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Rheumatoid arthritis is a common systemic and autoimmune disease characterized

by symmetrical and inflammatory destruction of distal joints. Its primary pathological

characters are synovitis and vasculitis. Accumulating studies have implicated the

critical role of non-coding RNAs (ncRNAs) in inflammation and autoimmune regulation,

primarily including microRNA (miRNA), long non-coding RNA (lncRNA), and circular

RNA (circRNA). NcRNAs are significant regulators in distinct physiological and

pathophysiological processes. Many validated non-coding RNAs have been identified

as promising biomarkers for the diagnosis and treatment of RA. This review will shed

some light on RA pathogenesis and be helpful for identifying potential ncRNA biomarkers

for RA.
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INTRODUCTION

Rheumatoid arthritis (RA) is a type of chronic autoimmune disease, characterized by synovitis
and vasculitis in pathology. It is a highly disabling disease due to joint deformity and loss of
function (1). The main clinical features of RA typically are symmetrical polyarthritis with distal
joint redness, swelling, and pain, especially the small joints of hands and feet (2). Approximately 1%
of the population is affected with RA worldwide, with a higher prevalence in Europeans and Asians
(3). Studies have implicated the significant and complex roles of genetic factor and environmental
factor in the etiology of RA (4, 5). It has been well-documented that inflammatory response
and immunological disorders critically contribute to RA. However, the precise pathogenesis and
etiology of RA remain to be completely elucidated (6). To the best of our knowledge, common
laboratory tests used for RA generally include erythrocyte sedimentation rate (ESR), c-reactive
protein (CRP), rheumatoid factor (RF), and anti-cyclic peptide containing citrulline (anti-CCP)
antibodies (7). Nevertheless, they lack specificity and have low priority. As a result, identification of
novel and promising biomarkers for RA is essential for its early diagnosis and treatment.

In human, non-protein coding genes occupy ∼70% of the genome. Accumulating data have
suggested non-coding RNAs (ncRNAs) play important roles in regulating autoimmunity and
inflammation (8). Due to increasing development of microarray sequencing techniques and
bioinformatics analysis, many ncRNAs have been identified and validated in many kinds of diseases
(9–12). They can be regarded as promising biomarkers predicting the occurrence and progression
of cancer, cardiovascular disease and autoimmune disease, and so on (9–12). Different autoimmune

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2019.03129
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2019.03129&domain=pdf&date_stamp=2020-01-28
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:2165056469@qq.com
mailto:flower322@163.com
https://doi.org/10.3389/fimmu.2019.03129
https://www.frontiersin.org/articles/10.3389/fimmu.2019.03129/full
http://loop.frontiersin.org/people/738669/overview
http://loop.frontiersin.org/people/678624/overview
http://loop.frontiersin.org/people/805364/overview
http://loop.frontiersin.org/people/484565/overview


Wang et al. NcRNAs as Regulators in RA

disease has different ncRNA expression profile in diverse cells
and tissues. In addition, there are still some ncRNAs dysregulated
in several kinds of inflammatory or autoimmune diseases with
similarities. Accumulating studies have suggested some ncRNAs
are specifically expressed in RA, mainly including microRNAs
(miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs
(circRNAs) (7, 13, 14). Previously, we have identified the specific
profile of miRNAs and lncRNAs differentially expressed in
RA, which can serve as promising markers for RA diagnosis
and treatment (15–17). Nonetheless, the modifying effects and
molecular mechanism of those specifically expressed ncRNAs in
RA pathogenesis have not been fully elucidated up to date.

In the present study, some functional ncRNAs have been
listed in Table 1. The potential targets and mechanisms
of them are also summarized. We aim to focus on the
current knowledge of ncRNAs in RA, primarily including
miRNAs, lncRNAs, and circRNAs by reviewing all currently
published studies. Clarification of the expression and molecular
mechanism of dysregulated ncRNAs in inflammation and
autoimmunity will help to understand the pathogenesis of
RA. Most importantly, identifying the targeted genes of
those aberrantly expressed ncRNAs in RA will be useful for
investigating promising biomarkers for its early diagnosis and
efficient treatment.

MiRNAs

MiRNAs are evolutionarily conserved and usually have a
length of 18–25 nucleotides, which regulate the expression of
targeted genes at the post-transcriptional level by promoting
the degradation of mRNA or repressing its translation (7).
Accumulated studies have suggested the critical role of miRNAs
in several kinds of autoimmune diseases, such as systemic
lupus erythematosus (SLE), RA and Sjögren’s syndrome (35).
However, the expression and function of those aberrantly
expressed miRNAs may be different in diverse autoimmune
diseases. MiRNAs play a pivotal role in the regulation of
multiple physiological and pathological processes, including cell
cycle, stem cell maintenance, organ development, angiogenesis,
and carcinogenesis (36). A number of well-established miRNAs
have been regarded as candidate biomarkers for RA due to
their critical role in regulating inflammation and autoimmunity
(37). They are widely expressed in various cells, tissues,
or microsomes and contribute to the pathogenesis of RA
(37). Besides, some miRNAs are differentially expressed in
response to TNF inhibitor treatment and other conventional
therapies (38). Accordingly, miRNA can serve as predictive
factor for the clinical response to biological therapies among
RA patients.

As shown in Table 1, a variety of miRNAs are differentially
expressed and dysregulated in RA, which can negatively
regulate targeted genes, such as those genes encoding cytokines,
chemokines, and inflammation-related signaling molecules, and
thus participate in the pathogenesis of RA (22, 39, 40).
Moreover, it has been well-established some nanovesicles-
delivered miRNAs specially expressed in RA and exert modifying

effects on inflammation and autoimmunity, such as exosomes-
encapsulated miRNAs (15, 16). Exosomes are cell-derived
vesicles encapsulating functional molecules such as RNAs,
DNAs, proteins, and lipids (41, 42). Exosomes usually mediate
intracellular communication by delivering functional RNAs from
donor to receipted cells, including ncRNAs of miRNAs, lncRNAs
as well as circRNAs (Figure 1). Mounting data have implicated
exosomes and their encapsulated functional ncRNAs have been
recognized as potential biomarkers for RA, especially exosome-
encapsulated miRNAs (16, 18, 43).

Growing data have revealed that many free miRNAs
and exosome-delivered miRNAs are closely associated with
RA (44, 45). The molecular mechanism of differentially
expressed miRNAs in RA has been widely investigated by
many published studies, particularly regarding their altering
effects on inflammation and autoimmunity (15, 46–48).
Toll-like receptors (TLRs), such as TLR2 and TLR4, are
vital pattern recognition receptors (PRRs) functioning as a
bridge linking immunomodulation and inflammatory response
in many autoimmune diseases, including RA (35, 49, 50).
Mechanisms of different TLRs in immune and inflammatory
cells have been extensively investigated (Figure 1). Our
previous study has demonstrated that miR-6089 inhibits
inflammatory response via targeting TLR4 (16). It has been
well-documented signaling pathways of TLRs/NF-κB, cytokines,
and chemokines as well as Wnt signal play vital roles in
regulating inflammatory response and immunological reaction
that are involved in RA pathogenesis (Figure 1) (15, 46–48).
The study by Guo et al. has shown that the proliferation,
apoptosis and migration of fibroblast-like synoviocytes in
RA can be affected by miR-338-5p via targeting NFAT5 (19).
MiR-708-5p can promote the apoptosis of fibroblast-like
synoviocytes and alleviate RA through Wnt3a/β-catenin
pathway (20). MAPK signaling is also well-documented in
regulating miRNAs in RA (Figure 1) (21, 46, 51). Our previous
study has demonstrated that exosome-delivered miR-548a-
3p regulates macrophages-mediated inflammation through
TLR4/NF-κB signaling pathway in RA (15). Therefore, miR-
548a-3p may serve as a promising marker for RA, because it
can alleviate inflammation in RA. The miR-548a-3p/TLR4/NF-
κB axis will offer new therapeutic strategies for RA. Taken
together, the differentially expressed miRNAs in peripheral
circulation or extracellular vesicles or synovium tissues in
RA would be identified as important biological targets for
the diagnosis and treatment of RA patients. Nevertheless,
more pre-clinical or clinical experiments are warranted for
more investigations.

LncRNAs

LncRNA is a newly identified non-coding RNA widely expressed
in various tissues of the human body, which consists of
more than 200 nucleotides in length (17). According to the
structure and function of lncRNA, lncRNAs can be divided
into five categories: sense, antisense, bidirectional, intronic,
and intergenic (52). Some lncRNAs exert oncogenic properties
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TABLE 1 | Aberrant expressed ncRNAs in RA.

NcRNAs Target Site Expression Signaling References

MiRNA

miR-548a-3p TLR4 Serum, PBMC Down TLR4/NF-κB

signaling

Wang et al. (15)

miR-6089 TLR4 Serum, PBMC Up TLR4 signaling Xu et al. (16)

miRNA-150-5p MMP14/VEGF Mesenchymal cell-derived

exosomes

Down Unknown Chen et al. (18)

miR-338-5p NFAT5 Synoviocytes Up Unknown Guo et al. (19)

miR-708-5p Unknown Synoviocytes Down Wnt3a/β-catenin

pathway

Wu et al. (20)

miR-143-3p IGF1R/IGFBP5 Synovium tissues Up Ras/p38 MAPK

signaling

Yang et al. (21)

miR146a/b Unknown Peripheral blood and joint

tissues

Up Unknown Churov et al. (22)

miR155 Unknown Peripheral blood and joint

tissues

Up Unknown Churov et al. (22)

miR16 Unknown Peripheral blood and joint

tissues

Up Unknown Churov et al. (22)

miR223 Unknown Peripheral blood and joint

tissues

Up Unknown Churov et al. (22)

LncRNA

RNA143598 Unknown Serum Up Unknown Xu et al. (17)

RNA143596 Unknown Serum Up Unknown Xu et al. (17)

HIX0032090 lncRNA-mRNA network Serum Up NF-κB signaling Xu et al. (17); Yan et al. (23)

IGHCγl Unknown Serum Up Unknown Xu et al. (17)

XLOC-002730 Unknown Serum Up Unknown Xu et al. (17)

H19 Unknown Synovium tissues Up MAPK/PI3K

pathway

Stuhlmuller et al. (24)

LincRNA-p21 RELA Peripheral blood Down NF-κB/PKcs

signaling

Spurlock et al. (25)

C5T1lncRNA C5 PBMC and tissues Up Unknown Messemaker et al. (26)

LOC100652951 Unknown T cells Up Unknown Lu et al. (27)

LOC100506036 SMPD1/NFAT1 T cells Up Unknown Lu et al. (27)

LncRNANTT PBOV1 Monocyte/macrophage Up NTT/PBOV1 axis Yang et al. (28)

HOTAIR miR-138 Chondrocytes Down NF-κB signaling Zhang et al. (29)

lncRNA S5645.1 miR-152/miR-20 Peripheral blood and tissues Down Unknown Jiang et al. (30)

lncRNA

XR_006437.1

XR_006437.1-miRNA-mRNA network Peripheral blood and tissues Down Unknown Jiang et al. (30)

lncRNA J01878 J01878-miRNA-mRNA network Peripheral blood and tissues Down Unknown Jiang et al. (30)

lncRNA GAPLINC miR-382-5p/miR-575 Fibroblast-Like synoviocytes Up GAPLINC-related

pathways

Mo et al. (31)

ZFAS1 miR-27a Fibroblast-Like synoviocytes Up Unknown Ye et al. (32)

CircRNA

circ_102594 circRNA-miRNA ceRNA network PBMC Down Unknown Zheng et al. (14)

circ_103334 circRNA-miRNA ceRNA network PBMC Up Unknown Zheng et al. (14)

circ_104194 circRNA-miRNA ceRNA network PBMC Up Unknown Zheng et al. (14)

circ_104593 circRNA-miRNA ceRNA network PBMC Up Unknown Zheng et al. (14)

circRNA_003524 Unknown PBMC Up Unknown Ouyang et al. (33)

circRNA_103047 Unknown PBMC Up Unknown Ouyang et al. (33)

circRNA_104871 Unknown PBMC Up Unknown Ouyang et al. (33)

circRNA_101873 Unknown PBMC Up Unknown Ouyang et al. (33)

circ_0001859 ATF2 Synovium tissues Up miR-

204/211/ATF2

Li et al. (34)
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FIGURE 1 | Signaling pathway of ncRNAs in RA. NcRNAs (miRNA, lncRNA, circRNA) are involved in regulating inflammation and autoimmunity, such as immune cell

activation, differentiation, and polarization. Some ncRNAs are encapsulated in nanovesicles and exert critical effects on inflammatory and immune cells, and some can

function as ceRNA by sponging miRNAs in RA. NcRNAs participate in RA inflammation and autoimmune disorders primarily through TLR4/NF-κB, MAPK/PI3K, and

Wnt3a/β-catenin signaling pathways, and so on.

in cancer (53), while some can inhibit the development and
progression of malignancies due to distinct expression and
biological effects in cancer cells (54). Accumulating studies
have implicated that a variety of lncRNAs are found to be
differentially expressed and confer effects on immune cells in
several kinds of autoimmune diseases, including RA (55–58).
Different autoimmune diseases have specific lncRNA expression
profiles, which may be also specifically expressed in different
cells and tissues. Besides, the lncRNA expression profile in RA
can be influenced by different therapy strategies demonstrated
by Guo et al. (59). Furthermore, it has been reported that
a number of lncRNAs are dysregulated and associated with
organ damage in systemic lupus erythematosus (SLE) compared
with RA (60), which suggests a critical role of ncRNA in
regulating specific organ damage in autoimmune diseases.
LncRNA H19, Hotair, lincRNA-p21, C5T1, LOC100652951, and
LOC100506036 have been verified to be dysregulated in T cells,
peripheral blood mononuclear cells (PBMCs), exosomes, and
synovial cells in RA, which are associated with inflammation
and immune reaction in RA (Table 1) (24–27, 61). The lncRNA
expression profile in RA is different in diverse types of
immune cell, such as B cells, nature killer (NK) cells, and T
cells, which suggests immune cell-type specificity of lncRNA
expression (62). Identification of aberrantly expressed lncRNAs
in RA and exploration of the underlying molecular mechanisms

will offer a new direction to understand the pathogenesis
of RA.

The regulatory mechanism of lncRNAs is complicated and
needs to be investigated by more functional and mechanical
experiments. T lymphocytes-mediated autoimmune response
plays an important role in the development of RA (63, 64).
Moreover, the abnormally expressed lncRNAs in T cells can
influence their function and facilitate or suppress immune
and inflammatory reactions in RA, such as lncRNA FAM66C,
LOC100652951, and LOC100506036 (27, 64, 65). PBMC and
exosome-derived Hotair are demonstrated to affect the migration
of activated macrophages and the expression of MMP-2 and
MMP-13 in RA (61). An lncRNA NTT/PBOV1 axis has been
elucidated by a published study, which is capable of regulating
monocyte differentiation in RA (28). LncRNA HOTAIR is
documented to alleviate RA by targeting miR-138 and inhibit
the activation of NF-κB pathway in LPS-treated chondrocytes,
suggesting an lncRNA-miRNA interaction in RA pathogenesis
(29). In our previous study, five lncRNAs are reported to be
significantly up-regulated in serum samples of RA patients,
including RNA143598, RNA143596, HIX0032090, IGHCγl, and
XLOC-002730 (17) (Table 1). Some of these aberrantly expressed
lncRNAs are associated with the disease course, anti-CCP
antibody level and disease activity of RA (17). The bioinformatics
analysis indicates that classic signaling pathways of TLRs,
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FIGURE 2 | Functional role of ncRNAs as ceRNA. A number of miRNAs, lncRNAs, circRNAs, pseudogenes, and competing mRNAs can act as ceRNA and promote

the expression of targeted mRNAs via sponging miRNAs. CeRNA network is a crucial mechanism of ncRNAs involved in RA pathogenesis.

cytokines, NF-κB, and IRF3/IRF7 that are most likely involved in
RA with regard to lncRNAs regulation (17). More interestingly,
HIX0032090 has been demonstrated to participate in RA
pathogenesis by functioning as a competitive endogenous RNA
(ceRNA) for miRNA in our recently published study (23).
Nevertheless, more future studies are warranted to elucidate
the molecular mechanism of those dysregulated lncRNAs in RA
initiation and progression. Taken together, these available data
have suggested the immune cell specificity of lncRNA expressed
in RA.

Mounting evidence has suggested lncRNA, the same as
pseudogenes, circRNAs and competing mRNAs, can function
as ceRNA based on a lncRNA-miRNA-mRNA network in
autoimmune disease, vascular disease, cancer, and so on (Table 1
and Figure 2) (66–70). LncRNA may facilitate the expression
and function of the targeted mRNA by sponging miRNA, and
thus participates in regulating immune cell activity and function
(71). Jiang et al. have found that three lncRNAs, namely S5645.1,
XR_006437.1 and J01878, can serve as promising biomarkers for
RA via ceRNA network (30). It has also been demonstrated that
lncRNA GAPLINC enhances cell proliferation, migration, and
generation of proinflammatory cytokines by sponging miR-382-
5p and miR-575 in fibroblast-like synoviocytes (31). Similarly,
ZFAS1, a newly identified lncRNA in RA, is shown to modulate
fibroblast-like synoviocytes migration and invasion by targeting
miR-27a as a sponge (32). As mentioned above, an lncRNA
HOTAIR-miR-138-NF-κB axis has also been established in
chondrocytes in RA (29). Accordingly, lncRNA may function
through ceRNA mechanism by sponging one or more miRNAs
in immune cell or parenchymal cell, such as chondrocytes
(Figure 2). Identification of lncRNA-miRNA-mRNA ceRNA
network provides new insight into the pathogenesis of RA. Key
molecules and signaling pathway in this network will serve as
ideal diagnostic and therapeutic targets for RA.

CircRNAs

Circular RNA (circRNA) is an endogenous non-coding RNA,
the most representative characteristic of which is the covalently
closed RNA circle without 5′ end caps or 3′ poly (1) tails
(33, 72). This circular structure is usually stable with the half-
life larger than 48 h (73). CircRNAs are primarily divided into
three types of circRNA including exonic circRNAs (ecircRNAs),
circular intronic RNAs (ciRNAs), and exon-intron circRNAs
(EIciRNAs) (74). The production of circRNAs in cells is usually
attributed to exon skipping and circularization driven by intron
pairing or RNA binding protein (74). Apart from mammals,
numerous circRNAs have been demonstrated to be expressed
in fungi, plants, and protists (75–78). Most importantly, the
expression of circRNAs is in a tissue-specific manner (79).
Usually, circRNAs can be found in peripheral blood, exosomes,
and tissues. Similar to lncRNA, circRNA can also serve as
miRNA sponge, which can combine with miRNAs and thereby
insulate them from the natural mRNAs (70, 80–83) (Figure 2).
Available data have revealed ecircRNA confers critical effects on
several pathological and physiological processes mainly through
ceRNA mechanism in cytoplasm (74). However, circRNAs of
ciRNAs and EIciRNAs usually regulate the targeted genes
in nucleus (84–86). CircRNAs serve as miRNAs sponge and
facilitate the expression of targeted mRNAs by inhibiting the
effect of miRNA (82, 87). CeRNA is also an essential way for
circRNA in regulations of autoimmunity and inflammation (88,
89) (Figure 2). However, there are few publications elucidating
the ceRNA regulatory mechanism of circRNA in RA up
till now.

CircRNAs are suggested in regulating diverse immune
disorders due to their various forms of epigenetic modification,
for instance, miRNA sponge and miRNA reservoir (74, 79, 83).
Accumulated data have implicated the vital role of circRNAs in
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multiple kinds of diseases, such as cancer, neurologic disorders
and cardiovascular diseases (74, 90–92). The critical role of
circRNAs in antiviral immunity has been well-documented,
which offers potential therapeutic strategies for antiviral therapy
by targeting circRNAs (93–95). The study by Ma et al. shows the
evidence that circARSP91 promotes cancer immune surveillance
by regulating NK cells in liver cancer, suggesting a critical role
of circRNA in tumor immunity (96). In addition, circRNA
Malat-1 has been suggested as a key regulator in alloimmune
rejection by promoting dendritic cells to induce T cell exhaustion
and regulatory T cell generation, which implicates the pivotal
role of circRNA in adaptive immunity (97). Taken together,
circRNA plays critical roles not only in innate immunity but
adaptive immunity.

During the past few years, the role of circRNAs in RA
has drawn more and more attention. There is specific
circRNA expression profile in RA as demonstrated by
microarray chip analysis (14, 33, 98). As shown in Table 1,
many circRNAs have been documented to be aberrantly
expressed in RA, such as circRNA_092516, circRNA_003524,
circRNA_103047, and circRNA_101873. CircRNAs can be
up-regulated or down-regulated in peripheral blood or
tissues in RA. Interaction between miRNA and circRNA is
also revealed in RA, which implicates the circRNA-miRNA
network in autoimmune regulation (99). It has been shown
that has-circ-0001859 is identified in synovial tissues,
which regulates synovial inflammation via sponging miR-
204/211 and targeting ATF1 (34). Accordingly, circRNAs
can regulate RA through ceRNA network (Figure 2).
Nevertheless, little is known about the downstream signaling
pathway of circRNA in regulating autoimmunity and
inflammation. More studies are warranted to elucidate
this issue in future. It is also prospective to investigate
novel diagnostic and therapeutic strategies for RA by
targeting circRNAs.

CONCLUSIONS AND FUTURE
DIRECTIONS

In the last few years, ncRNAs have been regarded as hot points in
many scientific fields worldwide. Role of ncRNAs in regulating
inflammation and autoimmunity has drawn widely attention.
Although specific expression profiles of miRNAs, lncRNAs and
circRNAs in RA have been well-documented in many currently
published studies, the molecular mechanism behind ncRNAs
regulation in RA is not very clear yet. Those aberrantly expressed
ncRNAs participate in the pathogenesis of RA primarily
by regulating autoimmunity and inflammation. Up to now,
Wnt3a/β-catenin, TLR/NF-κB, and MAPK signaling pathways
have been well-established in regulating the differentially
expressed ncRNAs in RA. Most interestingly, elucidation of the
lncRNA/circRNA-miRNA-mRNA ceRNA network sheds light on
the pathogenesis of RA. Researchers are encouraged to investigate
novel strategies for the early diagnosis and treatment of RA
by targeting ncRNAs and relevant key signaling pathways in
the future.
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