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Abstract

Pest and pathogen losses jeopardise global food security and ever since the 19th century Irish famine, potato late blight has
exemplified this threat. The causal oomycete pathogen, Phytophthora infestans, undergoes major population shifts in
agricultural systems via the successive emergence and migration of asexual lineages. The phenotypic and genotypic bases
of these selective sweeps are largely unknown but management strategies need to adapt to reflect the changing pathogen
population. Here, we used molecular markers to document the emergence of a lineage, termed 13_A2, in the European P.
infestans population, and its rapid displacement of other lineages to exceed 75% of the pathogen population across Great
Britain in less than three years. We show that isolates of the 13_A2 lineage are among the most aggressive on cultivated
potatoes, outcompete other aggressive lineages in the field, and overcome previously effective forms of plant host
resistance. Genome analyses of a 13_A2 isolate revealed extensive genetic and expression polymorphisms particularly in
effector genes. Copy number variations, gene gains and losses, amino-acid replacements and changes in expression
patterns of disease effector genes within the 13_A2 isolate likely contribute to enhanced virulence and aggressiveness to
drive this population displacement. Importantly, 13_A2 isolates carry intact and in planta induced Avrblb1, Avrblb2 and
Avrvnt1 effector genes that trigger resistance in potato lines carrying the corresponding R immune receptor genes Rpi-blb1,
Rpi-blb2, and Rpi-vnt1.1. These findings point towards a strategy for deploying genetic resistance to mitigate the impact of
the 13_A2 lineage and illustrate how pathogen population monitoring, combined with genome analysis, informs the
management of devastating disease epidemics.
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Introduction

As the cause of potato late blight, Phytophthora infestans is one of

the most destructive plant pathogens within this genus of fungus-

like oomycetes and widely known as the Irish potato famine

pathogen [1,2]. P. infestans has migrated from Central or South

America [3,4], where it infects many native solanaceous hosts, and

remains responsible for significant losses to key staple crops

(potato, tomato and other solanaceous plants) worldwide [5,6].

Potato late blight management relies on regular applications of a

range of anti-oomycete ‘fungicides’. However, under optimal

weather conditions the pathogen may complete several infection

cycles a week on a susceptible host, with control failure leading to

rapid epidemics and crop loss. Resistance breeding offers great

potential but the durability of resistance conferred by R genes has

been continually challenged by the evolution of new virulence

traits within pathogen populations [7]. P. infestans is normally

diploid with a heterothallic (i.e. outbreeding) mating system that
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requires co-infection of A1 and A2 mating types to form long-lived

sexual oospores. A mixture of sexually compatible A1 and A2

mating types increases the opportunities for sexual reproduction,

providing the pathogen with an evolutionary advantage via

increased genetic diversity and oospores as a source of primary

inoculum in the soil [8,9]. In the absence of oospores, in temperate

regions the pathogen can only survive as asexual clones in potato

tubers (as seed, in discard piles or unharvested tubers). Mycelium

from such infections generates sporangia that are carried by wind

and rain-splash to a new host where they germinate directly or

release multiple motile zoospores that infect, colonize and release

new sporangia via host stomata. Many studies have demonstrated

that, despite the theoretical advantages of sexual recombination

[8], a succession of clonal lineages of P. infestans have dominated

the population in many potato production regions [7,10]. In

Europe, the incursion of the A2 mating type occurred 135 years

after the A1 type [11]. However until recently, the A2 type

remained infrequent in most parts of Europe [10,12], which

limited the opportunities for sexual reproduction of the pathogen

[10,13,14]. Conversely, in parts of Mexico and the Nordic regions

of Europe, populations of P. infestans have more balanced A1:A2

mating type ratios and are genetically diverse, with sexually

formed oospores that act as a source of primary inoculum [7,15].

Effective management of potato late blight is aided by an

understanding of the characteristics of the contemporary pathogen

population. For example, the aggressive and metalaxyl resistant

A2 mating type US-8 lineage replaced the US-1 lineage which

resulted in significant potato crop losses across the USA from

1985–1995 [16]. Pathogen genetic diversity has been monitored

using a range of genetic markers [17] of which simple sequence

repeats (SSRs) have recently proved effective for defining multi-

locus genotypes (MLGs) [18]. Key adaptive traits such as the

ability of sporangia or zoospores to infect and colonise host tissue

(aggressiveness) combined with efficient dissemination and, in

temperate regions, survival from season to season (fitness)

determine the success of particular P. infestans MLGs. Lesion

growth rate and the period from inoculation to sporulation (latent

period) are important components of aggressiveness [19,20].

Fitness, a measure of reproductive success [21], is best studied in

the field over several disease cycles. In a polycyclic disease such as

potato late blight, even minor differences in aggressiveness or

fitness can have a significant effect on the relative success of an

MLG in the population. Traits such as ability to overcome specific

host resistance, fungicide resistance or altered response to

environmental conditions [22] are also important determinants

of evolutionary success in the pathogen population.

The sequenced genome of P. infestans strain T30-4 provides a

‘blueprint’ of the gene complement and genome architecture of

this pathogen [23]. The assembly served as a reference sequence in

this work. Recently, two additional isolates PIC99189 and 90128

were resequenced using 36 bp Illumina reads (10.46 and 17.16
coverage, respectively) [24]. These projects revealed that P.

infestans possesses a ‘two-speed genome’ with gene dense and

gene-sparse repeat-rich regions. Gene-sparse regions (GSRs) are

enriched in genes that are induced in planta and genes showing

presence/absence polymorphism, copy number variation (CNV)

or high nonsynonymous over synonymous substitution rates [24].

Effectors and other pathogenicity factors [23] that reside in these

GSRs have the potential to evolve rapidly [24], consistent with the

pathogen’s well-documented capacity to adapt to novel host

resistance. These effectors include RXLRs, a class of host

translocated proteins that carry an N-terminal signal peptide

followed by an RXLR motif [23,25]. All known effector genes with

Avr (avirulence) activity are in planta-induced genes of the RXLR

type [26]. The study of the RXLR repertoire in emerging P.

infestans lineages provides insights into the molecular basis of the

infection phenotype on plants carrying the cognate R genes.

In the present study, we investigated changes in the population

of the late blight pathogen P. infestans in Great Britain (GB) and

identified a major new lineage of P. infestans that first emerged in

mainland Europe in 2004. We investigated the factors driving this

population change, demonstrating that 13_A2 MLG was amongst

the most aggressive and fit MLGs in laboratory and field studies

and able to overcome an important, previously durable source of

host resistance. We sequenced the genome of an isolate of the

13_A2 MLG and compared it to the reference genome strain T30-

4. We identified genes unique to this MLG, signatures of positive

selection and CNVs, in particular in the RXLR effector repertoire.

We also studied patterns of gene expression during an infection

time course and noted a remarkable extended biotrophic phase,

with distinct sustained induction of genes including RXLR

effectors in the 13_A2 MLG isolate compared to other reference

isolates. Lastly, we evaluated the effectiveness of promising sources

of R genes that recognise invariant Avr genes, demonstrating that

they remain effective against a 13_A2 MLG isolate. Despite the

differential expression of many RXLR effector genes, we present

evidence of a common set of in planta-induced effectors which we

consider ‘targets’ for durable late blight disease resistance

breeding.

Results/Discussion

Rapid and dramatic change in the Great Britain
Phytophthora infestans population

We collected and determined the simple sequence repeat (SSR)-

based [18] multilocus genotypes (MLGs) of 4,654 P. infestans

isolates from 1,100 late blight disease outbreaks in Great Britain

(GB), sampled between 2003 and 2008 (Table S1 in Text S2,

Figure S1 in Text S1) cross-referencing these to a sample of

isolates (n = 537) collected in previous GB surveys from 1982–1998

[13,27,28]. These SSR markers yielded between 2 and 25 alleles

per locus and proved an effective tool to discriminate isolates

within the GB pathogen population (Figure S2 in Text S1, Table

S2 in Text S2).

Author Summary

We have documented a dramatic shift in the population of
the potato late blight pathogen Phytophthora infestans in
northwest Europe in which an invasive and aggressive
lineage called 13_A2 has emerged and rapidly displaced
other genotypes. The genome of a 13_A2 isolate revealed
a high rate of sequence polymorphism and a remarkable
level of variation in gene expression during infection,
particularly of effector genes with putative roles in
pathogenicity. Collectively, these polymorphisms, in com-
bination with an extended biotrophic phase, may explain
the aggressiveness of 13_A2 and its ability to cause disease
on previously resistant potato cultivars. The genome
analysis identified conserved effectors that are sensed by
potato resistance genes. These findings provide options
for the strategic deployment of host resistance with a
positive impact on crop yield and food security. This work
stresses the benefits of a crop disease management
strategy incorporating knowledge of the geographical
structure, evolutionary dynamics, genome sequence diver-
sity and in planta-induced effector complement of
pathogen lineages.

Genome of Aggressive Potato Late Blight Lineage
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The P. infestans population was dominated by clonal lineages with

fewer than seven MLGs comprising .82% of the isolates each year

(Figure 1A, Table S3 in Text S2). The A2 mating type frequency

increased and genetic diversity reduced markedly over the years

2005 to 2008 (Figure 1A and 1B, Figures S3, S4 in Text 1). A novel

A2 mating type and metalaxyl resistant (Table S2A in Text S2)

MLG, termed 13_A2, was first recorded in seven British potato

crops from July 2005 and went on to rapidly displace other MLGs

across the region (Figure 1C). In 2006 MLG 13_A2 was prevalent in

England from late May but not sampled in Scottish crops until late

August (Figure S5 in Text S1) which is consistent with a progressive

crop-to-crop dispersal across the region in 2006 (Figure 1C).

Variation within the more variable SSR loci (particularly G11 and

D13) has allowed discrimination of minor variants amongst the

2,295 isolates of 13_A2 MLG in this study (Figure 1B, Table S2B in

Text S2). P. infestans MLG 13_A2 was first detected in isolates

collected from The Netherlands and Germany in 2004, which is

corroborated by other reports of A2 metalaxyl resistant isolates in

continental Europe and suggests a north-westward migration to

Great Britain (GB) (Table S4 in Text S2) [29–31]. The ‘misc’

category of SSR genotypes is a composite of all the novel and rarely

sampled MLGs representing diversity that is consistent with sexual

recombination [15]. However, in contrast to some other regions of

Europe where almost every isolate is genetically distinct [15], this

‘misc’ category was recovered in GB disease outbreaks at a frequency

of below 5% of the population from 2003 to 2008 (Figure 1A)

indicating that the population remained largely clonal over this

period (Figure 1B and Figure S4 in Text S1).

P. infestans genotype 13_A2 is highly aggressive
We examined the selective forces behind the population

displacement in extensive laboratory and field evaluations of the

fitness of many isolates of P. infestans. Aggressiveness, ‘the quantity

of disease induced by a pathogenic strain on a susceptible host’

[32], is a key component of pathogen fitness and was estimated by

measuring lesion size and latent period (time elapsed from

inoculation to spore production). Such adaptive traits contribute

to the epidemiological success of this pathogen and closely

correlate with spore production and infection frequency [19].

A detached leaflet laboratory screen of 26 P. infestans isolates on

five contemporary potato cultivars varying in foliar late blight

resistance (Tables S5 and S6 in Text S2) was conducted at 13uC
and 18uC. The isolates comprised representatives of the 9 MLGs

in the 2006 British survey and reference isolates from other years

and other European countries. MLG 13_A2 isolates consistently

ranked among the most aggressive, showing among the shortest

latent periods and the largest lesions of the MLGs tested, on all

potato cultivars (Figure 2, Figures S6, S7, S8 in Text S1). This

effect was more pronounced at 13uC than at 18uC, suggesting that

MLG 13_A2 is better adapted to cooler conditions. Consistent

with its frequency in the population (Figure 1C), MLG 6_A1 was

also shown to be aggressive in this test.

Measurements of the lesion size produced on two different

potato cultivars by a 13_A2 MLG isolate (06_3928A) and by the

reference genome strain T30-4 [23], showed that 06_3928A

formed larger lesions, with a shorter latent period than T30-4

(Figure S9 in Text S1). Also, we observed marked differences in

the pattern of induction of the Cdc14 gene in these two isolates

during the biotrophic phase of infection on potato. This marker

gene is associated with sporulation [33], and was induced earlier

and more strongly in the biotrophic phase of infection by

06_3928A than by T30-4 which is consistent with the shorter

latent period in 06_3928A (Figure S10 in Text S1).

P. infestans genotype 13_A2 out-competes other
aggressive genotypes

The above experiments demonstrate that, in a single disease

cycle, 13_A2 isolates tend to be more aggressive than other MLGs

under laboratory conditions. We went further to examine the

ability of MLG 13_A2 to compete directly with other MLGs over

many disease cycles in a field epidemic via a ‘mark and recapture’

experiment. The central potato plant of each of 20 field plots (five

cultivars) was inoculated with a mixture of five isolates: 13_A2

(isolate 06_3928A) and representatives of four other contemporary

MLGs, including 6_A1 (Table S5 in Text S2). Infected leaves from

the ensuing epidemic were sampled over 21 days and 716 blight

lesions were fingerprinted using direct SSR analysis. 13_A2 was

the most prevalent MLG recovered, being responsible for the

disease in 93–100% of the lesions sampled (Figure 3A). This high

frequency was noted on all five cultivars which supported the field

survey data showing a high recovery rate of 13_A2 MLG isolates

from the ten most sampled cultivars (Figure 3B and Figure S11 in

Text S1). In accordance with our results on the aggressiveness of

13_A2 at 13uC, the cool and wet conditions during the field trial

(Figure S12 in Text S1) may have favoured the spread of MLG

13_A2. Combined, these results provide strong evidence that

isolates of 13_A2 MLG are more fit and aggressive than other

MLGs on many host cultivars and under field and laboratory

conditions, and are consistent with data on other P. infestans

population displacements [34].

P. infestans genotype 13_A2 overcomes resistance of the
Stirling potato cultivar

In field trials since 2006, significant levels of disease were observed

on some cultivars known to be partially resistant to foliar blight since

the 1990s, such as Stirling [35] and Lady Balfour, a cultivar used in

organic production. This was supported in subsequent whole-plant

resistance screens which indicated a collapse of Stirling’s resistance

(Figure 4). We examined the ability of many isolates of 13_A2 MLG

to overcome foliar late blight resistance on eleven potato R

differential plants that contain immune receptor genes derived from

the Mexican species Solanum demissum. All isolates of 13_A2 were able

to cause disease on all the differential plants, except R8 and R9

(Table S5 in Text S2 and Figure S13 in Text S1). This indicates that,

in addition to being particularly aggressive on susceptible potato

cultivars, isolates of 13_A2 caused more disease on a broader

spectrum of late blight resistant potato cultivars than isolates

belonging to other P. infestans MLGs.

Genome sequence of isolate 06_3928A of P. infestans
genotype 13_A2

In late blight resistant potato plants, hypersensitive cell death and

resistance are triggered by recognition of specific pathogen RXLR

effectors by matching R proteins [26]. Effectors are pathogen

proteins delivered inside plant cells to promote host colonization, for

instance by suppressing plant immunity [36]. RXLR proteins,

encoded by ,563 genes in the P. infestans T30-4 genome [23], are

the main class of host translocated effectors. Some RXLR effectors

are said to have an ‘‘avirulence’’ activity when acting as triggers of

plant immunity. To determine the genetic features, in particular the

effector gene repertoire, associated with the 13_A2 MLG pheno-

type, we generated ,58-fold genome coverage Illumina paired-end

reads of isolate 06_3928A (see details in Text S3). We processed the

sequences first by aligning the reads to the reference genome of P.

infestans strain T30-4 [23], and then by performing de novo assembly

of unaligned reads. In total, 95.6% of the 06_3928A reads aligned to

the T30-4 sequence (Table S7 in Text S2). We detected 18,106

Genome of Aggressive Potato Late Blight Lineage
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Figure 1. P. infestans population displacement in Great Britain by the 13_A2 genotype. (A) Frequency of multilocus genotypes (MLGs) over
the course of 11 years from more than 4000 potato blight outbreaks. The number of isolates fingerprinted each year and dominant MLGs of each
mating type are indicated. Isolates of MLGs that occurred at a very low frequency in a single year are grouped under the category termed ‘misc’. The
shading between the bars indicates the proportion of A1 and A2 mating type isolates. (B) Minimum Spanning Trees based on the alleles at 11 SSR loci
indicating the relatedness of the main MLGs and decrease in population diversity between the periods 2003–5 and 2008. The numerous short
branches from the 13_A2 MLG node reflect the high mutation rate in some SSR markers that results in intra-MLG diversity (n is the number of isolates
from which the trees are derived). (C) Spatial pattern of spread two dominant MLGs across Great Britain (GB) from 2006–2008 (the numbers of isolates
are indicated on each pie chart).
doi:10.1371/journal.ppat.1002940.g001

Figure 2. 13_A2 genotype is among the most aggressive P. infestans genotypes on potato. Aggressiveness of 26 P. infestans isolates
grouped into 10 multilocus genotypes (MLGs) on leaves of five potato cultivars (A to E) estimated using mean latent period (x-axis) and mean lesion
size at 6 days post inoculation (dpi) (y-axis). Measurements made at 13uC and 18uC are indicated with empty and filled symbols, respectively, and the
three most aggressive MLGs colour-coded. (F) The sum of the ranked positions of each MLG according to lesion size at 13uC and 18uC indicates that
6_A1 and 13_A2 isolates more often had the largest lesions (particularly at 13uC). The standard errors (s.e.) and degrees of freedom (d.f.) for cultivar by
MLG comparisons of latent period and lesion size at 13uC and 18uC (charts A to E) are shown in the lower corner of the figure.
doi:10.1371/journal.ppat.1002940.g002
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coding sequences with an average breadth of coverage of 99.2%

(Table S8 in Text S2). We optimized bioinformatic parameters for

calling single nucleotide polymorphisms (SNPs) to reach 99.9%

accuracy and 85.8% sensitivity (Figure S14 in Text S1). Using these

parameters, we identified 22,433 SNPs in 5,879 coding sequences of

06_3928A (Tables S8 in Text S2 and Table S9). This is similar to

the 20,637 and 21,370 SNPs reported for P. infestans isolates

PIC99189 and 90128, respectively [24] (Table S8 in Text S2). Of

the total SNPs discovered, 11,795 were unique to 06_3928A among

the four examined strains, indicating a considerable degree of

variation in the 13_A2 isolate (Table S9 and Figure S15 in Text S1).

High dN/dS rates are frequent among RXLR effectors in P.
infestans genotype 13_A2 isolate 06_3928A

To detect signatures of positive selection in the 13_A2 lineage, we

calculated rates of synonymous (dS) and nonsynonymous (dN)

substitutions for every gene (Table S10). Of the 22,523 coding

sequence SNPs, 11,421 are nonsynonymous (51%) corresponding to

an average dN/dS rate of 0.34. Secreted protein genes, particularly

RXLR effector genes, show higher dN rates compared to other

categories (Figure 5). Of the 405 SNPs detected in RXLR genes,

278 are non-synonymous (69%) corresponding to an average dN/

dS rate of 0.53 (Table 1 and S11). RXLR effectors are modular

proteins with N-termini involved in secretion and host-translocation

while C-termini encode the effector biochemical activity [25,37].

The C-terminal domains of RXLR effector genes are highly

enriched in nonsynonymous substitutions as previously noted in

other oomycete species (Figure 6) [38]. Several RXLR effector

genes show high dN/dS ratios and multiple replacements in their C-

terminal domain (Figure S16A–C in Text S1). In addition to RXLR

effectors, other secreted proteins including a Kazal-like serine

protease inhibitor show high dN/dS ratios (Figure S16D in Text

S1). These amino acid polymorphisms could contribute to the

enhanced aggressiveness and virulence phenotypes of this genotype.

Copy number variations are frequent among RXLR
effectors genes in P. infestans genotype 13_A2 isolate
06_3928A

To estimate copy number variation (CNV) in the resequenced

genome of P. infestans 13_A2 isolate 06_3928A relative to T30-4,

we used average read depth per gene and GC content correction

Figure 3. Field aggressiveness of five P. infestans genotypes estimated using mark-and-recapture methods during a controlled
blight epidemic. The proportion of each multilocus genotypes (MLG) recovered amongst 716 foliar blight lesions over a 21 day epidemic initiated
with 5 P. infestans isolates of known MLG presented by (A), sampling date and (B), Cultivar. Note; in each case the Y-axis scale is set from 0.7 to 1.0 to
more clearly reveal the proportion of the non-13_A2 MLGs. The isolates of ‘Other’ MLGs were of non-introduced clonal MLGs that migrated into the
trial.
doi:10.1371/journal.ppat.1002940.g003

Genome of Aggressive Potato Late Blight Lineage
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(see Text S3). We detected 367 CNV events in 06_3928A

genes, of which there are 320 duplications and 47 deletions

(Tables S12, S13). In agreement with other studies [23,24]

genes showing deletions and duplications occur more fre-

quently in the plastic gene sparse regions of the 06_3928A

genome (Figure S17 in Text S1). RXLR effector genes show

higher rates of CNV compared to other gene categories (Figure

S18 in Text S1 and Table S13). We identified two RXLR

effectors with ,4–5 additional gene copies in the isolate

06_3928A and this was validated with a realtime PCR assay in

17 of 18 other isolates of 13_A2 MLG. Another 18 P. infestans

MLGs had lower copy numbers suggesting the higher copy

number duplications are unique to 13_A2 MLG isolates

(Figure S19 in Text S1). Remarkably, 21% (10 out of 47) of

the genes that are deleted in 06_3928A encode RXLR

effectors (Table S14 in Text S2). 13_A2 MLG isolates are

able to infect potatoes carrying the R1 gene (Figure S13 in

Text S1) which is consistent with our finding of an ,18 Kb

deletion encompassing the region surrounding the Avr1 RXLR

effector gene in the 06_3928A isolate (Figure S20 in Text S1)

[26,39].

Assembly of unmapped reads from P. infestans genotype
13_A2 isolate 06_3928A reveals novel candidate RXLR
effector genes

To identify sequences that are unique to 06_3928A, we

performed de novo assembly of the unmapped Illumina reads and

identified a total of 2.77 Mb contigs that did not align to P. infestans

T30-4 sequences. Ab initio and homology based gene calling in

these 06_3928A-specific contigs revealed 6 candidate RXLR

effector genes absent in the T30-4 reference genome strain (Table

S14 in Text S2). All 6 RXLR genes were subsequently confirmed

by PCR on genomic DNA to be present in the 06_3928A isolate

and absent in T30-4 (see Text S3, Table S15 in Text S2). Among

these, a highly divergent homolog of Avr2 evades recognition by

the R2 resistance gene and explains the virulence of 06_3928A on

R2 potatoes (Tables S14, S15 in Text S2 and Figure S13 in Text

S1) [26,40]. Interestingly, the PCR testing also showed that the six

novel RXLR genes in the 06_3928A isolate of 13_A2 MLG are

present in various combinations in other multilocus genotypes

(MLGs) sampled from Great Britain. This illustrates the hetero-

geneity of the RXLR effector repertoire that can occur within the

wider P. infestans population. These findings point to a series of

Figure 4. Breakdown of the blight resistance in Stirling potato cultivar by 13_A2 genotype. (A) Outcome of whole plant resistance tests of
potato cultivar Stirling 7 days post inoculation with isolates of five multilocus genotypes (MLGs): 06_3888A (2_A1), 06_4100A (6_A1), 06_4256B (8_A1),
06_4440C (10_A2), 06_3928A, 06_4132E, 06_3964A and 06_3884B (13_A2). (B) Mean foliar blight resistance rating (on a 1–9 scale of increasing
resistance) of potato cultivar Stirling in field trials conducted at two sites between 2000–2002 (n = 5) and between 2007–2010 (n = 4; after the
introduction of MLG 13_A2). The data are compared to the resistance rating of 7.5 reported in 1998. Error bar indicates s.e. = 0.3675 d.f. = 1.
doi:10.1371/journal.ppat.1002940.g004
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genetic polymorphisms that collectively contribute to the aggres-

siveness and virulence phenotype of the 13_A2 MLG.

Gain and loss of gene induction in RXLR effectors of P.
infestans 13_A2 isolate 06_3928A

The phenotype of the 13_A2 MLG may not only result from

changes in gene coding sequences as documented above, but also

from changes in gene expression. An infection time course was

performed by hybridizing NimbleGen microarrays with cDNA

from potato leaves harvested at 2–4 days post inoculation (dpi)

with P. infestans 06_3928A, the T30-4 reference genome strain, and

a third strain, NL07434, collected in 2007 in The Netherlands (see

Text S3). We observed frequent expression polymorphisms

between the three strains with 1,123 genes specifically induced

in 06_3928A, compared with 110 in T30-4 and 891 in NL07434

(Figure 7A, Table S16). Remarkably, only 398 out of 4,934 genes

were induced in all three strains indicating distinct isolate-specific

sets of genes induced during potato infection (Figure 7A). P.

infestans effector genes are sharply induced during the biotrophic

phase of infection, when the pathogen associates closely with living

plant cells [23,26]. We identified 104 RXLR effector genes that

are induced during biotrophy in 06_3928A compared to only 79

and 68 in T30-4 and NL07434, respectively (Figure 7A, Table

S11). Of these 104 RXLR genes, expression of 20 was specifically

detected in the 06_3928A isolate but not in the other two

(Figure 7A, Figure S21 in Text S1). In contrast, 18 RXLR effector

genes are not induced in 06_3928A but are induced in at least one

of the other two isolates (Figure 7A). One of these genes, Avr4 is

recognized by the R4 resistance gene [26,41]. The lack of

induction of Avr4 in 06_3928A (Figure S21 in Text S1) is

consistent with the virulence of 13_A2 isolates on plants containing

R4 (Figure S13 in Text S1). The updated repertoire of RXLR

effectors and their expression profiles presented in this study

provides additional data for systems biology approaches to

understanding the role of effectors in plant-microbe interactions

[42].

P. infestans 13_A2 isolate 06_3928A shows patterns of
sustained gene induction and extended biotrophic
growth during potato infection

We noted a distinct temporal pattern of in planta gene induction

in 06_3928A. Most up-regulated genes in this isolate showed

sustained induction over 2 and 3 dpi in contrast to T30-4 and

NL07434, in which transcript abundance generally declines at

3 dpi (Figure 7B–C, Table S16) coinciding with the onset of host

tissue necrosis [23]. These findings prompted us to determine the

extent to which gene induction patterns and disease progression

correlate in 06_3928A and these other isolates. Microscopic

observations of lesions caused by 06_3928A revealed significantly

larger biotrophic zones during infection (Figure 7D). The genes

Figure 5. Distribution of polymorphism in genes of P. infestans 13_A2 isolate 06_3928A. Y-axis indicates the frequency of synonymous
substitutions (dS) in (A) and nonsynonymous substitutions (dN) in (C) given for RXLR genes, other (non-RXLR) genes and core ortholog genes [23]. Y-
axis shows the rates of synonymous substitutions (dS) in (B) and nonsynonymous substitutions (dN) in (D) given for RXLR genes, other (non-RXLR)
genes and core ortholog genes. Box and whisker plots in (B and D) show median, first and third quartile, and first values beyond 1.5 times the
interquatile range.
doi:10.1371/journal.ppat.1002940.g005
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showing a sustained induction period in 06_3928A include

putative virulence factors such as RXLR effectors, cell wall

hydrolases, proteases and protease inhibitors (Table S16). The

extended biotrophic phase of 06_3928A during host plant

colonization, combined with expression of a range of effectors

and other secreted virulence determinants, likely contribute to the

enhanced aggressiveness (Figure 2) and field fitness of MLG 13_A2

isolates. However, additional work is required to determine exactly

which genes contribute to MLG 13_A2 aggressiveness and fitness.

Exploiting the RXLR effector repertoire to manage P
infestans 13_A2 epidemics

The genome analyses of MLG 13_A2 offers opportunities to

identify useful forms of host resistance. The 45 ‘‘core’’ RXLR

effectors showing in planta gene induction during biotrophy in all 3

examined strains include 5 known avirulence effector genes

(Figure 7A). Whilst homologs of Avr2 [40] and Avr3a [43] in the

06_3928A isolate contain sequence polymorphisms and are known

to evade recognition in plants carrying the corresponding R2 and

R3a genes (Figure S13 in Text S1), Avrblb1 [44], Avrblb2 [45] and

Avrvnt1 [46] occur as intact coding sequences that are induced

during infection (Figure 8A). These three Avr effectors are

therefore predicted to be recognized by their cognate immunor-

eceptors. To determine whether 13_A2 MLG can infect plants

carrying the Rpi-blb1, Rpi-blb2 and Rpi-vnt1.1 resistance genes, we

used isolate 06_3928A to inoculate stable transformant potato cv.

Desiree lines expressing, independently, each of the three R genes.

In each case, 06_3928A was unable to infect the R potatoes and

triggered a typical hypersensitive response (Figure 8B) indicating

that the three R genes are effective against this 13_A2 MLG

isolate. Such sources of resistance will thus be an effective

component of any integrated management system against late

blight caused by genotype 13_A2.

Conclusions
We report the emergence of an aggressive clonal lineage of P.

infestans, multilocus genotype (MLG) 13_A2, and its rapid

displacement of other genotypes within the Great Britain (GB)

population. MLG 13_A2 has overcome previously durable disease

resistances in potato, such as in cultivar Stirling and is resistant to

phenylamide fungicides. Late blight caused by this lineage has thus

proved challenging to manage and its migration to other potato

growing regions of the world poses a threat to sustainable crop

production. Therefore, there is a need, when developing a strategy

for deploying disease resistance, to identify and respond rapidly to

dramatic changes, and new epidemics caused by emerging

genotypes within the pathogen population. Genome analyses of

the 13_A2 isolate 06_3928A revealed a high rate of sequence

variation and a remarkable pattern of extended biotrophic growth,

which may explain 13_A2’s aggressiveness and ability to cause

disease on previously resistant potato cultivars. The genome

analysis proved valuable in identifying RXLR effectors sensed by

potentially durable potato resistance genes. This stresses the

benefits of a crop disease management strategy incorporating

knowledge of the geographical structure and evolutionary

dynamics of pathogen lineages combined with data on their

genome sequence diversity (and in planta induced effector gene

complement). Such data, when linked to the host R gene repertoire

[47], offers options for strategic deployment of host resistance with

a positive impact on crop yield and food security.

Materials and Methods

Pathogen surveillance and isolate characterisation
P. infestans isolates were obtained from more than 1,100

outbreaks of potato late blight across Great Britain (GB) from

2003 to 2008. The locations of 672 outbreaks sampled in 2006 to

2008 and further details on sampling and pathogen characterisa-

tion are available (Figure S1 in Text S1 and Text S3). The mating

type of each of 4,654 isolates collected in this study was tested by

pairing with known tester isolates on Rye A agar plates. After an

initial screen of the new A2 mating type lineages using the RG57

[48] RFLP probe (Table S2A in Text S2), all isolates were

genotyped using 11 SSR markers [18] in 3 multiplexed PCR

assays using fluorescently labelled primers on an ABI 3730

capillary sequencer (Tables S2 and S3 in Text S2 and Text S3).

The SSR data were used to define MLGs, explore the relatedness

amongst the multilocus genotypes (MLGs) and to describe the

population change. Due to the presence of three alleles in some

isolates, we calculated clonal distance [49] using the infinite alleles

mutation model, to quantify genetic distance between MLGs. This

distance essentially counts the number of alleles that differ between

individuals. Isolates with null alleles were included, but any isolates

that were not genotyped at one or more loci were excluded.

Distance among multilocus genotypes was calculated in GenoDive

(Distributed by P. G. Meirmans at http://www.bentleydrummer.

nl/software/software/Home.html). Minimum spanning networks

were calculated by MINSPNET [50] and visualized using neato in

the Graphviz package [51]. The numbers of isolates used to

construct the trees were 748, 795, 1,072, and 892 for 2003–2005,

2006, 2007, and 2008, respectively (Figure 1B and Figure S4 in

Text S1).

Table 1. Summary of nonsynonymous and synonymous single nucleotide polymorphisms (SNPs) in coding genes (CDSs) of P.
infestans 06_3928A compared to T30-4 reference genome strain.

SNP count* All genes Core orthologs RXLRs

Total No. of SNPs in coding genes 22,433 11,612 405

Total No. of nonsynonymous SNPs in coding genes 11,421 5,439 278

Total No. of synonymous SNPs in coding genes 11,012 6,173 127

No. of genes with at least one SNP 5,879 2,754 118

Average dN/dS{ 0.34 0.3 0.53

*count of SNPs causing loss of stop codons were omitted;
{dN/dS rates were calculated using Yang method reported in Yang and Nielsen [56].
Nonsynonymous and synonymous SNPs were calculated for all genes, core orthologs and RXLRs. Core orthologs as genes showing orthologous sequences 1:1:1 in
P. infestans: P. ramorum: P. sojae genomes respectively [23].
doi:10.1371/journal.ppat.1002940.t001
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Aggressiveness and fitness testing in the laboratory and
field

Representative isolates from the main MLGs from Great Britain

plus a selection of reference isolates from other countries were used

to examine two components of aggressiveness [19] (lesion size and

latent period) on five contemporary potato cultivars (Tables S5 and

S6 in Text S2) as follows. For each cultivar, leaflets of a similar age

and size were placed in clear plastic boxes (26 leaflets per box) lined

with moist tissue paper. After chilling to stimulate zoospore release,

a droplet of 30 ml of inoculum (approx 420 sporangia) of each of the

26 isolates was applied to the centre of each leaflet. A total of 60

boxes of leaves were inoculated and 30 placed in a randomised

block design with six replicate blocks in each of two adjoining

illuminated walk-in growth rooms set at a constant 13uC or 18uC

Figure 6. Distribution of single nucleotide polymorphisms (SNPs) along the coding sequence (CDS) of RXLR effector genes in P.
infestans 13_A2 isolate 06_3928A. (A) Summary of nonsynonymous and synonymous SNPs in CDSs (all genes, core orthologs and RXLRs) of
06_3928A compared to T30-4 reference genome strain. Core orthologs as genes showing orthologous sequences 1:1:1 in P. infestans: P. ramorum:
P. sojae genomes respectively [23]. (B) Distribution of the number of synonymous and non-synonymous SNPs in the N-terminal and C-terminal
domain of RXLR effector genes in 06_3928A isolate. Box and whisker plots show median, first and third quartile, and first values beyond 1.5 times the
interquartile range.
doi:10.1371/journal.ppat.1002940.g006
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with 16/8 hours of light and dark. The 1,560 leaflets were scored

daily for first symptoms (i.e. infection period, IP), and sporulation

(i.e. latent period, LP) and at six days post inoculation (dpi), lesion

size was measured in two orientations at right angles to each other

using electronic calipers connected to a laptop computer.

A randomised block field trial comprising four replicate 25 plant

plots of the five potato cultivars used in the laboratory assay was

established. In mid-July an equal mixture of sporangia of 5 isolates

(different MLGs) were used to infect the lower leaves of the central

plant in each plot. Once the disease had spread from the central

plant, single lesions were sampled from the epidemic over the

following three weeks and direct SSR fingerprinting of P. infestans

from lesions pressed onto FTA cards (Whatman, UK) was used to

determine the MLG. For additional details see Text S3.

Whole-genome sequence analysis
Genome sequencing of P. infestans 13_A2 isolate 06_3928A was

performed in 2G GAs (Illumina Inc.) and alignments were

obtained with Burrows-Wheeler Transform Alignment (BWA)

software package v0.5.7 with a seed length (l) of 38 and a

maximum of mismatches (M) allowed of 3 as parameters [52].

Unmapped reads of P. infestans 13_A2 isolate 06_3928A were

assembled using VELVET software package v1.0.18 [53] and

mapped to the reference genome using NUCmer program from

MUMmer software package v3.2 (see details in Text S3) [54].

A False Discovery Rate (FDR) analysis was used to determine

the performance of single nucleotide polymorphism (SNP) calling

in the 06_3928A genome (Figure S14 in Text S1 and Text S3).

Single nucleotide polymorphisms (SNPs) were called using a 90%

consensus among reads calling a SNP with a minimum of 106
coverage (Figure S16 in Text S1). Rates of synonymous

substitution (dS), non-synonymous substitution (dN) and omega

(dN/dS) were calculated using the yn00 program of PAML [55]

by implementing the Yang and Nielson method [56] for every

coding gene predicted in 06_3928A in comparison to the

homologous gene in the reference genome strain T30-4

(Figure 5, Table S10). Differences in frequencies of nonsynon-

ymous minus synonymous SNPs were counted per 15 bp-long

windows and sliding by 3 bp steps. Frequencies were calculated as

the number of SNPs per bp per gene and averaged over 20

consecutive windows (Figure 6A). The 20 windows adjacent to the

RXLR motif were considered for each of the domains. Numbers

of SNPs in RXLR gene domains were counted per 15 bp-long

windows and sliding by 3 bp steps (Figure 6B). A total of 118

RXLRs, 3,077 core orthologs and 2,442 gene-dense regions

(GDR) genes that contain at least 1 SNP were analyzed (Figure 6).

Whole-genome expression profiling
The NimbleGen microarray data are available in GEO under

accession number GSE14480 for P. infestans T30-4 [23] and

GSE33240 for P. infestans 06_3928A and NL07434. Genes that are

induced in planta were identified using a t-test (p value,0.05, .2

Figure 7. Gene expression polymorphisms correlate with
extended biotrophy in P. infestans 13_A2 isolate 06_3928A. (A)
Number of genes (left) and RXLR effector genes (right) that are induced
during potato infection in P. infestans T30-4, 06_3928A and NL07434
strains. Only a small subset of genes is consistently induced in the three
strains. (B) Average gene expression pattern during potato infection for
all genes (left) and RXLR effector genes (right) induced in all three
P. infestans strains analyzed. A consistent divergence is observed at 3
days post inoculation (dpi) when gene induction is maintained in the

06_3928A isolate only. (C) Number of all (left) and RXLR effector genes
(right) induced at various time points during potato infection in each of
the three P. infestans strains. Compared to other strains, 06_3928A
shows the highest number of genes that are induced both at 2 and
3 dpi. (D) Variation in the size of the biotrophic area (infected living
host tissue) in lesions induced by three P. infestans strains during potato
infection. Error bars are s.e.m. over 28 measurements at 2, 3 and 4 dpi.
Representative pictures illustrate the sizes of the necrotrophic (infected
dead host tissue, centre of the lesion) and biotrophic (periphery of the
lesion, lighter grey ring) growth (mm) with the respective P. infestans
strain in color (blue for 06_3928A, red for T30-4 and orange for NL07434
strain) from lesions at 3 dpi.
doi:10.1371/journal.ppat.1002940.g007
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fold expression changes) and False Discovery Rate (FDR) analysis

(q-value,0.05) [57] in samples from infected potato leaves relative

to plate-grown in mycelia (see more details in Text S3).

Supporting Information

Text S1 Supplementary Figures S1–S21.
(PDF)

Text S2 Supplementary Tables S1–S8 and S14–S15.
(DOC)

Text S3 Supplementary Materials and Methods; (S3a)
Pathogen sampling and genotyping: (S3b) Aggressive-
ness and virulence testing: (S3c) Pathogen whole-
genome and expression analyses.
(DOC)

Table S9 List of single nucleotide polymorphisms
(SNPs) detected in P. infestans 13_A2 isolate 06_3928A
genome. This list includes details of SNPs calculated in coding

sequences (CDSs) from 06_3928A genome. SNPs described as

unique in 06_3928A are those SNPs that were not found in the

isolates 90128 and PIC99189 [24]. A SNP was estimated when on

90% of the aligned bases encoded for that SNP with a minimum

read depth of 10. This list excludes 90 SNPs causing loss of stop

codons out of the 22,523 total number of SNPs detected in all

coding sequences of 06_3928A isolate.

(XLS)

Table S10 Polymorphism data associated to each gene
of P. infestans 13_A2 isolate 06_3928A genome. The table

provides the number of all single nucleotide polymorphisms

(SNPs), the number of synonymous SNPs, the number of

nonsynonymous SNPs, the rate of synonymous (dS), the rate of

nonsynonymous (dN), and the dN/dS ratio estimated in each of

the coding gene sequences (CDSs) from 06_3928A isolate.

(XLS)

Table S11 List of genome features and expression
profiles of RXLR effectors of P. infestans 13_A2 isolate
06_3928A. This list includes as features of RXLRs: 1) the

presence of secretion signals [23,58]; 2) whether they belong to the

1:1:1 Phytophthora spp. core orthologs (P. infestans: P. sojae: P.

ramorum) [23]; 3) RXLR family; 4) gene environment based on

intergenic distances [24]; 5) presence/absence polymorphism

according to average breadth of coverage (e.g. 0% is considered

as missing); 6) the predicted number of additional gene copies in

the genome (e.g. 1 is equivalent to one additional gene copy); 7)

number of single nucleotide polymorphisms (SNPs), 8) number of

nonsynonymous SNPs; 9) number of synonymous SNPs; 10)

omega (dN/dS); 11) nonsynonymous dN rates; 12) synonymous dS

rates and 13) if there is gene induction in potato.

(XLS)

Table S12 List of 320 genes of P. infestans 13_A2 isolate
06_3928A showing duplications copy number variation
CNV.1 (genes with at least one additional gene copy
predicted in 06_3928A). This list includes for each of the 320

coding genes: 1) annotations [23]; 2) the presence of secretion

signals [23,58]; 2) whether they belong to the 1:1:1 Phytophthora

spp. core orthologs (P. infestans: P. sojae: P. ramorum) [23]; 3) the

effector type; 4) RXLR family [23]; 5) gene environment based on

intergenic distances [24]; 6) the predicted number of additional

gene copies in the genome (e.g. 1 is equivalent to one additional

gene copy).

(XLS)

Table S13 List of 47 genes of P. infestans 13_A2 isolate
06_3928A showing presence absence polymorphisms.
This list includes for each of the 47 coding genes: 1) annotations

[23]; 2) the presence of secretion signals [23,58]; 2) whether they

belong to the 1:1:1 Phytophthora spp. core orthologs (P. infestans: P.

sojae: P. ramorum) [23]; 3) the effector type; 4) RXLR family [23]; 5)

gene environment based on intergenic distances [24]; 6) the

estimated average breadth of coverage of the gene.

(XLS)

Table S16 List of 4,934 genes of P. infestans and their
expression profiles during infection on potato. This list

includes for each of the 4,934 coding genes: 1) annotations [23]; 2)

the presence of secretion signals [23,58]; 2) whether they belong to

the 1:1:1 Phytophthora spp. core orthologs (P. infestans: P. sojae: P.

ramorum) [23]; 3) the effector type; 4) RXLR family [23]; 5) gene

Figure 8. Invariant avirulence genes in P. infestans 06_3928A identify efficient plant resistance genes. (A) Expression patterns of three
avirulence genes in P. infestans T30-4 (red) and 06_3928A strains (blue) during potato infection. In addition to sequence conservation, these genes
also show conserved gene induction patterns in 06_3928A. (B) The corresponding potato resistance genes confer resistance to P. infestans T30-4 and
06_3928A strains.
doi:10.1371/journal.ppat.1002940.g008
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environment based on intergenic distances [24]; 6) if there is gene

induction in potato.

(XLS)
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