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Evidence suggests that the neuro-inflammation mechanisms associated with

interleukin-12 (IL-12) may be linked to Alzheimer’s diseases and cognitive aging. In this

study, we speculate that single nucleotide polymorphisms (SNPs) in IL-12-associated

genes, such as IL12A, IL12B, IL12RB1, and IL12RB2 genes, could be associated with

cognitive aging individually and/or via complicated interactions in the elder Taiwanese

population. There were totally 3,730 Taiwanese individuals with age ≥60 years from

the Taiwan Biobank. Mini-Mental State Examination (MMSE) was analyzed for all

participants. We employed MMSE scores to assess cognitive functions. Our analysis

revealed that the IL12A gene (including rs116910715, rs78902931, and rs78569420),

the IL12B gene (including rs730691), and the IL12RB2 gene (including rs3790558,

rs4655538, rs75699623, and rs1874396) were associated with cognitive aging. Among

these SNPs, the association with the IL12RB2 rs3790558 SNP remained significant

after performing Bonferroni correction (P = 6.87 × 10−4). Additionally, we found

that interactions between the IL12A and IL12RB2 genes influenced cognitive aging

(P = 0.022). Finally, we pinpointed the effects of interactions between IL12A, IL12B,

and IL12RB2 with physical activity (P < 0.001, = 0.002, and < 0.001, respectively).

Our study suggests that the IL-12-associated genes may contribute to susceptibility

to cognitive aging independently as well as through gene-gene and gene-physical

activity interactions.
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INTRODUCTION

Interleukin-12 (IL-12) is a pro-inflammatory cytokine that builds
a key link between adaptive immunity and innate resistance
(1). IL-12 is a heterodimer composed of the IL-12α (also
known as IL-12p35) and IL-12β (also known as IL-12p40)
(1). Furthermore, IL-12 binds to the IL-12 receptor, which is
a heterodimeric receptor formed by the IL-12R-β1 and IL-
12R-β2 subunits (1). There is growing evidence that IL-12
is regulated in neuro-inflammatory processes associated with
neurodegenerative disorders such as Alzheimer’s disease (AD)
and mild cognitive impairment (2, 3). It has been observed
that IL-12 contributes to cognitive decline such as reduced
performance in processing speed for elderly individuals aged 70–
90 years in an Australia population (4). In the same cohort,
a subtype of mild cognitive impairment (that is, non-amnestic
multiple domain) was associated with higher levels of IL-12
and IL-12β (5). Moreover, a meta-analysis study revealed that
there were significantly higher levels of IL-12 in AD patients
when compared with healthy controls in peripheral blood (6).
In addition, a recent study simultaneously assessed 242 blood
proteins in 80 older adults with remitted major depression
and found IL-12β to serve as one of the three proteins to
predict cognitive impairment by using a machine learning
prediction model (7). It has also been suggested that IL-12β is
involved in affecting Mini-Mental State Examination (MMSE)
test scores and gray-matter volumes of lateral prefrontal cortex
and hippocampus in older adults (8). Furthermore, it has been
reported that elderly persons with inadequate physical activity
showed higher levels of IL-12β, smaller gray-matter volumes, and
more cognitive decline than active elderly persons, suggesting
probable gene-physical activity interactions (8).

Among the genes related to IL-12 are the interleukin 12A
(IL12A), interleukin 12B (IL12B), interleukin 12 receptor subunit
beta 1 (IL12RB1), and interleukin 12 receptor subunit beta 2
(IL12RB2) genes. The IL12A gene is located on chromosome
3q25.33 and encodes the IL-12α subunit (1). The IL12B gene
is located on chromosome 5q33.3 and encodes the IL-12β
subunit (1). It has been demonstrated that single nucleotide
polymorphisms (SNPs) in IL12A (including rs568408) and IL12B
(including rs3212227) genes were likely to influence late-onset
AD in a Chinese population (9). In addition, Enright et al. (10)
reported that the Il12b knockoutmalemice exhibited a significant
increase in the average time to reach the platform in the Morris
water navigation task (also known as the Morris water maze;
a test of spatial learning for rodents), when compared to the
wild-type. In the APP/PS1 mouse model of AD, Vom Berg et al.
(11) also found an increased production of the common IL-
12 and IL-12β subunit in microglia, the primary immune cells
of the central nervous system. Furthermore, Vom Berg et al.
(11) demonstrated that the genetic ablation of the Il12b gene
or peripheral administration of a neutralizing IL-12β-specific
antibody may contribute to a decreased cerebral amyloid load in
APP/PS1 mice.

The IL12RB1 gene is located on chromosome 19p13.11 and
encodes the IL-12R-β1 subunit (1). Furthermore, the IL12RB2
gene is located on chromosome 1p31.3 and encodes the

IL-12R-β2 subunit (1). The IL12RB1 and IL12RB2 genes are
thought to contribute to the host defense and inflammatory
response (1). de Beaucoudrey et al. reported that loss-of-function
mutations in the IL12RB1 gene may debilitate the development
of human IL-17-producing T cells in an in vivo study, where
IL-17 has been implicated in the pathogenesis of AD-related
neuroinflammation (12–14). Additionally, several SNPs (such as
rs12119179, rs1495965, and rs924080) near the IL12RB2 gene
were found to be associated with Behcet’s disease in genome-wide
association studies, were the disease can lead to inflammation in
the brain and central nervous system (15, 16).

In reference to the aforementioned considerations, it was
hypothesized that IL-12 associated genes may play a significant
role in the pathogenesis of age-dependent cognitive decline and
the development of cognitive aging. Therefore, we presumed that
IL-12 relevant genes, namely the IL12A, IL12B, IL12RB1, and
IL12RB2 genes, might be associated with cognitive aging. To the
best of our knowledge, the effects of these IL-12 relevant genes on
cognitive aging are limited with respect to human datasets. Thus,
we investigated the interplays between cognitive aging and SNPs
in the IL12A, IL12B, IL12RB1, and IL12RB2 genes in the present
association study. We also gauged the probable gene-gene and
gene-physical activity interactions on cognitive aging.

MATERIALS AND METHODS

Study Population
This study incorporated Taiwanese participants from the Taiwan
Biobank, which collected specimens and relevant information
from individuals in recruitment centers across Taiwan (17–22).
Our study cohort was comprised of 3,730 subjects. There were
the following two inclusion criteria: (1) individuals whose age
were 60 years or over; and (2) individuals who were self-reported
as being of Taiwanese Han Chinese ancestry (22). We excluded
individuals with a history of cancer (22). Ethical approval for
the study was granted by the Institutional Review Board of the
Taiwan Biobank before performing the study (approval number:
201506095RINC). The approved informed consent form was
signed by each subject. All experiments were achieved by means
of proper regulations and guidelines.

We defined education according to whether or not high school
was attended (20, 21). The definition of physical activity was the
measurement of exercise activities at least three times in a week
and at least 30min each time (20, 21).

Cognitive Assessment
We performed global cognitive assessment by using the 30-point
MMSE, which encompasses questions according to the five areas
of recall, registration, language, attention and calculation, and
orientation (18). We evaluated MMSE both as a continuous
phenotype and as a binary phenotype according to the following
previously defined MMSE thresholds (23): MMSE score ≥24
(normal) and MMSE score < 24 (cognitive impairment). The
cognitive assessment was conducted in the local languages (such
as Taiwanese and/or Mandarin). The cognitive cut-off score of
24 was derived from previous studies (23) and was based on a
Taiwanese version of MMSE.
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Genotyping
DNA was isolated from blood samples by employing QIAamp
DNA blood kits following the manufacturer’s instructions
(Qiagen, Valencia, CA, USA). The quality of the isolated genomic
DNA was carried out by utilizing agarose gel electrophoresis,
and the quantity was completed by spectrophotometry (24).
SNP genotyping was evaluated by employing the custom Taiwan
BioBank chips, which were accomplished by using the Axiom
Genome-Wide Array Plate System (Affymetrix, Santa Clara,
CA, USA). The custom Taiwan BioBank chips were created
to collect genetic profiles in Taiwanese subjects by utilizing
SNPs on the Axiom Genome-Wide CHB 1 Array (Affymetrix,
Santa Clara, CA, USA) with minor allele frequencies (MAFs)
≥5% and the Human Exome BeadChip (Illumina, Inc., San
Diego, CA, USA) with MAFs > 10% (22). We searched for
IL-12-associated variants by referring to the complete list of
IL-12-associated genes/SNPs available in the custom Taiwan
BioBank chips. The SNP panel consisted of 75 SNPs from
the following four genes, namely the IL12A, IL12B, IL12RB1,
and IL12RB2 genes (Supplementary Table 1). In addition, we
performed quality control procedures for excluding SNPs from
subsequent analysis as follows (25). Nine SNPs were excluded
because of being unable to achieve Hardy-Weinberg equilibrium
(with a P-value< 0.05) or because of a genotyping call rate<95%.
Supplementary Table 1 shows the genotyping results, including
genotyping call rates, P-values for Hardy-Weinberg equilibrium,
and MAFs. Additionally, we filtered SNPs and then selected 35
tag SNPs by using PLINK (26) with a linkage disequilibrium value
of r²= 0.8 as a threshold (Supplementary Table 2).

Statistical Analysis
In this study, linear regression analysis was conducted to assess
the relationship between MMSE scores and our variables of
interest such as age, gender, and education. In addition, we
determined the association of the investigated SNP with MMSE
scores by a general linear model using age, gender, and education
as covariates (27). The genotype frequencies were weighed for
Hardy-Weinberg equilibrium to detect genotyping errors (28) by
utilizing a χ2 goodness-of-fit test with one degree of freedom
(that is, the number of genotypes minus the number of alleles).
Adjustments for multiple testing were performed by using the
Bonferroni correction. The criterion for significance was defined
as P < 0.05 for all tests. Data were shown by the mean ±

standard deviation.
In order to explore gene-gene and gene-physical activity

interactions, we used the generalized multifactor dimensionality
reduction (GMDR) method (29). We analyzed two-way
interactions by utilizing 10-fold cross-validation. The GMDR
method generated several output parameters, such as empirical
P-values and the testing accuracy, to estimate each chosen
interaction. Furthermore, covariates such as age, gender, and
education were provided for gene-gene and gene-physical
activity interaction analysis in our interaction models. We
completed the empirical P-value of the testing accuracy for
each chosen interaction by using permutation testing (based on
1,000 shuffles).

TABLE 1 | Demographic and clinical characteristics of study subjects.

Characteristic Overall

No. of subjects, n 3,730

Mean age ± SD, years 64.8 ± 3.5

Female, % 50.27

Less than high school graduate, n 1,735

Physical activity, n 2,427

MMSE score, median (IQR) 28 (26–29)

IQR, interquartile range; MMSE, Mini-Mental State Examination; SD, standard deviation.

Data are presented as mean ± standard deviation.

In this study, there were missing data in the genotypic data
(as shown in Supplementary Table 1) and no missing data in
the phenotypic data. In GMDR, a missing genotype is imputed
proportional to the frequencies of the SNPs observed at this
locus, and insignificant missing data will not affect the analysis
(29). Because the selected SNPs possess<0.5%missing genotypic
data by excluding SNPs with a genotyping call rate <95%
(Supplementary Table 1), we have chosen to use GMDR after
assessing the influence of missing data. In order to correct for
multiple testing, we employed the Bonferroni correction.

RESULTS

Study Cohort
Table 1 illustrates the clinical and demographic characteristics
of our study cohort, which consisted of 3,730 individuals. The
median MMSE score was 28 and the interquartile range was 26–
29. In this study, we found that correlations betweenMMSE score
with age (P = 8.04 × 10−10), gender (P = 1.83 × 10−7), and
education (P = 2.2× 10−16) were significant.

Association of Cognitive Aging in IL12A,
IL12B, and IL12RB2
First, we explored the associations between cognitive aging and
four IL-12 related genes, namely the IL12A, IL12B, IL12RB1,
and IL12RB2 genes. Among the 35 tag SNPs investigated in
the present study (Supplementary Table 2), there were 8 tag
SNPs within the IL12A, IL12B, and IL12RB2 genes revealing
evidence of associations (P < 0.05) with MMSE scores (Table 2).
These 8 tag SNPs were the rs116910715 (recessive model:
P = 0.0031), rs78902931 (recessive model: P = 0.0388), and
rs78569420 (recessive model: P = 0.0093) SNPs in the IL12A
gene; the rs730691 SNP (dominant model: P = 0.0472) in the
IL12B gene; and the rs3790558 (dominant model: P = 6.87 ×

10−4), rs4655538 (dominant model: P = 0.0454), rs75699623
(dominant model: P= 0.0308), and rs1874396 (dominant model:
P = 0.0425) SNPs in the IL12RB2 gene. In this study, we only
found the genotyping data for the rs7412 SNP, but not for the
rs429358 SNP in the APOE gene. Based on the rs7412 SNP,
the frequency of the APOE-ε2 allele in patients showing normal
cognition vs. cognitive impairment was 14.2 vs. 18.9%. However,
we were unable to assess APOE-ε4 carrier status.
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TABLE 2 | Linear regression models of associations between the MMSE scores and 8 tag SNPs within the IL12A, IL12B, and IL12RB2 genes, which have an evidence of

association (P < 0.05).

Dominant model Recessive model

Gene CHR SNP A1 A2 MAF BETA SE P BETA SE P

IL12A 3 rs116910715 A G 0.065 −0.14 0.13 0.3012 −1.99 0.67 0.0031

rs78902931 G A 0.128 −0.03 0.10 0.7782 −0.77 0.37 0.0388

rs78569420 T G 0.083 −0.06 0.12 0.6042 −1.26 0.48 0.0093

IL12B 5 rs730691 T C 0.440 −0.19 0.09 0.0472 −0.03 0.11 0.8141

IL12RB2 1 rs3790558 G T 0.468 −0.33 0.10 6.87 × 10−4 −0.17 0.11 0.1186

rs4655538 T C 0.186 −0.19 0.09 0.0454 −0.01 0.24 0.9679

rs75699623 A G 0.069 0.28 0.13 0.0308 −0.10 0.59 0.8652

rs1874396 G T 0.227 −0.18 0.09 0.0425 0.00 0.19 0.9891

A1, minor allele; A2, major allele; BETA, Beta coefficients; Chr, chromosome; HWE, Hardy–Weinberg equilibrium; MAF, minor allele frequency; MMSE, Mini-Mental State Examination;

SE, standard error. Analysis was obtained after adjustment for covariates including age, gender, and education. P-values which remain significant after performing Bonferroni correction

are shown in bold.

Association Between Cognitive Aging and
IL12RB2 rs3790558
Moreover, as illustrated in Table 2, the significance persisted for
the association with MMSE scores after employing Bonferroni
correction [P < 0.05/(35 × 2) = 7.14 × 10−4] for the
rs3790558 SNP (dominant model: P = 6.87 × 10−4) in the
IL12RB2 gene.

Gene-Gene Interaction Analysis
Next, we utilized categorized MMSE scores as an outcome
(normal: MMSE score ≥24; cognitive impairment: MMSE
score < 24) for gene-gene interaction analysis. The GMDR
method was employed to estimate the effects of consolidation
among the 8 tag SNPs in cognitive aging, incorporating age,
gender, and education as covariates. Table 3 describes the results
generated from the GMDR method for two-way gene-gene
interaction analysis using covariate adjustment. As illustrated
in Table 3, there was a significant two-way model concerning
IL12RB2 rs4655538 and IL12A rs78902931 (P = 0.022),
suggesting a probable gene-gene interaction between IL12RB2
rs4655538 and IL12A rs78902931 in regulating cognitive aging.
Likewise, there was a significant two-way gene-gene interaction
model concerning IL12RB2 rs4655538 and IL12A rs78569420
(P = 0.036) in regulating cognitive aging. In addition, there was
a significant two-way SNP-SNP interaction model concerning
IL12RB2 rs3790558 and IL12RB2 rs4655538 (P = 0.017) in
influencing cognitive aging. However, the effect of these gene-
gene and SNP-SNP interaction models did not remain significant
after Bonferroni correction.

Physical Activity and Gene Interaction
Analysis
Table 4 illustrates the GMDR method of physical activity
and gene interaction analysis in cognitive aging by utilizing
age, gender, and education as covariates. There were
significant two-way models concerning IL12A (including
rs116910715, rs78902931, and rs78569420) and physical activity

TABLE 3 | Gene-gene interaction models identified by the GMDR method with

adjustment for age, gender, and education.

2-way interaction model Testing accuracy (%) P-value

IL12RB2 rs4655538, IL12A rs78902931 53.43 0.022

IL12RB2 rs4655538, IL12A rs78569420 53.17 0.036

IL12RB2 rs3790558, IL12RB2 rs4655538 53.87 0.017

GMDR, generalized multifactor dimensionality reduction. P-value was based on 1,000

permutations. Analysis was obtained after adjustment for covariates including age, gender,

and education.

TABLE 4 | Physical activity and gene interaction models identified by the GMDR

method with adjustment for age, gender, and education.

2-way interaction model Testing accuracy (%) P-value

Physical activity, IL12A rs116910715 54.94 0.002

Physical activity, IL12A rs78902931 55.66 <0.001

Physical activity, IL12A rs78569420 54.81 0.001

Physical activity, IL12B rs730691 54.82 0.002

Physical activity, IL12RB2 rs3790558 54.82 0.003

Physical activity, IL12RB2 rs4655538 55.90 <0.001

Physical activity, IL12RB2 rs75699623 54.32 <0.001

Physical activity, IL12RB2 rs1874396 53.41 0.025

GMDR, generalized multifactor dimensionality reduction. P-value was based on 1,000

permutations. Analysis was obtained after adjustment for covariates including age, gender,

and education. P-values of <0.006 (Bonferroni correction: 0.05/8) are shown in bold.

(P= 0.002,< 0.001, and 0.001, respectively), indicating potential
physical activity and gene interactions between IL12A and
physical activity in regulating cognitive aging. Likewise, there
was a significant two-way model concerning IL12B rs730691
and physical activity (P = 0.002). Finally, there were significant
two-way models concerning IL12RB2 (including rs3790558,
rs4655538, s75699623, and rs1874396) and physical activity
(P = 0.003, < 0.001, < 0.001, and 0.025, respectively). The effect
of these physical activity and gene interaction models remained
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significant after Bonferroni correction (P < 0.05/8 = 0.006)
except the interaction model between physical activity and
IL12RB2 rs1874396.

DISCUSSION

The present study is the first to date to identify whether the
major impacts of 35 tag SNPs within four IL-12-associated genes,
namely the IL12A, IL12B, IL12RB1, and IL12RB2 genes, are
significantly linked to the risk of cognitive aging individually
and via gene-gene and gene-physical activity interactions in
elder Taiwanese subjects. Here, we reveal for the first time
that the IL12RB2 gene might play a vital role in modulating
cognitive aging in elder Taiwanese individuals. Intriguingly, the
significant persisted for the association of the key rs3790558
SNP in the IL12RB2 gene with MMSE scores after correcting
for multiple testing (P < 7.14 × 10−4). The rs3790558 SNP
is located in the intron of IL12RB2 gene. To investigate the
possible roles of the rs3790558 SNP as expression quantitative
trait locus, we employed HaploReg (http://compbio.mit.edu/
HaploReg) to predict a possible functional role of this SNP. We
found that the rs3790558 SNP is associated with the regulation of
expressions in IL12RB2 gene within transformed fibroblasts/cells
and in blood tissues (30, 31). Additionally, our data revealed
that gene-gene and gene-physical activity interactions between
the IL-12-associated genes may contribute to the etiology of
cognitive aging.

To the best of our knowledge, the present study is the first to
raise the possibility that the key rs3790558 SNP in the IL12RB2
gene might be associated with cognitive aging. Remarkably,
the significant association between this key SNP and MMSE
scores persisted even after applying Bonferroni correction. The
functional relevance of IL12RB2 rs3790558 on cognitive aging
remains to be elucidated. To our knowledge, no other studies
have been conducted to pinpoint IL12RB2 rs3790558 with
cognitive aging or age-related cognitive decline. Based on the
aforementioned implications, we hypothesized that the IL-12
relevant genes such as IL12RB2 might contribute to cognitive
aging because IL-12 is implicated as a risk biomarker for AD
and cognitive aging (1, 4, 7–9). Our findings further support
previous animal studies, which demonstrated that inhibition
of IL-12 signaling may reduce cognitive decline (11, 32). In
addition, genome-wide association studies by Remmers et al. (16)
and by Mizuk et al. (15) have identified an association of the
IL12RB2 gene with Behcet’s disease at genome-wide significance.
It has been shown that patients with Behcet’s disease often
suffer from irreversible loss of cognitive function in conjunction
with various neurological disturbances in the central nervous
system (33). In an Il12rb2 knockout mice study, Airoldi et al.
(34) also reported that lack of Il12rb2 signaling may result in
increased susceptibility to autoimmunity and immunopathology.
Moreover, it has been suggested that the immune system and
autoimmunity may play a role in the etiology of age-associated
cognitive decline and AD (35–37). Furthermore, Li et al. (38)
observed that the increased risks of dementia and AD in
patients with autoimmune disorders. Interestingly, the IL12RB2

rs3790558 SNP is a strong candidate for autoimmune disorders
as this SNP has been previously implicated in autoimmune
disorders such as systemic sclerosis. For example, Bossini-
Castillo et al. (39) identified IL12RB2 rs3790558 to be associated
with systemic sclerosis, a disorder that is characterized by
autoimmune dysfunction. It should be mentioned that the G
allele frequency of IL12RB2 rs3790558 varies considerably among
different ethnic individuals, ranging from 46.8% in the present
Taiwanese individuals, 43.7% in European individuals, 47.3% in
East Asian individuals, 86.5% in African American individuals, to
48% in South Asian individuals as illustrated in public data from
the 1000 Genomes Project (Supplementary Table 4).

Remarkably, we tracked down the interplay between
the IL-12-associated genes (including IL12A, IL12B, and
IL12RB2) and physical activity. This relationship might
functionally manifest itself via epigenetic changes. Our
finding is in agreement with other human and animal
studies, indicating that physical activity may modulate
inflammatory reactions through potential complex gene-
physical activity interactions (8, 40, 41). In a previous
population-based study of older adults, Papenberg et al. (8)
reported that inactive older individuals may exhibit elevated
levels of IL-12β, smaller gray-matter volumes, and poorer
cognitive performance than older individuals with adequate
physical activity.

On another note, our results also indicated the epistatic effects
between the IL12RB2 and IL12A genes in modulating cognitive
aging by employing the GMDRmethod. To our knowledge, there
are no previous findings available as no other studies have been
investigated to assess gene-gene interactions among these genes.
The biological effects of synergy between the IL-12-associated
genes on cognitive aging remain to be elucidated.

A previous genetic association study found that IL12A
rs568408 and IL12B rs3212227 SNP were significantly associated
with late-onset AD risk (9). However, the present study
showed no association of cognitive aging with these two SNPs
(Supplementary Table 3). It is worth pointing out that various
possible factors for the conflicting data include sample size, study
design, covariate adjustment, phenotype definitions, and diverse
ethnicities (21).

Among the strengths of our study is that we were able to
utilize the Taiwan Biobank, the largest Taiwanese cohort, to
conduct an extensive assessment of the IL-12-associated SNPs in
cognitive aging (42, 43). In addition, we conducted the GMDR
method to consider gene-gene interaction and gene-physical
activity interaction in the model. However, because only the
MMSE data were provided in the Taiwan Biobank, a major
limitation is that a single measure of cognition (that is, MMSE)
used as the cognitive assessment tool limits the rigor and depth
of analytic inferences and associations with potential SNPs (44).
Moreover, we did not control for other meaningful variables
implicated in elderly cognitive decline (for example, insufficient
characterization of the cohort including medical comorbidities
and/or related medical burden) (44). Future studies are needed to
develop a detailed assessment of the associations and interactions
of probable SNPs with cognitive aging by leveraging specific
cognitive domains (including executive, memory, language,
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and visuospatial function) in other worldwide populations
(42, 44).

In conclusion, the present study completed a comprehensive
investigation of the associations of cognitive aging with IL-
12 relevant genes, namely the IL12A, IL12B, IL12RB1, and
IL12RB2 genes in old adults in the Taiwanese population.
Moreover, the present study tested the impacts of gene-gene and
gene-physical activity interactions among these genes in relation
to cognitive aging. Mainly, if the current results are reproduced
in statistically well-powered independent studies, the present
study implicates the effects of the IL-12 relevant genes on the
risk of cognitive aging individually and via complicated gene-
gene and gene-physical activity interactions. This study pinpoints
that IL-12 mediated signaling should be the focus of future
studies on pathogenesis of age-dependent cognitive decline and
a potential target for pharmacologic modulation. Independent
studies with larger sample sizes will possibly establish further
insights into the role of the IL-12 related genes suggested in
this study.
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