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Abstract: Nanostructured materials synthesized by the hydrothermal and thermal reduction process
were tested to detect the dimethyl methylphosphonate (DMMP) as a simulant for chemical warfare
agents. Manganese oxide nitrogen-doped graphene oxide with polypyrrole (MnO2@NGO/PPy)
exhibited the sensitivity of 51 Hz for 25 ppm of DMMP and showed the selectivity of 1.26 Hz/ppm.
Nitrogen-doped multi-walled carbon nanotube (N-MWCNT) demonstrated good linearity with a
correlation coefficient of 0.997. A comparison between a surface acoustic wave and quartz crystal mi-
crobalance sensor exhibited more than 100-times higher sensitivity of SAW sensor than QCM sensor.

Keywords: chemical warfare agent (CWAs); dimethyl methylphosphonate (DMMP); volatile com-
pounds (VOCs); quartz crystal microbalance (QCM); surface acoustic wave (SAW)

1. Introduction

Lethal CWAs even at a lower dosage should be rapidly detected because of their
toxic nature, rapid action, and irreversibility [1,2]. For instance, sarin (GB) is a colorless
and odorless compound containing a highly toxic phosphonate structure that acts as an
inhibitor of the enzyme acetylcholinesterase and distorts neuromuscular transmission [3].
The traditional detecting methods—gas chromatography, liquid chromatography, ion mobil-
ity spectroscopy, atomic emission detection, Fourier transform infrared (FT-IR), and Raman
spectroscopy—possess high sensitivity, reliability, and precision, however they require ex-
pensive equipment, highly skilled operators, as well as time-consuming analytical processes
for field applications. In order to satisfy on-site monitoring of CWAs, devices with a low
power consumption and a low-cost with portability are highly preferable [4,5]. Several
hand-held type sensors have been suggested and studied which are, SAW sensor [6,7],
QCM sensor [8,9], chemi-resistive type sensor [10,11], and cantilever-based membrane sen-
sor [12,13]. Based on these sensors, to detect the target CWA molecules, sensing materials
are applied. Due to the regulation of the original agents, nontoxic and organophosphorus
DMMP is used as a simulant for CWAs, such as the nerve agents of G-series, sarin, soman
(GD), and paraoxon [14] as shown in Figure 1.

QCM sensors are widely used in various fields due to their compatibility with different
operating conditions in the gaseous/liquid medium. This fashion has been coordinated
by the parallel development in tailored electronic interfacing systems for QCM based
sensors. Several QCM electronic measurements systems exist in the literature, changing in
their level of complexity, cost, accuracy, and portability. These interfacing circuits aim to
precisely measure physical variations that are related to relevant physical quantities.

Abad et al. reported that the piezoelectric transducer uses QCM to sense the signal pro-
duced by enzymes [15]. The enzyme was anchored on the face of the quartz crystal. When
the interaction between the substrate and enzyme occurred, it generated a change in the
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resonant frequency of the crystal; thus, the mass or the surface property of the crystal was
verified in real time. Nivens et al. reported the effect produced by the adhesion of microbial
deposits to a crystal vibration frequency deposited on QCM crystal’s face [16]. The process
is mainly used in food and beverage industries by employing biofilms. There are many
commercial versions of the QCM device widely used to detect the initial adhesion of bacte-
ria to stainless steel surfaces. This technique has proven to be efficient for the identification
of bacteria adhesion. However, QCM sensors suffers from two main disadvantages: 1. The
distribution of sensitivity profile and displacement of conventional QCM are influenced by
the electrode structure which results in non-uniform sensitivity, and finally, degradation of
its performance [17], and 2. Low resonant frequency inhibits the performance of the QCM
as the conventional QCM are designed to operate at 5–10 MHz [18].
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To detect DMMP as a simulant, several promising candidates such as polyhedral
oligomeric silsesquioxane (POSS) [8] and thiourea (TU) [19] showed good sensitivity.
Carbon nanotubes with tubular nanostructures, since their discovery by Iijima in 1991,
have been studied extensively due to their excellent performance for many applications
such as gas sensing [20,21], gas storage, energy conversion, catalysis, optoelectronics, and
drug release. N-MWCNTs have been demonstrated by successful use for oxygen reduction
reactions as well as the ability of similar carbon–nitrogen structures to catalytically split
water in the production of hydrogen [22,23]. Another approach using graphene oxide
as a sensitive layer in the detection of DMMP was reported [24]. The incorporation of
copper phthalocyanine in conducting polypyrrole (PPy) electrochemically was suggested
to detect DMMP, nerve agents, and VOCs [25]. It was reported that the response behavior
of single-walled carbon nanotube (SWNT) with polyaniline exhibited a sharp response,
good reproducibility, and linearity at room temperature concentration [26]. In the gas phase
detection, the decomposition of DMMP over manganese oxide catalysts in the presence of
light was observed as a strong adsorption with physisorption and chemisorption [27].

This paper presents the experimental study of various nanostructured composite
materials for-sensitivity, linearity, selectivity, reproducibility, and response/recovery times
to detect DMMP, VOCs, and water. For comparison, SAW and QCM sensors were tested
under same conditions. The effect of relative humidity on the sensitivity of the QCM sensor
was also investigated.

2. Materials and Methods
2.1. Fabrication of Composite Sensing Materials

Based on our early approach for sensing materials for CWAs, hybrid nanostructured
composite materials were synthesized by the hydrothermal and thermal reduction process.
The efficient hydrothermal chemical process was adopted in order to prepare nitrogen-
doped graphene oxide (NGO) and facile synthesis of NGO with MnO2 decorated with
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conducting polymer, pyrrole [28]. N-MWCNT and N-MWCNT@NiO were synthesized by
the thermal reduction chemical reaction followed by calcination at high temperature as
reported in our previous study [29]. The N-MWCNT decorated by CuO which resembles
the nanosheet shape structure was prepared by a hydrothermal process in the presence of
urea [30]. Figure 2 represents the synthesis processes and chemical structure of N-MWCNT,
N-MWCNT@NiO, and MnO2@NGO/PPy.
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Figure 2. Synthesis processes and structure of (a) N-MWCNT, (b) N-MWCNT@NiO, and (c) MnO2@NGO/PPy.

The synthesized composite materials were mixed with isopropyl alcohol (IPA) in the
ratio of 10 mg:1 mL. The mixture was ultrasonicated for 3 h followed by 15 µL drop coating
on the front surface of the QCM sensor. The coated QCM sensors were dried in an oven
for one hour at 60 ◦C. The sensors were cooled at room temperature and used in the QCM
oscillator without further processing. The thin film sensing layer on the QCM was formed
by the drop coating process as shown in Figure 3. A 1-inch diameter size thin membrane
type QCM sensor (Stanford Research System, SRS) has a circular Cr/Au electrode on both
sides, operating at a resonant frequency of 5 MHz [31].

2.2. Characterization Apparatus and Selectivity Conditions

VOCs—ethanol, toluene, n-hexane, and methanol—and water were tested because
these compounds can act as potential interferences during the detection of DMMP on
earth. VOCs were achieved respectively; ethanol (95%) from Merck, Darmstadt, Germany,
toluene (99.5%) from Duksan, Ansan, Korea, n-hexane (95%) from Avantor, Radnor, PE,
USA, methanol (99.80%) and Isopropyl alcohol (IPA) (99.5%) from Daejung, Busan, Korea.

DMMP (97%, Sigma Aldrich, St. Louis, MO, USA) is a colorless liquid having a
molecular weight of 124.08 g/mol with a density of 1.145 g/mL at 25 ◦C. It is reported that
a boiling and melting point of DMMP at 181 ◦C and −50 ◦C, respectively.

The gas feeding system was designed to test the different concentrations of the sat-
urated vapors of DMMP and VOCs detection with a QCM sensor, which is illustrated in
Figure 4. The system consists of two mass flow controllers (MFCs, KOFLOC, Nagoya,
Japan) connected to one-way valves, steel pipes for gas feeding, a vapor bubbler system,
and one-touch connectors.
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Figure 4. Schematic diagram of the gas sensing system.

If the QCM detects the vapors of DMMP or VOCs in the feeding gas, the frequency
change due to the amount of adsorption of the target vapors on the sensing layer can be
monitored by a QCM 200 digital controller (SRS). A general-purpose interface bus (GPIB
interface) was used to transfer the raw data from the digital controller to the computer.

The testing chamber allows an axial flow of the vapors flowing radially outward from
the input port located at the center of the chamber to the exit at the edge of the chamber, in
a volume of 150 µL providing with the highest sensitivity by overlapping the area of the
flat QCM oscillator [31]. The saturated vapors are generated by the flow of the carrier gas
through the inlet of the bubbler. Then nitrogen acts as the carrier as well as dilution gas.
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Then, the output flow rate of DMMP vapor can be formulated using a bubbler equation
from [32]:

FDMMP = (
PDMMP × Fc

P0 − PDMMP
) (1)

where Fc is the flow rate of carrier gas from 48 to 320 sccm (standard cubic centimeters per
minute), P0 is the outlet pressure in the bubbler and kept at 760 mmHg in these experiments,
and PDMMP is the vapor pressure of the DMMP which can be calculated from the Antoine
Equations (2) and (3) [19] expressed as below:

ln PDMMP = (A − B
C + T

) (2)

log PDMMP = (A − B
C + T

) (3)

where T is the temperature of the bubbler (Here, T is set as 298 K) and A, B, and C are the
coefficients that are used in the Antoine equation for various vapors as given in Table 1.

Table 1. Coefficients used for various vapors in this study [33–36].

Vapors Equation Unit A B C Temp. Range [K]

DMMP (2) T (K), P (Pa) 22.31900 4340.00 −51.700 263.2–453.8
Ethanol (3) T (K), P (kPa) 7.24739 1599.04 −46.391 292.8–366.6

N-hexane (3) T (◦C), P (mmHg) 6.87776 1171.53 224.366 286.18–342.7
Water (3) T (◦C), P (mmHg) 8.07131 1730.63 233.426 274.0–373.0

Toluene (3) T (◦C), P (mmHg) 6.95464 1344.80 219.482 279.0–409.0
Methanol (3) T (◦C), P (mmHg) 8.07240 1574.99 238.870 257.0–364.0

The saturated and the dilution gas were fed to the gas line to blend in together
homogeneously that regulates the adsorption of saturated vapors on the sensing adsorbent.
The maximum flow rate was 2320 sccm, which is a mixture of saturated gases and dilution
gas, while the minimum flow rate of 2000 sccm was purging with dilution gas only. The
resultant DMMP concentration was calculated from the output flow rate and the dilution
ratio [37]

CDMMP(ppm) = (
FDMMP × 106

Fd + Fc + FDMMP
) (4)

where Fd is the flow rate of the dilution gas, which is at 2000 sccm in this study. After each
test, the sensors were cleaned by a purging process with nitrogen to eliminate the attached
DMMP from sensor surface. All the experiments were carried out at room temperature
and 1 atm. For the sensing performance of gas sensors, some important characteristics
such as sensitivity, selectivity, response/recovery speed, stability, and reproducibility, were
tested [38].

3. Results

It is natural that the frequency shift also increases when the QCM sensor was tested
with an increment of the analyte concentration of DMMP vapor ranging from 25 to 150 ppm
as shown in Figure 5a. From the experimental result for CWA sensing performance with
synthesized nanocomposites on QCM, MnO2@NGO/PPy exhibited an excellent sensitivity
where the individual compound has exceptional properties in the detection of DMMP-
manganese oxide [27], NGO [24], and conducting polymer PPy [25]. It seems that the
sensitivity is about two-times better than CuO@MWCNT and N-MWCNT, which show a
similar response of sensitivity with a little variation in the frequency shift between them.
Additionally, adding NiO to N-MWCNT enhanced the sensitive performance to detect
DMMP vapor due to the oxygen reduction reactions [23]. Further, we found that a fast
recovery of sensing by rapid desorption took place when the chamber was purged with
nitrogen gas, resulting in the reduction of QCM oscillating frequency.
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The sensors were tested against several VOCs including ethanol, methanol, toluene
and n-hexane, and H2O, each at a fixed flow rate of 200 sccm, which may act as interferences.
The selectivity of the QCM sensors coated with various materials in respect of DMMP has to
be compared under different environmental conditions in order to gain an understanding
of how much extent the VOCs as well as water vapor can hinder the adsorption between
the sensing composites and DMMP vapor. We observed that all the composite materials
seemed to be more sensitive towards DMMP vapor than the interferences as shown in
Figure 5b. For the detection of DMMP, the excellent sensitivity of 1.26 and 1.07 Hz/ppm was
observed in the sensing layer of MnO2@NGO/PPy and N-MWCNT@NiO respectively. The
measured sensor response can be explained by the interaction of hydrogen bond between
DMMP and graphene oxide of the nanocomposite [24] or nanotube [39]. Therefore, it is
proven that all the composite materials have a potential to possess an excellent sensitivity
to the target CWA vapor.

To check the reproducibility of sensing performances of composites, we exposed the
sensors to the constant concentration of DMMP for several times. Figure 5c shows the
reproducibility of the QCM sensors with sensing nanocomposites at DMMP concentration
of 25 ppm. Table 2 presents the sensor response and the standard deviation when it was
exposed to a constant DMMP vapor. The response curves show similar behaviors under
the same exposure and the recovery. From the results, we cannot find any significant
changes in the sensor response which indicates an excellent reproducibility of the sensing
nanostructured materials [5,26].

Figure 6 shows the frequency shift as a function of the concentration of DMMP vapor
in feeding gas. Note that the operating frequency linearly increases as DMMP vapor
increases from 25 to 150 ppm. Immediate change in the frequency is observed with the
absorption of DMMP when DMMP gas was moved into the chamber. N-MWCNT and
N-MWCNT@NiO presents the highest correlation coefficient which may stem from the
large surface area as well as a good adhesive behavior to electrode on sensor resulting in
enhanced sensitivity response [4].
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Table 2. Sensor mean response and standard deviation.

Sensing Nanocomposite Film Response (Hz) Standard Deviation (Hz)

CuO@N-MWCNT 12.6 1.71
N-MWCNT 19.02 1.21

N-MWCNT@NiO 47.40 2.38
MnO2@NGO/PPy 47.29 2.69
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Figure 6. The linearity of frequency shift by (a) CuO@N-MWCNT, (b) N-MWCNT, (c) N-
MWCNT@NiO, and (d) MnO2@NGO/PPy in the detection of different concentrations of DMMP.

The response and recovery times are defined as the time interval to reach 90% of the
equilibrium and return to 10% of the equilibrium baseline by purging with dry nitrogen
respectively. Table 3 shows the response and recovery times of all synthesized nanocom-
posite under different concentrations of DMMP vapor. From the experimental results, the
composite materials show rather longer recovery time than the response one. Here, the
shorter response time indicates that it can react to the organophosphorus composition
of the DMMP quickly and short recovery time depicts that the recovering ability of the
sensing film to its equilibrium baseline value is swift.

Table 3. Response/recovery results of hybrid nanocomposites.

Sensor Characteristics DMMP Concentration (ppm)

Nanocomposites 25 50 75 100 125

Response time (s)
τ90%

CuO@N-MWCNT ~121 ~115 ~108 ~104 ~102
N-MWCNT ~130 ~100 ~100 ~101 ~100

N-MWCNT@NiO ~117 ~104 ~106 ~103 ~96
MnO2@NGO/PPy ~136 ~101 ~103 ~99 ~123

Recovery time (s)
τ90%

CuO@N-MWCNT ~155 ~195 ~113 ~139 ~143
N-MWCNT ~193 ~142 ~135 ~132 ~170

N-MWCNT@NiO ~206 ~142 ~150 ~139 ~144
MnO2@NGO/PPy ~142 ~123 ~117 ~118 ~113

As the concentration of DMMP increases, most of the nanocomposite materials shows
a shorter response and recovery times relatively. The reversible response can imply that the
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adsorption of the analytes on the sensing film consists of weak bonds, such as hydrogen
bonding or van der Waals force [40]. Table 4 illustrates the performance summary of the
QCM sensors with different sensing materials used for detection of DMMP.

Table 4. The summary of the QCM sensors for detection of DMMP using various sensing materials.

Ref. Materials Concentration (ppm) Response (Hz) Response Time (s) Recovery Times (s)

[41] HFIPP-GR 5 71 ± 4 T80 < 108 T80 = 600
[42] V2O5 coated ZnO nanorods 15 ~40 T80 < 300 T80 > 900
[43] Co3O4@gold/MWCNT/polypyrrole 60 90 T98 = 60 T98 = 493
[44] In2O3-Au 50 <80 <100 ~200
[45] Zeolite Socony Mobil-5 20 ~55 T80 < 100 -
[46] WO3 nanoflake 3.91 <160 30 73
[47] Polyvinylidene fluoride 150 ~50 ~60 ~60

This work MnO2@NGO/PPy 50 87 T90 = 101 T90 = 123

For the environmental effect on sensing performance, we also tested the response of
the sensor under different relative humidity (RH) conditions. As N-MWCNT@NiO shows
the highest sensitivity to water vapor in Figure 5b, we measured the frequency shift at the
relative humidity of 50%, and 90% under a constant temperature of 20 ◦C with DMMP
vapor ranging from 25 ppm to 150 ppm; the results are shown in Figure 7. The sensitivity
of the sensor in 50% and 90% relative humidity at a constant temperature of 20 ◦C are
0.3325 ± 0.0255, and 0.3247 ± 0.0339 Hz/ppm, respectively. The decrement of sensitivity
was due to the water molecules on the reacting surface [6]. When the relative humidity is
higher than 90%, the sensor cannot work due to the absorption of thin water film on the
QCM surface and fails to attain its basic frequency [48].
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Based on comparison of sensitivity, linearity, selectivity, reproducibility, and re-
sponse/recovery times of the nanostructured composite materials, we selected a potential
candidate to be tested by SAW sensor, designed by our previous studied. N-MWCNT@NiO
in QCM and SAW sensors operating at 250 MHz were primarily selected and prepared.
All the sensing performance were compared under the same concentrations of the solvent
and DMMP vapor as shown in Figure 8. N-MWCNT@NiO was mixed with IPA at the
ratio of 1 mg:4 mL because the SAW sensor is very sensitive of variation of mass change
of coating layer, which can fail to produce good results when the weight of the coating
materials is too heavy. From the Figure 8, the sensitivity in the SAW sensor is about 118 and
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70-times higher than that of the QCM sensor at a DMMP concentration of 25 and 150 ppm,
respectively, was observed.
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4. Conclusions

We tested several novel hybrid nanostructured composite materials as a sensing mate-
rial for the early detection of CWAs. Nanostructured composite materials were synthesized
by the hydrothermal and thermal reduction process. The sensitivity, selectivity, linearity,
reproducibility, and response/recovery times for different concentrations of DMMP vapor
as a simulant and VOCs were measured and compared. Two different QCM and SAW
sensors coated with N-MWCNT@NiO were compared in terms of sensitivity at a constant
temperature of 20 ◦C. MnO2@NGO/PPy showed excellent sensitivity and selectivity for
DMMP ranging from 25 to 150 ppm. All the nanostructured composite materials demon-
strated excellent reproducibility for 25 ppm DMMP with no significant changes between
four successive cycles of DMMP exposure and recovery. The response/recovery test ex-
hibited a shorter response time and longer recovery compared with other synthesized
materials. The RH test showed a decrement in the sensitivity of 7.8 × 10−3 Hz/ppm as the
humidity increased from 50 to 90% RH. The comparison between a SAW and QCM sensor
resulted in an increment of frequency shift by 118 and 70-times in the SAW sensor than in
the QCM sensor at 25 and 150 ppm, respectively.
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