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Many DNA methylome profiling methods cannot distinguish between 5-methylcytosine (5mC) and 5-hydroxymethylcy-

tosine (5hmC). Because 5mC typically acts as a repressive mark whereas 5hmC is an intermediate form during active de-

methylation, the inability to separate their signals could lead to incorrect interpretation of the data. Is the extra

information contained in 5hmC signals worth the additional experimental and computational costs? Here we combine

whole-genome bisulfite sequencing (WGBS) and oxidative WGBS (oxWGBS) data in various human tissues to investigate

the quantitative relationships between gene expression and the two forms of DNA methylation at promoters, transcript

bodies, and immediate downstream regions. We find that 5mC and 5hmC signals correlate with gene expression in the

same direction in most samples. Considering both types of signals increases the accuracy of expression levels inferred

from methylation data by a median of 18.2% as compared to having only WGBS data, showing that the two forms of meth-

ylation provide complementary information about gene expression. Differential analysis between matched tumor and nor-

mal pairs is particularly affected by the superposition of 5mC and 5hmC signals in WGBS data, with at least 25%–40% of

the differentially methylated regions (DMRs) identified from 5mC signals not detected from WGBS data. Our results also

confirm a previous finding that methylation signals at transcript bodies are more indicative of gene expression levels than

promoter methylation signals. Overall, our study provides data for evaluating the cost-effectiveness of some experimental

and analysis options in the study of DNA methylation in normal and cancer samples.

[Supplemental material is available for this article.]

DNA methylation, the methylation of the carbon 5 atom of cyto-
sines, usually occurs within the CpG context in eukaryotes, and in
some cell types, also within CpHpG and CpHpH contexts (Bird
2002; Cokus et al. 2008; Lister et al. 2009). It is involved in various
biological processes, including embryonic development, genomic
imprinting, X Chromosome inactivation, and genome stability
maintenance (Lister et al. 2009). Aberrant DNA methylation is as-
sociated with a variety of human diseases, including cancer
(Robertson 2005). Many types of cancer show global hypomethy-
lation as compared to normal tissues, whereas specific loci could be
hypermethylated (Ehrlich 2009; Klutstein et al. 2016).

DNA methylation is tightly related to gene expression.
Methylation of CpG islands within promoter regions is associated
with long-term gene silencing, whereas methylation in other
regions is more dynamic and tissue-specific (Jones 2012).
Sequences up to 2 kb away from CpG islands, termed CpG island
shores, have been shown to display differential methylation in
cancer that correlates with differential gene expression (Irizarry
et al. 2009). DNA methylation at regulatory elements other than
promoters is less studied, but some recent work has started to
show correlations between enhancermethylation and gene silenc-

ing (Aran et al. 2013; Heyn et al. 2016; Cao et al. 2017). How gene
bodymethylation is related to gene expression has beenmore con-
troversial, with a positive correlation between them observed in
some cell types but not in some others. Mechanistically, gene
body methylation could be related to repression of antisense tran-
script, efficiency of transcription elongation, usage of alternative
promoter, and RNA splicing (Rountree and Selker 1997; Lorincz
et al. 2004; Choi et al. 2009; Maunakea et al. 2010).

The ambiguous relationship between gene body methyla-
tion and gene expression could be partly due to the presence of
multiple forms of DNA methylation. 5-Methylcytosine (5mC)
can be converted by the Ten-eleven translocation (TET) family
of proteins into 5-hydroxymethylcytosine (5hmC), 5-formylcyto-
sine (5fC), and 5-carboxylcytosine (5caC) during active demeth-
ylation (Song et al. 2012). Unlike 5mC’s characteristic enrichment
at promoters of repressed genes, 5hmC has been found enriched
at active enhancers and around expressed genes, including gene
body regions (Song et al. 2012; Yu et al. 2012). If an experimental
method cannot distinguish between 5mC and 5hmC (or the oth-
er two intermediate forms), depending on their relative levels,
methylation may appear to correlate with gene expression in
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different ways for different genes with the same total methyla-
tion level.

Unfortunately, that is exactly the situation with many com-
monly used experimental methods. In standard bisulfite conver-
sion, which is used in whole-genome bisulfite sequencing
(WGBS), reduced representation bisulfite sequencing (RRBS), and
Infinium 27K/450K/EPIC arrays, both 5mC and 5hmC are uncon-
verted. The resulting data can only tell whether a cytosine is meth-
ylated or not but cannot tell which form ofmethylation a cytosine
takes (Jin et al. 2010). Some othermethods such asMeDIP-seq and
MBDCap-seq could specifically detect 5mC (Jin et al. 2010), but
they do not offer single-base resolution and fail to provide infor-
mation about the other forms of DNA methylation.

Recently, realizing the importance of 5hmC as a representa-
tive of the demethylation forms, a number of methods have
been proposed to detect it at single-base resolution (Petterson
et al. 2014; Li et al. 2016). Some of these methods are based on ox-
idative bisulfite sequencing (oxBS), which specifically detects
5mC. Conceptually, by subtracting themethylation level detected
by oxBS from that detected by standard bisulfite sequencing (BS),
the 5hmC level can also be deduced. In practice, this subtraction
could lead to negative values due to errors and stochastic factors
in the experimental and analysis procedures, which can be correct-
ed computationally (Xu et al. 2016).

Currently, it is still not completely clear how 5mC and 5hmC
at promoter, gene body, and downstream regions are related to
gene expression, both separately and jointly. For instance, was
the previously observed positive correlation between gene body
methylation and gene expression purely due to 5hmC? Do 5mC
and 5hmC correlate with gene expression in opposite directions?
If 5mC level is already known, does 5hmC level provide extra in-
formation about gene expression in normal and disease samples?

Also, a lot of existing knowledge about DNA methylation is
qualitative rather than quantitative. For example, strong promoter
5mC is known to be associatedwith gene silencing, but the expect-
ed amount of gene expression given a certain level of promoter
methylation is usually not known. More generally, if the 5mC
and 5hmC levels at the promoter, gene body, and downstream re-
gions are measured, is it possible to tell the corresponding expres-
sion level of a gene? This question is particularly important in
epigenomic studies of diseases, in which a common question is
whether an observed expression level change of a gene can be at-
tributed to the promoter methylation change alone or whether it
is also affected by methylation at other regions or even by other
regulatory mechanisms.

In addition to the methylation level (“β value”), defined as
the proportion of methylated reads/signal intensity at a CpG site
among the total number of reads/signal intensity, it has been pro-
posed that the proportion of discordant reads (PDRs), defined as
the ratio of reads having discordantmethylation status at different
CpGs, is a better indicator of gene expression level in chronic lym-
phocytic leukemia (Landau et al. 2014). Is PDR generally more in-
formative than β values, especially when signals for 5mC and
5hmC are separately measured?

In this work, we use WGBS and oxidative WGBS (oxWGBS)
data from normal liver and lung tissues and paired cancer samples
to study the quantitative relationships between gene expression
and the two DNAmethylation forms, 5mC and 5hmC, quantified
by both β values and PDRs, at different genic and regulatory ele-
ments associated with the transcripts. In addition to answering
the above conceptual questions, another goal of this study is to
provide practical guidelines as to whether both 5mC and 5hmC

should be measured and whether both β values and PDRs should
be computed, neither of which is a common practice currently.

Results

5mC and 5hmC levels alone can partially infer transcript

expression level

We obtained WGBS, oxWGBS, and RNA sequencing (RNA-seq)
data for 12 samples, including three pairs of human normal liver
tissues (Liver N1–N3) andmatched tumors (Liver T1–T3) and three
pairs of human normal lung tissues (Lung N1–N3) and matched
tumors (Lung T1–T3) (Li et al. 2016). Based on these data, for
each transcript, we computed the average rawWGBS and oxWGBS
β values, as well as the inferred 5mC and 5hmC levels, at its 16 as-
sociated upstream, transcript body, and downstream regions in
each sample (Fig. 1A;Materials andMethods). Heat maps of the re-
sulting data set reveal some subtle correlations between these
methylation features at the different associated regions and the
corresponding expression levels of the transcripts, with lower
methylation at promoters and some body features for transcripts
with higher expression (Fig. 1B; Supplemental Fig. S1). A hierarchi-
cal clustering of the samples based on all their methylation fea-
tures shows two main clusters corresponding to the two tissues of
origin rather than cancer status (Fig. 1C). A related observation has
recently beenmade based on gene expression data of 8000 patients
of 17 cancer types, that liver tumors are more similar to normal
liver tissues than to other types of tumors (Uhlen et al. 2017).

Before proceeding to other analyses, we first verified the com-
puted 5mC and 5hmC β values by comparing them with another
data set with the two types ofmethylation signals profiled by com-
bining standard RRBS and TET-assistedmodification of RRBS (TAB-
RRBS) (Hlady et al. 2019). After removing source-specific biases, in
the first two principal components, the nontumor samples from
the two data sets were found to form clusters together, which
were largely separated from the tumor samples (Supplemental
Fig. S2). These results show that the 5mC and 5hmC levels for
the same group of samples are comparable across the two studies,
despite the different biological samples and experimental proto-
cols involved.

We also defined a similar data set with both β values and PDR
values computed. Although β values can be computed from the
raw WGBS and oxWGBS data, as well as the processed 5mC and
5hmC levels, PDR values can only be defined directly from se-
quencing reads and were thus computed from raw WGBS and
oxWGBS data only. To ensure reliable calculations of PDR values,
only regions with sufficient read coverage were considered
(Methods), leading to a smaller number of transcripts included
in this data set. Hereafter, we refer to this data set as the “small”
set and the data set with only β-value features as the “large” set.
In the following, we first focus on the analyses of the large data set.

To investigate whether β values in the regions associated with
a transcript are indicative of its expression level, we performed sta-
tistical modeling of transcript expression classes (zero, low, and
high expression) and evaluated the accuracy of the resulting mod-
els using a rigorous cross-validation procedure (Methods).

Considering methylation levels in all 16 regions associated
with each transcript, the constructed models were fairly accurate
in separating transcripts belonging to the different expression clas-
ses, with a median area under the receiver–operator characteristic
(AUROC) of around 0.7 (Fig. 2A, “BS+oxBS+5mC+5hmC”).
This value is close to the AUROC reported in a previous study
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that involved onlyWGBS features (Lou et al. 2014) despite a more
rigorous evaluation procedure and a different way of quantifying
methylation level used in the current study. We found that the
modeling accuracy was not affected by the sequencing depth, in
that transcripts with different read depths received similar
AUROC values except when the depth was less than 10 (Supple-
mental Fig. S3), which involved only 0.25%–0.89% of transcripts
based on the WGBS and oxWGBS data. We also derived methyla-
tion features further away from each transcript, covering 96% of
CpG island shores, and found that the accuracy of the resulting
models is similar to the ones covering only the 16 regions with
the difference of average AUROC for each sample group not
more than 0.006 (Supplemental Fig. S4), suggesting that these 16
regions already capture a substantial portion of information about
gene expression.

Comparing the different expression classes, the DNAmethyl-
ation features were more successful in identifying transcripts with
zero or high expression than those with an intermediate expres-
sion level (Supplemental Fig. S5).

To evaluate whether these results
are sensitive to the transcript annotation
set, we repeated the above procedures
considering only protein-coding tran-
scripts and/or only the transcripts with
experimental evidence or manual cura-
tion (from GENCODE levels 1 and 2).
The resulting AUROC values were similar
for all these settings (Supplemental Fig.
S6), suggesting that the models con-
structed were general for both protein-
coding and noncoding genes and for
transcripts at different confidence levels.

5mC and 5hmC provide

complementary information

about gene expression

We then investigated the relative impor-
tance of the DNA methylation features
by constructing models using only sub-
sets of features. First, we comparedmeth-
ylation features derived from the four
types of methylation data considering
all 16 associated regions (Fig. 2A). Among
the models involving only features
derived from a single type of data, the
models with WGBS, oxWGBS, or 5mC
features had similar AUROC values, all
higher than models with 5hmC features.
On the other hand, models involving
both 5mC and 5hmC features (“5mC+
5hmC”) performed better than models
involving either 5mC or 5hmC features
alone, most substantially for the normal
liver samples, showing that these two
forms of DNAmethylation provide com-
plementary information about gene
expression. Similarly, combining both
WGBS and oxWGBS features (“BS+
oxBS”) slightly improved the modeling
results as compared to having only
WGBS or only oxWGBS features. Finally,

models involving all four types of data (“BS+oxBS+ 5mC+
5hmC”) had similar performance as models involving only the in-
ferred 5mC and 5hmC levels (“5mC+5hmC”), suggesting that
these derived DNA methylation features successfully captured
the essential information about gene expression contained in
the raw WGBS and oxWGBS data. Overall, models involving all
features had a median AUROC improvement of 0.7%–7.2% for
the different samples compared with the models involving only
WGBS features.

To evaluate whether these findings are specific to liver and
lung tissues, we collected additional genome-wide 5mC, 5hmC,
and gene expression data from four human kidney samples
(Chen et al. 2016) and 16 human placenta samples (Green et al.
2016). Based on the same strategy of modeling transcript expres-
sion levels, we found that the models from different tissues had
similar AUROC values (Supplemental Fig. S7A–E) except when
the data were produced by RRBS. The different tissue types also
showed the same trend that models involving 5mC features alone
were more accurate than those involving 5hmC features alone,

B C

A

Figure 1. Definition of the regions associated with each transcript and the resulting data set.
(A) Genomic regions defined for each transcript at which the β values or PDR values were used to infer
expression level of the transcript. Both the upstream (Up) and downstream (Down) regions were divided
into five 400-bp bins (Up1–Up5 and Down1–Down5). The transcript body (Body) was divided into first
exon (FirstEx), first intron (FirstIn), internal exons (IntEx), internal introns (IntIn), last exon (LastEx), and
last intron (LastIn). (B) A heatmap of the resulting large data set for sample Liver T1. Each row represents a
transcript, and the transcripts are sorted in ascending order according to their expression levels. The four
blocks of columns represent β values based on WGBS, oxWGBS, 5mC, and 5hmC, respectively. Within
each block, the different columns are, respectively, Up5–Up1, FirstEx, FirstIn, IntEx, IntIn, LastEx,
LastIn, and Down1–Down5. After the four methylation blocks, the last two columns show the log expres-
sion level and expression class, respectively. (C) Hierarchical clustering of the samples based on all their
methylation features in the large data set using Ward’s method.
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whereas combining the two types of methylation features led to
even more accurate models (Supplemental Fig. S7A–E). The ge-
nome-wide average 5hmC level was higher in liver and lung sam-
ples than in kidney and placenta samples, but it did not correlate
with the increment of modeling accuracy that was caused by in-
cluding 5hmC features (Supplemental Fig. S7F). Instead, the incre-
ment was slightly larger in normal samples than in cancer samples
(Supplemental Fig. S7F).

Next, we compared models involving methylation features
at the different regions associated with each transcript (Fig. 2B).
Among the upstream, transcript body, and downstream features,
features at the transcript body were most indicative of the ex-
pression class, followed by those at the upstream regions. The
higher accuracy of the transcript body models was partially, but
not completely, due to the effect of the first exon, in that includ-

ing the first exon always led to better
modeling accuracy (comparing “Up+
FirstEx” with “Up,” and comparing
“Body” with “Body-FirstEx”), but mod-
els involving transcript body features
were consistently more accurate than
those involving upstream features re-
gardless of whether the first exon was
included or excluded in both sets (com-
paring “Body” with “Up+FirstEx,” and
comparing “Body-FirstEx” with “Up”).
Integrating features in both transcript
body and upstream regions (“Up+
Body”) or all three region types (“Up+
Body+Down”) only improved the mod-
eling accuracy slightly as compared to
the models involving transcript body
features alone.

It is well accepted that a high 5mC
level at promoters is an indicator of
gene repression (Miranda and Jones
2007; Suzuki and Bird 2008), whereas
5hmC has been shown to be associated
with gene bodies (Stroud et al. 2011).
We checked whether these knowledge-
driven features are redundant and
whether together they are sufficient for
inferring gene expression level to the
maximal accuracy. We found that com-
bining 5mC features at upstream regions
and 5hmC features at transcript bodies
indeed improved modeling accuracy
compared with having either set of fea-
tures alone, but their combination was
still not sufficient to reach the accuracy
of models involving all types of methyla-
tion features at all associated regions of
the transcripts (Fig. 2C), suggesting that
methylation features other than pro-
moter 5mC and transcript body 5hmC
levels also contribute substantially to
the understanding of transcript expres-
sion levels.

To make sure that the above obser-
vations are not specific to our defini-
tion of expression classes, we also
constructed regression models to infer

log expression levels of transcripts directly. The resulting correla-
tion values (Supplemental Fig. S8) displayed trends highly simi-
lar to the AUROC values from the classification models, thereby
confirming the generality of the results. For example, combining
5mC and 5hmC features led to better results than having either
alone (Supplemental Fig. S8A,B), and transcript body features
could infer expression levels more accurately than upstream fea-
tures (Supplemental Fig. S8C,D).

Comparingmodels involving onlyWGBS features with those
involving allmethylation features (Supplemental Fig. S8A, “BS” vs.
“BS+oxBS+5mC+5hmC”), the median Pearson’s correlation
(across the 12 samples) between the predicted and actual log ex-
pression values increased from 0.21 to 0.25, which is equivalent
to a 18.2% improvement. Among the two tissue types, liver sam-
ples had a larger increment of 26.4%.

B

A

C

D

Figure 2. Accuracy of the models for inferring expression classes based on the large data set. (A–C)
Each bar represents the distribution of AUROC values across the three expression classes of the three sam-
ples in each sample group. (A) Comparison of models involving different combinations of methylation
features from all associated genomic regions of the transcripts. (B) Comparison of models involving
both 5mC and 5hmC levels at different combinations of genomic regions associatedwith each transcript.
(C ) Comparison of several knowledge-driven models. (D) The most useful methylation feature blocks for
inferring gene expression level based on the forward-search procedure of feature selection. For each sam-
ple, the top feature block was given a score of eight, the second given a score of seven, and so on, for the
top eight feature blocks. The total score of each feature block across all 12 samples is shown as a percent-
age of the maximum possible score of 8 × 12 =96.
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Feature importance and the smallest set of features with maximal

information about gene expression

To systematically determine the most important methylation fea-
tures for explaining expression variability, we defined a feature im-
portance score based on the frequency of each feature being
selected as one of the top features in a forward-searching procedure
(Methods). When we grouped features into upstream, transcript
body, and downstream feature blocks (Fig. 2D), WGBS and
5hmC signals at transcript bodies received the highest importance
scores. This is particularly interesting because although 5hmC fea-
tures alone could not infer expression levels accurately, they pro-
vided the best complementation to the WGBS features, whereas
other individually strong features (such as 5mC-Body) appeared
to provide less extra information not already contained in WGBS
features at transcript bodies. Among the upstream features, as ex-
pected, 5mC was selected as most important.

We then further studied the 16 individual regions (Supple-
mental Fig. S9) and found that in addition to first exon (“FirstEx”)
and the upstream region closest to the transcription start site (TSS)
(“Up1”), which are important for transcription factor binding and
transcription initiation, some other features also consistently
showed up among the most important features, including the
last exon (“LastEx”) and internal introns (“IntIn”). These regions
may affect transcription through other independent mechanisms
such as transcriptional elongation and splicing, andwere therefore
selected as the next most important features.

Using the models involving all features as the best case, we
investigated how the model accuracy changed as we included
each additional feature or feature block during the forward search-
ing procedure. In terms of feature blocks (Supplemental Fig. S10),
usually three to four blocks were sufficient to reach the best-case
performance, and these top blocks were predominantly transcript
body features. In terms of individual methylation features (Sup-
plemental Fig. S11), usually 10 or more features were necessary
to reach the best-case performance. Although the first three to
four top features, mainly from transcript bodies, provided the
most rapid improvement of modeling accuracy, the remaining
six to eight features still provided nonnegligible improvements,
and sometimes they also included upstream and downstream
features.

The constructedmodels remain reasonably accurate when applied

to other samples

All the results described above were obtained by training and test-
ing on distinct subsets of transcripts from the same sample using
a cross-validation procedure. This procedure was designed to
avoid overfitting the training data, such that the models could
capture the general relationships between DNA methylation
and gene expression rather than trends specific to the training
sample only. To confirm this generality, we applied models
trained on a subset of transcripts from a sample to infer the ex-
pression class of a different subset of transcripts in another sam-
ple. The results (Fig. 3) reveal that except for normal liver
samples that appear to be more distinct from the other samples,
our constructed models could infer expression classes of tran-
scripts in other samples as accurately as in the training sample,
which can be seen by having off-diagonal AUROC values in the
result matrix not substantially lower than the diagonal ones.
A large portion of these models did not show tissue- or disease-
state specificity, with similar AUROC values regardless of whether

or not the testing sample had the same tissue type or disease state
as the training sample.

Relationship between transcript bodymethylation and expression

Whether DNAmethylation at transcript body correlates positively
or negatively with gene expression has been controversial (Ball
et al. 2009; Lister et al. 2009; Rauch et al. 2009; Lou et al. 2014).
Besides differences inmeasuring and quantifyingmethylation lev-
els in the previous studies that could have led to discrepancies in
their results, it has not been clear whether the relative 5mC and
5hmC levels could also be a key factor becausemany of these stud-
ies did not consider the two forms of DNAmethylation separately.
Fromour data, we found that at regions closest to the TSS (Up1 and
FirstEx), both 5mC and 5hmC features correlated negatively with
gene expression, although the correlation was stronger for 5mC
(Supplemental Fig. S12). This is consistent with a recent report
that both types of DNAmethylation could repress gene expression
by affecting transcription factor binding at the promoter (Kitsera
et al. 2017). Inside the transcript body, 5hmC tended to correlate
more positively with gene expression than did 5mC in normal liv-
er samples, but the reverse is observed for some liver and lung tu-
mor samples.

Although models involving both 5mC and 5hmC features
were more accurate than those involving either only 5mC or
only 5hmC features, exactly how the two forms of DNA methyla-
tion complement each other in indicating expression level is still
unclear. For instance, expression level could be related to either a
linear or nonlinear function of the two forms of DNAmethylation.
When we plotted these three variables at the same time, consider-
ing thewhole transcript body as a single region (Supplemental Fig.
S13), we could not observe any obvious functional form that
explains how 5mC and 5hmC jointly indicate expression level,
except that highly expressed transcripts usually did not have
very high 5mC or 5hmC levels at their bodies. These results reiter-
ate that transcript bodymethylation hasmore subtle relationships
with gene expression than promoter methylation.

Figure 3. Generality of the models for predicting expression classes with
all methylation features based on the large data set. Each row corresponds
to a sample from which the model was trained, and each column repre-
sents a sample towhich themodel was applied, based onwhich evaluation
measure was computed. The training and testing transcripts were disjoint-
ed regardless of whether the testing sample was the same as or different
from the training sample.
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Comparisons between β-value and PDR features

After exploring properties of 5mC and 5hmC levels using the large
data set, we then switched to the small data set to study PDR values
(Supplemental Fig. S14). Overall, the AUROCvalueswere generally
lower than those obtained from the large data set (Fig. 2), likely due
to themuch smaller number of transcripts in the small data set that
forbade reliable modeling. Nevertheless, this data set still allowed
us to explore the relative importance of β-value and PDR features.
When comparing themodels involving these two types of features
(Supplemental Fig. S14A), models involving β-value features had
higher AUROC values regardless of whether WGBS, oxWGBS, or
both types of data were used. Combining the two types of features
resulted in more accurate models in all cases. Compared with hav-
ing β-value features alone, incorporating PDR features led to 1.0%–

5.2%, 0.6%–3.7%, and 0.0%–3.5% AUROC improvements across
the samples when WGBS, oxWGBS, or both types of data were
used, respectively. The same trends were also obtained from the re-
gression results (Supplemental Fig. S15),with themedianPearson’s
correlation improvedup to 9.5%, 9.8%, and 4.8%by incorporating
PDR features when WGBS, oxWGBS, or both types of data were
used, respectively.

Because PDR values could only be computed from the raw
WGBS and oxWGBS data, we checked whether it would be benefi-
cial to also incorporate β-value features of the derived 5mC and
5hmC levels. The results (Supplemental Fig. S14B) show that add-
ing these features [“(BS+oxBS)Beta+PDR (5mC+5hmC)Beta”] only
led to a small increase of AUROC in normal liver samples com-
pared with not adding them [“(BS +oxBS)Beta+PDR”], and did not
lead to any clear improvements in other samples. These results
again show that it is sufficient to define β-value features using ei-
ther the raw WGBS and oxWGBS data alone or the processed
5mC and 5hmC data alone.

Necessity of integrating 5mC and 5hmC in differential analyses

The presence of both tumor and matched normal samples in our
data enabled us to investigate the necessity of measuring both
5mC and 5hmC in studying differential methylation in cancer.
We first checked whether differential expression class could be in-
ferred by β-value features (Methods). The results (Fig. 4A) show
that, as expected, transcripts with strong differential expression
were more easily identified than those with only weak differential
expression. In general, the β-value features were more successful in
detecting differentially expressed transcripts in the liver sample
pairs than in the lung sample pairs (Fig. 4A), which could be due
to a more substantial reduction of 5hmC levels around transcripts
from normal liver to liver cancer than in the case of lung (Li et al.
2016). Modeling accuracy was also higher when the four classes
contained transcripts with more distinct differential expression
profiles (Supplemental Fig. S16A). Again, combining both 5mC
and 5hmC data led to the best modeling accuracy (Supplemental
Fig. S16B), and methylation levels at transcript bodies were more
useful than those at promoters or downstream regions in inferring
the differential expression classes (Supplemental Fig. S16C).

In the abovemodels, the methylation features in the individ-
ual samples were used to infer the differential expression class.
Another common way to analyze cancer methylome and tran-
scriptome data is to determine differentially methylated regions
(DMRs) among the tumor and normal samples and look for differ-
entially expressed transcripts potentially caused by them. To eval-
uate how this standard analysis proceduremight be affected by the
mixture of 5mC and 5hmC levels in the data, we determined

DMRs genome-wide using only BS data, only oxBS data, only
5mC levels, or only 5hmC levels (Methods). When comparing
the overlap of these four sets of DMRs at different stringency
thresholds, we found them to differ substantially (Fig. 4B). First,
we noticed that almost no DMRs were identified based on 5hmC
levels, indicating that the 5hmC levels were not sufficiently differ-
ent between the tumor and normal groups to be considered statis-
tically significant DMRs by the standard DMR calling method.
When considering the other three types of data, 5mC consistently
gave the highest number of DMRs in both liver and lung samples,
suggesting that compared with themixture of 5mC and 5hmC sig-
nals in BS data, the inferred “clean” 5mC levels were more capable
of capturing differentialmethylation events.When comparing the
DMRs identified from BS, oxBS, and 5mC, if two DMRs were con-
sidered the same as long as their genomic locations had a small
overlap (minimum overlap ratio close to zero), >90% of the oxBS
DMRs were also identified from the 5mC data, whereas DMRs
identified from standard BS data could only cover 60%–75% of
the DMRs identified from oxBS data or 5mC levels. On the other
hand, when two DMRs were considered the same only if they
had substantial overlaps (with a large overlap ratio), few DMRs
identified from these different types of data remained in common.
These results show that standard DMR analysis is heavily affected
by the type of methylation data involved.

We have also used an additional method for calling DMRs
(Korthauer et al. 2018) from BS and oxBS data. The results (Supple-
mental Fig. S16D–F) contain trends that are consistent with the
first method after removing an outlier sample.

Discussion

In this study, we have found that 5mC and 5hmC signals provide
nonredundant information about gene expression. The median
Pearson’s correlation between the actual log expression levels
and the expression levels inferred from methylation data was in-
creased by 18.2% by having separate 5mC and 5hmC signals as
compared to having only standard BS data. Whether this amount
of extra information about expression variability is worth the extra
cost of producing the additional experimental data (such as oxBS)
is a practical decision to be made when designing methylome
studies. On the other hand, if the study goal is to identify the
most significantDMRs between tumor andnormal samples and as-
sociate them with differential expression events, our results sug-
gest that it is necessary to have separate measurements of 5mC
and 5hmC signals because the DMRs identified from WGBS data
could only cover 60%–75% of the DMRs identified from “pure”
5mC signals.

The advantage of having separate measurements of 5mC and
5hmC signals compared with having 5mC or WGBS signals alone
was clearest for the normal liver samples. This is consistent with
the higher correlation between 5hmC and gene expression and
the lower correlation between 5mC and gene expression of these
samples compared with liver cancer samples reported in Li et al.
(2016). This difference could be a combination of biological phe-
nomena and technical biases in 5hmCquantification.More inves-
tigations are needed to determine the major factor.

In the investigation of PDR features, we found that they were
notmore informative than β values in indicating transcript expres-
sion levels based on the tumor and normal samples we studied.
One limitation of this comparison is that PDR values could only
be computed reliably when there were a reasonable number of
CpG sites appearing on the same sequencing read and the whole
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regionwas covered by a reasonable number of reads. These require-
ments made the number of transcripts qualified for inclusion very
small, because for many transcripts PDR values could not be com-
puted in at least some of the 16 associated genomic regions. An ad-
ditional difficulty of studying PDR values is that they can only be
computed from the raw reads but not from the derived 5mC and
5hmC levels, because the correlation between different CpG sites
on the same reads would be lost during the process. It would be
useful to further check the usefulness of PDR features in inferring
expression levels using additional data sets.

Results in the current study also confirm our previous finding
(Lou et al. 2014) that transcript body methylation features are
more indicative of gene expression level than promoter methyla-
tion features. The highly consistent results from the two studies

is remarkable because they involved very different analysis details,
including theway of quantifyingmethylation levels, the cross-val-
idation procedures, the use of gene or transcript as the basic unit,
andwhether regression of log expression levels is performed. Based
on these results, we strongly recommend that when DNAmethyl-
ation data are used to study transcriptional regulation, methyla-
tion signals in the gene body should be included in the analysis,
especially the signals at the first exon, last exon, and internal
introns.

In this study, we investigated methylation of each transcript
based on its promoter, body, and immediate downstream regions.
It would be interesting to extend the study to include enhancer
and other distal regulatory elements. Recently, a number of meth-
ods have been proposed for identifying target genes of enhancers

B

A

Figure 4. Relationship between methylation and differential expression in cancer. (A) Accuracy of the models for inferring differential expression class,
involving all β-value features, based on the large data set with an interclass gap percentage of 80%. Each bar represents the AUROC values of the three pairs
of samples in the group. (B) Overlap of DMRs identified using only WGBS data, only oxWGBS data, only 5mC levels, or only 5hmC levels, for liver (left) and
lung (right) samples using metilene. The lower plots are zoomed-in views of the bottom parts of the upper plots.
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in a cell-type–specific manner (Corradin et al. 2014; He et al. 2014;
Roy et al. 2015; Whalen et al. 2016; Cao et al. 2017). However, the
accuracy of these methods for cell types without genome contact
data such as Hi-C or ChIA-PET is still not high enough for con-
structing models that can infer expression reliably. The explora-
tion of the general quantitative relationships between enhancer
methylation and gene expression levels will need to wait for the
availability ofmore genome contact data ormore accurate enhanc-
er-target identification methods.

It has been shown that 5hmC levels are highly variable
among tissue types (Nestor et al. 2012). Limited by data availabil-
ity, we have only included a few tissue types eachwith only a small
number of samples in our study. Whether 5hmC levels are more
indicative of transcript expression levels in other tissue types and
whether more DMRs can be identified based on 5hmC levels in
other cancer types are questions to be answered when more ge-
nome-wide 5mC and 5hmC measurements become available.

Methods

Construction of the data sets

For the main data set used in this study, we downloaded raw se-
quencing read files (.sra) and alignment files (.bam) of the
WGBS, oxWGBS, and RNA-seq data from the Sequence Read
Archive (SRA; GSE70091, subseries GSE70089 for RNA-seq align-
ment files and GSE70090 for WGBS and oxWGBS raw read files)
(Leinonen et al. 2010) using the SRA toolkit (https://www.ncbi
.nlm.nih.gov/sra/docs/sradownload/). The original data set con-
tained four normal–tumor pairs of liver, but since only three of
them had the corresponding RNA-seq data, we excluded this
fourth pair from all our analyses. Following Li et al. (2016), we
aligned theWGBS and oxWGBS raw reads to the human reference
genome hg19 using BSmooth (Hansen et al. 2012). Read pairs hav-
ing identical alignments of both mates were considered potential
duplicates due to PCR artifacts, and only one read pair was retained
for each set of duplicate read pairs.

For each CpG site, we computed the β value as the number of
reads supporting an unconverted cytosine divided by the total
number of reads covering the site, for both WGBS and oxWGBS
data sets. To ensure the reliability of the input data, following
the data processing in Li et al. (2016), we excluded reads with a
mapping quality less than 20, bases on a read with a base quality
less than 10, and bases within the 10 5′-most positions of both
mates of each read pair. To reduce effects of sampling errors,
CpG sites with fewer than five aligned reads were also excluded.
We further computed 5mC and 5hmC levels of each site using a
maximum likelihood method (Xu et al. 2016).

For WGBS and oxWGBS data, we further computed the aver-
age methylation level of each associated region defined for a tran-
script as

∑
i mi∑
i ni

,

where i loops through all CpG sites in the region,mi is the number
of reads that support site i to be methylated, and ni is the total
number of reads covering site i. 5mC and 5hmC levels of these re-
gions were then determined by the corresponding WGBS and
oxWGBS levels. These associated regions included 16 regions over-
lapping or immediately next to the transcript (Lou et al. 2014),
namely, five consecutive 400-bp bins upstream of the TSS (Up1–
Up5, with Up1 closest to the TSS), first exon (FirstEx), first intron
(FirstIn), internal exons (IntEx), internal introns (IntIn), last
exon (LastEx), last intron (LastIn), and five consecutive 400-bp

bins downstream from the transcription termination site (TTS)
(Down1-Down5, with Down1 closest to the TTS). By default, we
included all annotated protein-coding and noncoding transcripts
of levels 1, 2, and 3 in GENCODE (Harrow et al. 2012) version
19, whereas in some analyses, we only considered a subset of these
transcripts to see how the results differed.

In order to have all 16 regions defined, we always considered
only transcripts with at least four exons, because this is the mini-
mum number of exons for which the first intron, internal introns,
and last intron regions are all distinct. To avoid unreliable methyl-
ation levels caused by low read coverage, if the whole transcript
body region had fewer than three CpG sites each with at least
five aligned reads in a sample, the whole transcript was discarded
from that sample.

In addition, for each region associated to a gene,we calculated
its PDR value in each sample as the ratio of reads having discordant
methylation status. Specifically,we considered readswith an align-
ment that overlapped the region, with reads having a mapping
quality less than 20 or covering less than three CpG sites excluded.
For each of the remaining reads, it was considered a concordant
read if <10% or >90% of the CpG sites it covered had the same
methylation status. The other reads were considered discordant,
and the number of them was used to compute the PDR value. To
ensure the robustness of the computed PDR values, transcripts
with any one of the 16 associated regions having fewer than three
aligned reads were discarded. This filtering was the main reason
that the resulting small data set had a much smaller number of
transcripts than the big data set, which only had β values as fea-
tures. Because the calculations of PDR values required information
of sequencing reads rather than individual CpG sites, they could
not be computed for the processed 5mC and 5hmC data sets,
which did not have read-level information anymore.

We also computed transcript expression levels, defined as
fragments per kilobase per million mapped reads (FPKM), using
Cufflinks (Trapnell et al. 2010) version 2.2.1 using the -G option.

The additional data sets used were downloaded from Gene
ExpressionOmnibus (GEO) (Barrett et al. 2013)or SRA. Specifically,
for the four kidney samples (Chen et al. 2016), the processed 5mC
and 5hmC β values and raw RNA-seq data were downloaded from
GEO (GSE63183). For the 10 liver samples (Hlady et al. 2019), the
processed 5mC and 5hmC β values and raw RNA-seq data were
downloaded from GEO (GSE112221). For the 16 placenta samples
(Green et al. 2016), the processed 5mC and 5hmC β values were
downloaded from GEO (GSE71719), and the raw RNA-seq data
were downloaded from SRA (SRP068290). All RNA-seq data were
aligned to the human reference genome GRCh37/hg19 using
TopHat2 v2.0.13 (Kim et al. 2013) for computing transcript expres-
sion levels.We usedGRCh37/hg19 rather than the latest GRCh38/
hg38 referencebecause theprocessed5mCand5hmCβvalues from
these studies were based on the GRCh37/hg19 reference. Because
our study focused on the well-annotated regions around genes
and all analyses were performed based on aggregating data across
genomic regions, changing the reference to GRCh38/hg38 would
not significantly affect our results and conclusions, since the two
references mainly differ by single-nucleotide variants, alternate lo-
cus scaffolds, centromeres, and mitochondrial DNA (Bhattachar-
yya et al. 2017; Schneider et al. 2017).

Statistical modeling of expression classes

In each sample, we defined a high-expression class of transcripts as
those having an FPKMvalue of one ormore, a low-expression class
of transcripts as those having an FPKM value larger than 10−10 but
smaller than 10−2, and a zero-expression class of transcripts as
those having an FPKM value <10−100.
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Wemodeled the expression class using either all or a subset of
the methylation features. We chose random forest models (bag-
ging with 50 random trees as the base classifiers) because they
were previously shown to performwell for modeling the quantita-
tive roles of DNAmethylation (Lou et al. 2014). All expression clas-
ses were included in the same model.

We designed a cross-validation procedure for evaluating the
performance of the models as follows. We paired up short and
long autosomes, namely, Chromosome 1 with Chromosome 22,
Chromosome 2 with Chromosome 21, and so on, leading to 11
chromosome pairs. Each time one of the chromosome pairs was
left out for testing, whereas the other 10 pairs were used for train-
ing a model. The model was then applied to the transcripts in the
left-out chromosome pair, either from the same sample (within-
sample test) or from another sample (across-sample test). Finally,
the predictions from the 11 left-out sets were combined to com-
pute the performance metric AUROC using a one-class-against-
all strategy. This design of the cross-validation procedure avoids
two types of trivial memorization. First, in the within-sample
test, if all transcripts were randomly distributed to the training
and testing sets instead, two transcripts from the same gene could
be respectively assigned to the training and testing sets, leading to
a simple memorization of the training transcript’s expression level
when predicting the testing transcript’s expression level, because
they would share very similar methylation features. Second, in
the between-sample test, if all transcripts from a sample were
used to construct the model instead, when applying the model
to another sample, again the predictions could be simply memori-
zation of the expression levels of the same transcripts in the train-
ing sample when the training and testing samples were highly
similar, such as those from the same tissue type and disease state.
In addition to avoiding such memorization, the pairing of long
and short chromosomes in our procedure also led to a similar num-
ber of transcripts in each chromosome pair. To make our results
more reliable, we also repeated each classification task 10 times
with different random seeds used to construct the random forest
models, and reported the average performance.

Feature importance evaluation

To evaluate the importance of different features in explaining tran-
script expression levels, we used a forward-searching procedure to
construct models with only subsets of the most useful features.
Specifically, we started with constructing models having only
one feature and compared their performance. The feature used in
the most accurate model was then added to the set of selected fea-
tures, and newmodels were constructed byhaving this feature plus
one of the remaining features. This procedure was repeated itera-
tively, with the feature leading to the best performance in each it-
eration added to the set of selected features. The whole procedure
endedwhen all features had been selected. Finally,we gave the first
x features selected a score of x, x−1,…, 1, respectively, where x was
chosen to be 1/2 of the total number of features when all 64 fea-
tures were considered separately, and 2/3 of the total number of
features/feature blocks in all other settings.

We performed this feature importance evaluation with each
sample and also summed the scores across all samples to define a
single importance score for each feature.

In addition to individual features, we also used this procedure
to evaluate the importance of different feature blocks.

Statistical modeling of expression levels

Because the grouping of transcripts into expression classes relied
on a specific way of defining the classes and a specific number of

classes, to ensure that our findingswere not affected by our specific
choices, we also constructed regression models to predict the log
expression level of the transcripts based on their methylation fea-
tures. Specifically, for a transcript with a FPKM value of y, we used
log10(y+1) as the prediction target.We used support vector regres-
sionwith a radial basis function (RBF) kernel to construct themod-
els. Model performance was evaluated using the same cross-
validation procedure as in the case of predicting expression classes,
quantified by both Pearson’s correlation and Spearman’s correla-
tion coefficients.

Definition of differential expression classes

To define differential expression classes, we first calculated a differ-
ential expression level of each transcript by subtracting its FPKM
value in a normal sample from its FPKM value in the correspond-
ing tumor sample, FPKMdiff = FPKMtumor− FPKMnormal. We
kept only transcripts with no missing data in all six sample pairs.
Then for each tissue type, we used the median differential expres-
sion level of a transcript among the three sample pairs to deter-
mine its differential expression class. Transcripts with a median
differential expression level between −10−5 and 10−5 were consid-
ered to have no significant change of expression and were not
included in any of the classes. For the remaining transcripts with
a positive differential expression level (i.e., higher expression in
tumor), we took the top and bottom x% of transcripts with the
largest and smallest absolute differential expression values to
define the strongly up-regulated and weakly up-regulated classes,
respectively, where x is a variable, and we called 1 –2x% the gap
percentage between the two classes. We tried different values of
the gap percentage from 10 to 90, with 80 used as the default as
a tradeoff between the clear separation of the two classes and the
number of transcripts that can be included in them. In the same
way, we also defined the strongly down-regulated and weakly
down-regulated classes.

Statistical modeling of differential expression classes

For each tumor–normal pair of samples, we compared the sizes of
the four classes and randomly down-sampled the larger ones until
all four classes had the same number of transcripts. This random
down-sampling was repeated 10 times to generate 10 different
data sets. We then trained and tested random forest models for
the four differential expression classes together using the union
of methylation features from individual samples and the same
cross-validation procedure as in the case of modeling expression
classes.

Analysis of DMRs

DMRs were first identified by metilene v0.2-6 (Jühling et al. 2016)
based on the β values of CpG sites from the four types of methyl-
ation data. For each tissue type, the three tumor sampleswere com-
pared with the three normal samples to identify the DMRs. We
further filtered the DMRs by retaining only those at least 100 bp
long with at least three CpG sites having 3× read coverage, as
well as an average difference of β value between the samples in
the tumor and nontumor groups of at least 0.1. We also tried
five other sets of values for these filtering parameters, but the re-
sulting trends were all highly similar. We considered a DMR called
from one data set to overlap a DMR called from another data set if
the intersection of them constitutes at least x% of both DMRs,
where x is the minimum overlap ratio, and we tried a range of val-
ues for it. To count the number of DMRs commonly called from
two data sets, we first obtained two numbers: namely, the number
of DMRs in the first set that overlaps one or more DMRs in the
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second set, and the number of DMRs in the second set that over-
laps one or more DMRs in the first set. It turns out that these
two sets of numbers were usually identical and differed at most
by a small number. We therefore used their average in our report.

We also used a second method, dmrseq (Korthauer et al.
2018) v1.0.14, to call DMRs. Because dmrseq requires read cover-
age as input, which is not well defined for the derived 5mC and
5hmC levels, we only used it to call DMRs from the WGBS and
oxWGBS data. For each tissue type, we discarded CpG sites with
fewer than three reads in any sample and then ran dmrseq to
call DMRs using default settings. For the liver samples, no DMRs
were called from theWGBSdata.We found that this was due to dif-
ferences in themethylome profiles between liver tumor sample T2
and the other two liver tumor samples. We therefore removed this
sample and reran DMR calling using dmrseq.
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