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Abstract: MicroRNAs (miRNAs) are small non-coding RNAs that are about 22 nucleotides in length.
They regulate gene expression post-transcriptionally by guiding the effector protein Argonaute
to its target mRNA in a sequence-dependent manner, causing the translational repression and
destabilization of the target mRNAs. Both Drosha and Dicer, members of the RNase III family proteins,
are essential components in the canonical miRNA biogenesis pathway. miRNA is transcribed into
primary-miRNA (pri-miRNA) from genomic DNA. Drosha then cleaves the flanking regions of pri-
miRNA into precursor-miRNA (pre-miRNA), while Dicer cleaves the loop region of the pre-miRNA
to form a miRNA duplex. Although the role of Drosha and Dicer in miRNA maturation is well
known, the modulation processes that are important for regulating the downstream gene network
are not fully understood. In this review, we summarized and discussed current reports on miRNA
biogenesis caused by Drosha and Dicer. We also discussed the modulation mechanisms regulated
by double-stranded RNA binding proteins (dsRBPs) and the function and substrate specificity of
dsRBPs, including the TAR RNA binding protein (TRBP) and the adenosine deaminase acting on
RNA (ADAR).

Keywords: microRNA biogenesis; Dicer-associated proteins; dsRBP; TRBP; ADAR; PACT; LGP2;
miRNA–mRNA network

1. Introduction

MicroRNAs (miRNAs) are single-stranded RNAs of approximately 22 nucleotides in
length and are classified as small non-coding RNAs. The miRNAs regulate gene expression
post-transcriptionally by a mechanism known as RNA silencing, where miRNA is loaded
onto Argonaute (AGO), a core component of the miRNA-induced silencing complex
(miRISC) [1]. While on AGO, the miRNA recognizes target mRNAs that have sequences
that are complementary to the “seed region” (positions 2–8 from the 5′ end) of the miRNA
in their 3′ untranslated region [2]. As the seed region only consists of seven nucleotides,
each miRNA is capable of recognizing and regulating many types of mRNAs, indicating
that miRNA–mRNA gene expression networks are highly complicated.

Some of the miRNAs that have been discovered in diverse eukaryotes are evolu-
tionally conserved, while others are species specific [3–6]. The first two miRNAs, lin-4
and let-7, were discovered in Caenorhabditis elegans (C. elegans) through the analysis of the
heterochronic gene mutants that undergo development/differentiation at an abnormal
time within the organism [7–9]. Let-7 is evolutionally conserved across various species,
including in humans. In human lung cancer cells, let-7 regulates cell proliferation and
also suppresses the expression levels of NRAS and KRAS, two genes that induce onco-
genic transformation when mutated [10–12]. Thus, although let-7 is conserved in both
C. elegans and humans, its function in the two species is different. As for species-specific
miRNAs, more than 2000 human and mouse miRNAs have been registered in the miRBase
database [13], whereas about 400 miRNAs have been registered for Drosophila melanogaster
and C. elegans as well as about 200 miRNAs for Xenopus, suggesting that higher organisms
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may have more miRNAs compared to lower organisms. The species-specific miRNAs
in the higher organisms play an important role in divergent physiological phenomena,
including development, differentiation, apoptosis, and cell growth [14]. Human-specific
miRNAs are often associated with cognition and neurological disorders [15].

At the initial stage, miRNA is transcribed by RNA polymerase II (Pol II) as primary-
miRNA (pri-miRNA), which has stem loop structures [16,17] (Figure 1). In the canonical
miRNA biogenesis pathway, the flanking regions of the pri-miRNA are cleaved to generate
precursor-miRNA (pre-miRNA) in the nucleus by a microprocessor complex consisting of
Drosha, a member of the RNase III family proteins, and its cofactor DiGeorge syndrome crit-
ical region 8 (DGCR8), a double-stranded RNA (dsRNA) binding protein (dsRBP) [18–20].
The pre-miRNA is transported from the nucleus to the cytoplasm by Exportin-5 (EXP5),
which then couples with GTP-bound Ran [21]. In the cytoplasm, Dicer, an RNase III family
protein, cleaves off the loop region of the pre-miRNA to generate a miRNA duplex in
collaboration with the trans-activation response (TAR) RNA binding protein (TRBP) in the
canonical miRNA biogenesis pathway [22,23]. The interaction of the Dicer–TRBP complex
with Argonaute (AGO) facilitates the loading of the miRNA duplex onto AGO to form the
RISC-loading complex (RLC) [24–26]. The miRNA duplex is then unwound into single
stranded miRNAs; the RNA strand that remains on the AGO protein acts as the miRNA,
while the other strand is discarded [27]. The former is called the guide strand, and the
latter is called the passenger strand. The mature miRNA on the AGO protein guides the
RISC to target mRNAs that have sequences that are complementary to the seed region
of the miRNA. After binding to the mRNA, AGO recruits the trinucleotide repeat con-
taining 6 (TNRC6) protein, a scaffold protein tethering effector proteins to destabilize and
translationally repress target mRNAs by inducing their decapping and deadenylation [28].
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Figure 1. Overview of miRNA biogenesis and the RNA silencing pathway. Pri-miRNAs are transcribed from the genome
by Pol II. In the nucleus, pri-miRNA is cleaved by a microprocessor complex consisting of Drosha and DGCR8 to produce
pre-miRNA, which is then transported from the nucleus to the cytoplasm by EXP5 coupled with GTP-bound Ran (RanGTP).
Cleavage of pre-miRNA is performed by Dicer and its cofactor, TRBP, in a canonical miRNA biogenesis pathway. After
pre-miRNA cleavage, the miRNA duplex is loaded onto AGO proteins through formation of the RLC complex. The mature
miRNA guides the RISC complex to target mRNAs that are complementary to the seed region of miRNA. Recruitment of
the TNRC6 protein induces the destabilization and translational repression of the target mRNA.
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In mice, the knockout of Drosha and Dicer resulted in global miRNA deficiencies,
which suggests that both proteins are required for miRNA biogenesis [29–34]. While
both of them are classified as RNase III family proteins, their recognition mechanisms for
substrates and cofactors differ greatly [35,36]. Processing by Drosha requires DGCR8 as
a dedicated partner, unlike processing by Dicer, which does not require other proteins.
However, some Dicer-associated proteins are involved in the enhancement/inhibition of
Dicer activity. Here, we introduce the processing machinery of Drosha and Dicer and the
regulated substrate selectivity of Dicer.

2. Processing of Pri-miRNA by Drosha-DGCR8 Microprocessor

In the nucleus, pri-miRNA is transcribed from the genome as a single stranded RNA
that is hundreds to thousands of nucleotides in length and is cleaved by the micropro-
cessor complex, which comprises one Drosha molecule and two DGCR8 molecules [37]
(Figure 2a,b). The pri-miRNA forms a stem–loop hairpin structures with flanking re-
gions [38,39]. The terminal loop of pri-miRNA is recognized by DGCR8, and the stem–flank
junction of the pri-miRNA is recognized by the central domain (CED) of Drosha [40–44]
(Figure 2b). The microprocessor measures the nucleotide length from the stem–flank junc-
tion of the pre-miRNA, and cleavage is induced by the intramolecularly dimerized RNase
III domain a (RIIIDa) and RIIIDb (Figure 2a). As a result, a pre-miRNA with a 2-nucleotide
overhang at the 3′ end is generated [45].

Both Drosha and DGCR8 are classified as dsRBP superfamily proteins, which have
dsRBDs consisting of 65–70 amino acids [46–48] (Figure 2a). The dsRBDs of Drosha and
DGCR8 contribute to pri-miRNA binding (Figure 2b). The dsRBD binds to dsRNA via
a highly conserved αβββα motif [49,50]. Structural analysis indicates that dsRNA is
recognized by three regions of the αβββα motif: the N-terminal α-helix 1 (α-1) (region 1);
the loop region between β-strand 1 (β-1) and β-strand 2 (β-2) (region 2), which interact
with different minor grooves of the dsRNA; and the C-terminal α-helix 2 (α-2) (region 3),
which interacts with a major groove between the two minor grooves [51,52] (Figure 3).
Regions 1 and 2 mainly interact with the 2′-OH group of ribose in the minor groove of
RNA, which enables the dsRBD to distinguish RNA from DNA. Region 3 interacts with
the phosphodiester backbone of both strands of the major groove, which allows dsRBD to
specifically recognize the A-form helical structure with a narrow and deep major groove
rather than the B-form helical structure with a wide and shallow major groove. Unlike
other dsRBDs, an additional six amino acids are inserted in the linker region between
the α-1 and β-1 in dsRBD of Drosha, and their loss decreases its cleavage activity [53].
In contrast, the insertion of these amino acids into the linker region in the dsRBDs of
other dsRBPs decreases their ability to bind to dsRNAs, suggesting that dsRBDs have
intricate structures and functions according to the perturbations in the linker region. Recent
reports have also indicated that the dsRBD of Drosha structurally recognizes the GHG
motif (in which H is any nucleotide except G) conserved in the stem regions of some pri-
miRNAs [54,55] (Figure 2b). Several other sequence motifs are conserved in pri-miRNAs,
as shown in Figure 2b, and they facilitate the correct recruitment of microprocessors to
pri-miRNAs [37,56,57]. The microprocessor cleaves pri-miRNAs the through recognition
of the structural features of pri-miRNA by Drosha and DGCR8. It has been reported that
the embryonic stem cells from DGCR8-knockout mice showed global miRNA deficiency,
which indicates that DGCR8 is essential for the biogenesis of miRNAs [58]. To date, no
other Drosha partner proteins are required for the processing of pri-miRNA have been
identified, suggesting that DGCR8 may be Drosha’s only essential partner for pri-miRNA
cleavage. However, in unusual cases, the enhancer of rudimentary homolog (ERH) was
reported as an additional component of the microprocessor, and it facilitates the efficient
processing of suboptimal hairpin pri-miRNAs, including the miR-451 hairpin, through the
induction of the microprocessor multimerization [59].
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Figure 2. Domain structure of proteins involved in miRNA biogenesis and structural features of processing complexes of pri-
miRNA and pre-miRNA. (a) The domain structures of Drosha, DGCR8, Dicer, TRBP, PACT, ADAR1p150, and ADAR1p110.
CED indicates central domain; RIIIDa, RNase III domain a; RIIIDb, RNase III domain b; dsRBD, double-stranded RNA
binding domain; HBR, heme-binding region; DExD/H-box, DExD/H-box helicase; CTT, C-terminal tail; DUF283, domain of
unknown function; PAZ, Piwi–Argonaute–Zwille; Zα and Zβ, Z-DNA binding domain α and β, respectively; NES, nuclear
export signal; NLS, nuclear localization signal. (b) Pri-miRNA has a terminal loop, stem region, and flanking region as
common structural features, and some pri-miRNAs have conserved sequence motifs. UG is recognized by Drosha, UGU is
recognized by DGCR8, GHG is recognized by dsRBD of Drosha, and CNNC is recognized by Ser/Arg-rich splicing factor 3
(SRSF3). (c) Pre-miRNA is structurally characterized by a terminal loop, a stem region, and a 3′ end overhang.
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3. Processing of Pre-miRNA by Dicer

In eukaryotes, the domain structures of Dicer proteins are widely conserved; how-
ever, depending on the species, there are different mechanisms of substrate recognition.
Drosophila has two Dicer paralogs that have different functions: Dicer-1 (Dcr-1) acts on
the miRNA maturation pathway, and Dcr-2 acts on the small interfering RNA (siRNA)
pathway, the purpose of which is for dicing the long dsRNA [60]. Plants also have at least
four distinct classes of Dicer-like (DCL) proteins (DCL1–4) [61]. The DCL1 functions for
miRNA processing and the DCL2-4 redundantly function for siRNA production. Humans,
on the other hand, have only one Dicer gene, which functions in both pathways. It has
been reported that Dicer cleaves pre-miRNAs more efficiently than dsRNAs for siRNA
production in vitro [62–65]. Human Dicer is a multiple-domain protein (Figure 2a). An
electron microscopy study demonstrated that Dicer forms an L-shaped structure [66,67]
and recognizes the 3′-overhang of pre-miRNA by the Piwi, Argonaute, and Zwille (PAZ)
domain, while the phosphorylated 5′-end of the pre-miRNA is captured by the platform
domain [68,69] (Figure 2c). These two domains are arranged to be able to recognize the
structure of pre-miRNA [70,71]. In the 5′ and 3′ counting rules, Dicer measures the nu-
cleotide lengths from both ends of the pre-miRNA and cleaves the terminal loop of the
pre-miRNA by means of the intramolecular dimerization of two RNase III domains, RI-
IIDa and RIIIDb, generating a miRNA duplex [45,72]. Unlike human Dicer, Drosophila
Dcr-1 recognizes the terminal loop of pre-miRNA by its DExD/H-box helicase domain
and specifically cleaves pre-miRNAs in a loop size-dependent manner [73]. On the other
hand, Drosophila Dcr-2 recognizes the blunt end of dsRNA via its helicase domain and
processes the dsRNA for siRNA production [74]. The DExD/H-box helicase domain of
human Dicer does not have such substrate selectivity. The dsRBD of human Dicer also
cannot distinguish the stem region of the pre-miRNA from that of the dsRNA of the siRNA
in vitro [75], indicating that Dicer, on its own, has low substrate selectivity.
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4. Enhancement of Pre-miRNA Processing by Dicer via TRBP/PACT
4.1. The Role of TRBP and PACT in Pre-miRNA Processing by Dicer

Dicer-associated proteins regulate the substrate recruitment and the cleavage activity
of Dicer [76,77]. The processing of pre-miRNA is not only promoted by TRBP but also
by other Dicer-associated proteins, such as PACT, a protein activator of protein kinase R
(PKR) [76,78,79]. TRBP is a protein that binds to TAR RNA, a hairpin-structured RNA
that is encoded by human immunodeficiency virus type I [80]. PACT is a protein that was
initially identified as an activator of PKR [81]. TRBP and PACT have highly conserved
domain structures with three dsRBDs [82] (Figure 2a). The dsRBDs are divided into two
subclasses, type-A and type-B. Type-A has a conserved αβββα motif with a high affinity
to dsRNA [49,50]. Type-B, also termed half dsRBD, has poorly conserved N-terminal
sequences in the αβββα motif and is associated with protein–protein interactions [83,84].
The first and second dsRBDs of TRBP and PACT are type-As, and the third dsRBD is a
type-B that binds to Dicer through the DExD/H-box helicase domain [76,78,79].

Both TRBP and PACT interact with Dicer to promote the cleavage of the pre-miRNA
in the RLC containing AGO protein and the facilitate loading of the miRNA duplex onto
AGO [23,26,76,85,86]. It was reported that deletion or mutation of the DExD/H-box helicase
domain of Dicer activated the cleavage of its substrates, which suggested that this domain
inhibits catalytic activity rather than affecting RNA-substrate binding [87]. TRBP binds to
the DExD/H-box helicase domain of Dicer and stimulates the cleavage activity of Dicer.
Therefore, the DExD/H-box helicase domain functions as an intramolecular structural
switch that maintains Dicer in a low-activity state until the partner proteins interact with
its DExD/H-box helicase domain. In addition, it was reported that TRBP facilitates the
processing activity of pre-miRNA by Dicer in RNA-crowded molecular environments [88]
and that it also facilitates the recruitment of pre-miRNAs to the PAZ domain of Dicer.
Furthermore, the sliding motion of TRBP on dsRNA with Dicer has been reported [89].
This was associated with the higher substrate cleavage activity of Dicer compared to Dicer
alone, which suggests that TRBP facilitates the cleavage activity of Dicer by guiding Dicer
to the substrates. To date, no studies on the mechanism by which PACT promotes Dicer-
mediated cleavage of pre-miRNAs have been reported. However, the amino acid sequence
of the Dicer-interacting dsRBD of PACT was found to be similar to that of TRBP. It has yet
to be determined if PACT interacts with Dicer by a mechanism similar to that of TRBP and
if it enhances the processing of similar types of pre-miRNAs.

TRBP and PACT have different functions. Although TRBP preferentially binds to
simple duplex RNA, PACT inhibits Dicer-mediated dsRNA cleavage for siRNA produc-
tion [90]. Unlike PACT, the cleavage site for Dicer-TRBP shifts when compared to cleavage
by Dicer alone [91,92]. PACT and TRBP have no redundant effects on the production of
isomiRs, different-sized miRNAs that alter the downstream target-binding specificities.
Such differences in dsRNA recognition and processing behavior are attributed to two
N-terminal RNA-binding domains in each protein.

4.2. TRBP-Mediated Regulation of Specific miRNA Maturation by Dicer

The maturation of miRNA is promoted by TRBP binding. Using RNA immunoprecip-
itation sequencing (RIP-seq), we recently demonstrated that the secondary structures of
pre-miRNAs may differ in TRBP-bound and non-bound pre-miRNAs [93] (Figure 4). In this
analysis, we used the base-pairing probability (BPP) of miRNAs. The BPP score represents
the probability of base-pairing with respect to an ensemble of RNA secondary structures
that are available for the prediction of accurate RNA secondary structures [94,95]. The BPP
values for the stem regions of TRBP-bound pre-miRNAs were higher than the mean values
of all of the pre-miRNAs, with the exception of the central regions. TRBP-non-bound
pre-miRNAs exhibited low BPP values. These results indicate that TRBP preferentially
binds to pre-miRNA with tight base-pairing. It was also reported that the dsRBDs of TRBP
bind to siRNA in a sequence-independent manner [96]. These results suggest that the
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structural features of pre-miRNAs, including mismatches and bulges, are important for
TRBP-dependent substrate recognition.
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Figure 4. The pre-miRNA secondary structures preferentially bound by TRBP, ADAR1p110, or ADAR2. Secondary
structures of pre-miRNAs, preferentially bound by TRBP, ADAR1p110, or ADAR2 as predicted by BPP. The pre-miRNAs
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relative to the control and the dotted lines indicate the positions with significantly low BPPs. The BPP of the terminal loop
of pre-miRNA was not calculated and shown in dotted line.

Several studies have addressed the TRBP-mediated maturation of specific miRNAs
and its effect on downstream pathways. It was reported that the TRBP-mediated maturation
of miR-208a decreased the expression level of SRY-Box Transcription Factor 6 (Sox6), which
is required for normal heart function [98]. It was also reported that disruptions of TRBP-
dependent maturations of tumor suppressor certain miRNAs (TS-miRs), miR-143 and
miR-145, were related to the self-renewal and tumor maintenance of cancer stem cells [99].
These results suggest that TRBP regulates biogenesis and the downstream gene regulatory
pathways of specific miRNAs.

5. Enhancement of Pre-miRNA Processing by Dicer via ADAR1
5.1. ADAR1-Mediated Promotion of Pre-miRNA Processing by Dicer

ADAR1 is classified as an adenosine deaminase acting on the RNA (ADAR) family
protein that edits adenosine into inosine on dsRNA (A-to-I RNA editing) [100–102]. In
addition to having zinc finger domains, ADAR1 has three dsRBDs and a deaminase domain
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(Figure 2a). The ADAR1-mediated regulation of miRNA biogenesis is classified into two
types: one is the regulation of Drosha and Dicer cleavage by the A-to-I RNA editing of
their substrate miRNAs/siRNAs [103–105], and the other is the promotion of miRNA
maturation, which is achieved by forming a complex with Dicer via protein–protein inter-
action [85]. ADAR1 interacts directly with the DExD/H-box helicase domain of Dicer via
its second dsRBD in the absence of dsRNA [85], while all ADAR dsRBDs that are type-A
are involved in binding to dsRNA. Thus, the interaction mechanism between ADAR1 and
Dicer is different from that of TRBP–Dicer or PACT–Dicer interaction. It has been reported
that the DExD/H-box helicase domain of Dicer is essential for interaction with dsRBP
during viral infection [106]. ADAR1 facilitates Dicer-mediated pre-miRNA cleavage and
loading onto RISC for miRNA maturation and siRNA production [85]. However, the de-
tailed mechanism for promoting Dicer-mediated processing by ADAR1 is not clear. Unlike
TRBP and PACT, ADAR1 may regulate pre-miRNA processing by Dicer in combination
with additional deaminase domain activity.

5.2. ADAR1-Mediated Maturation of Specific miRNAs

In vertebrates, there are three types of ADAR proteins, two of which have catalytic
activities (ADAR1 and ADAR2). ADAR1 also has two splice variants; N-terminally trun-
cated ADAR1p110 is mainly localized in the nucleus, and the full-length ADAR1p150 is
induced by interferons in the cytoplasm [107,108]. Recently, we reported that ADAR iso-
forms may bind to specific pre-miRNAs depending on the secondary structures predicted
by BBP in the predominantly double-stranded region of each pre-miRNA [97] (Figure 4).
ADAR1p110-bound pre-miRNAs had higher BPP values in their stem regions near the
3′-overhang side compared to the control. ADAR2-bound pre-miRNAs showed higher
BPP values in their central region and the 3′-overhang side. These results suggested that
ADAR1p110 binds more effectively to pre-miRNA with incomplete base-pairing near the
center of the stem region than ADAR2 does. Thus, ADARs have substrate selectivity based
on the secondary structure of the dsRNA.

ADAR1 regulates the maturation of specific miRNAs in a spatiotemporal manner
by interacting with Dicer. It was reported that Adar-knockout mice underwent systemic
apoptosis at embryonic day 12 (E12) followed by death [109]. Analysis of these Adar1-
knockout mice showed that the expression of ADAR1 and Dicer increased gradually
from E9 to E12, and the expression of specific miRNAs, including miR-1 and miR-181a,
increased at E12, suggesting the importance of miRNA maturation via Dicer–ADAR1
interaction during embryogenesis [85]. Several research groups have reported that miRNA
maturation mediated by Dicer-ADAR1 affects global gene expression profiles in various
diseases. It was reported that ADAR1p150 promotes the maturation of specific miRNAs by
interacting with Dicer during viral infection [110]. In mice models, the overexpression of
ADAR1p150 induced the expression of miR-222, which, in turn, repressed the expression
of phosphatase and the tensin homolog (PTEN), an apoptosis-related gene, leading to
increased cell survival. A recent report indicated that the upregulation of the ADAR1
expression level facilitated the Dicer-mediated processing of specific miRNA in oral cancer
patients [111]. The expression levels of six oncogenic miRNAs (onco-miRs) were increased
by Dicer–ADAR1 interaction. These results suggested that ADAR1-mediated miRNA
maturation regulates the downstream gene pathways.

6. TRBP-LGP2 Interaction Inhibits Pre-miRNA Processing by Dicer

In virus infected mammalian cells, virus-derived RNAs are captured by viral sensor
proteins such as retinoic acid-inducible gene I-like receptors (RLRs), inducing the pro-
duction of type I interferon [112–114]. Recently, we reported that the TRBP-mediated
maturations of pre-miRNAs were inhibited through the competitive binding of the labora-
tory of genetics and physiology 2 (LGP2) to Dicer–TRBP interaction during Sendai virus
infection [115]. Interferons enhanced the expression of LGP2, which interacted with TRBP
to inhibit the Dicer–TRBP interaction [93]. Following LGP2-dependent inhibition of Dicer–
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TRBP interaction, the maturations of TRBP-bound pre-miRNAs, including miR-106b, were
suppressed. The inhibition of the maturation of such miRNAs increased the expression of
apoptosis-related genes downstream of miRNA processing. This finding suggested that the
crosstalk between antiviral response and miRNA biogenesis is regulated by TRBP binding
to the specific pre-miRNAs.

7. Concluding Remarks

Research on miRNAs accelerated significantly in the early 2000s, and since then, tens
of thousands of studies have been reported annually. MiRNAs are widely conserved in eu-
karyotes and stand as one of the key regulators of gene expression networks. In this review,
we summarized and discussed recent reports addressing the modulation of the substrate
selectivity of Dicer by its associated proteins during miRNA biogenesis. Unlike Drosha,
Dicer-mediated processing of pre-miRNA is controlled by multiple Dicer-associated pro-
teins through the recruitment of pre-miRNAs to Dicer and the regulation of Dicer cleavage
activity. We reported that the prediction of pre-miRNA secondary structures based on
BPP could be used as an indicator to predict the substrate selectivity of Dicer-associated
proteins because those proteins, which regulate Dicer-mediated processing, are usually
dsRBPs [93,97]. Thus, the species of miRNAs that undergo processing by Dicer could be dif-
ferent depending on the specific Dicer-associated proteins, such as TRBP and ADAR1, and
this may explain why the gene expression network in downstream pathways largely differs
(Figure 5). However, there are still many challenges regarding the significance of such
complicated gene expression networks that are regulated by miRNAs. The first challenge
is to identify additional Dicer-associated proteins, which can regulate miRNA biosynthesis.
The second challenge is to establish a highly accurate RNA secondary structure prediction
program, as miRNAs are generally structurally complicated, including components such
as mismatches, wobble base pair, or bulge structures. Alternatively, biochemical experi-
ments such as selective 2′-hydroxyl acylation analyzed by primer extension sequencing
(SHAPE-seq) and structure-seq may be also useful to predict the structure of miRNAs with
a resolution of one nucleotide [116,117].

Studies have reported that there are close connections between miRNAs and diseases
and that there are possibilities for miRNAS to be used as biomarkers [11,118]. The develop-
ment of antisense oligonucleotides targeting disease-causing miRNAs is underway [119].
A precise understanding of the miRNA-mediated gene regulatory mechanisms is also
necessary for miRNA nucleic acid therapeutics.
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