.92 –0.68 –0.43 0.53 0.06 0.75 0.94

SS 0.97� 0.77 0.44 –0.75 –0.33 -0.91 -0.99��

SP 0.98� 0.90 0.70 –0.50 –0.01 -0.88 -0.96�

SOD 0.98� 0.81 0.54 –0.64 –0.18 -0.89 -0.99��

PRO 0.94 0.81 0.65 –0.39 0.12 -0.77 -0.92

ABA = abscisic acid; IAA = indole acetic acid; MeJA = methyl jasmonate; ZR = zeatin nucleoside; GA3 = gibberellin.

�Correlation is significant at the 0.05 level (2-tailed).

��Correlation is significant at the 0.01 level (2-tailed).

https://doi.org/10.1371/journal.pone.0235795.t007
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indicators and IAA, ZR and GA3 contents, significant correlations between ABA, ZR/GA3

ratio and physiological indicators were observed (Table 7), indicating that the drought resis-

tance of Camellia oleifera may be regulated by hormone secretion and the proportions of dif-

ferent hormones [48].

Conclusions

In this study, Camellia oleifera GWu-2 was used as the research subject, and a total of four soil

water gradients were set up, including one normal water supply group and three levels of

water shortage control groups. The growth characteristics, permeating substance content in

leaf, leaf enzyme activity, and leaf hormone contents under different water gradients were

observed. The observation results were analyzed, and the response mechanism of Camellia
oleifera GWu-2 to drought stress was discussed. The main results are as follows:

We found that, with increased drought stress, the normal growth of GWu-2 was affected,

the dry matter accumulation of GWu-2 was significantly decreased and was positively corre-

lated with soil water content, and the root growth was not significantly affected. Likewise, the

leaf thickness and relative water content of GWu-2 leaves decreased, and the number of dead

leaves increased significantly under severe drought stress. The stomata were also affected by

drought, as the stomatal opening degree decreased as the degree of drought increased, and as

the stomata were damaged and subsided, and the epidermal cells became dried under severe

stress.

SOD activity and SS, SP, PRO, and MDA contents in GWu-2 leaves increased significantly

and were negatively correlated with soil water content. ABA, MeJA, GA3, ZR and IAA con-

tents in GWu-2 leaves increased under drought stress, but different hormones respond differ-

ently to drought stress and play different roles in the growth regulation and drought resistance

of GWu-2. We concluded that the drought-resistance mechanism of GWu-2 was controlled by

maintaining root growth to obtain the necessary water, increasing the content of osmotic sub-

stances of leaves to maintain water holding capacity, reducing the transpiration of water by

closing the stomata and reducing the damage caused by drought by increasing the activity of

SOD. These changes are largely controlled by hormone secretion.
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