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Abstract: The impact-echo diagnostic method is a well-known nondestructive pulse compression
test method, which can be relatively easily used for the testing of concrete and reinforced concrete
elements. The evaluation of the measurement with this method is based on the analysis of the signal
itself in the time and frequency domains. This allows acquisition of information on the velocity of
the mechanical wave, the resonant frequency of the specimen or on the presence of internal defects.
The ability to interpret these measurements depends on the experience of the diagnostic technician.
The advent of classification algorithms in the field of machine learning has brought an increasing
number of applications where the entire interpretation phase can be considerably simplified with the
help of classification models. However, this automated evaluation procedure must be provided with
the information of whether the signal acquired by the test equipment has actually been measured
under optimally set conditions. This paper proposes a procedure for the mutual comparison of
different measuring setups with a variable tip type, hammer handle and impact force. These three
variables were used for a series of measurements which were subsequently compared with each
other using multi-criteria evaluation. This offers a tool for the evaluation of measured data and their
filtering. As an output of the designed method, each measurement is marked by a score value, which
represents how well the acquired signal fit the weight demands for each observed feature of the
signal. The method allows the adjustment of selected demands for a specific application by means
of set thresholds. This approach enables the understanding of characteristics of the signal in the
automated pre-processing of measured data, where computing power is limited. Thus, this solution
is potentially suitable for remote long-term observations with sensor arrays or for acoustic emission
signals pre-processing.

Keywords: impact-echo method; hammer; fast Fourier transform; Saaty matrix; feature extraction;
nondestructive testing; civil engineering

1. Introduction

Testing of the thickness of concrete elements in the 1990s began to include the acoustic
nondestructive impact-echo method [1–3], also called the resonance method [4], with a
mechanical impulse generated by a hammer (sometimes also the hammer method [5]).
The impact-echo (IE) method has found wide application in the construction industry due
to its simplicity, low implementation cost and a relatively wide range of possible uses.
However, this method is also dependant on the correct interpretation of measured data.
In practice, it is employed to measure the length of piles, to localise cracks in massive
monolithic structures, to detect and localise the delamination of bridge decks, to diagnose
the condition of concrete elements, etc. [6–9]. In the preservation of cultural heritage, it is
also used either as an in-situ testing method of the current state of structural elements or as
a monitoring tool in the form of a sensor array [10–12]. Due to a simple testing principle,
there are many variations of this method in the form of, for example, the low-frequency
pulse-echo method [13,14] or modal analysis [15–17].
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Knocking on a structure with a hammer is the oldest method of nondestructive testing
in construction. It is based on the propagation of a mechanical wave through a structure.
Depending on the sound (in the hearing range of 20 Hz–20 kHz) produced by the knocking,
whether it is a high, clearly audible sound or a deep and muffled sound, it is possible to
assume the state of the structure and whether or not it has any defects. The method (when
used within the hearing range) is subjective and depends on experience and surrounding
conditions of such testing.

The IE method plays an important role in the nondestructive testing of civil engineer-
ing structures, namely concrete structures. Materials, such as concrete, or ceramic-based
materials and composites are strongly heterogeneous compared to steel elements prefer-
ably used in mechanical and aeronautics engineering. In past years, many non-destructive
(NDT) methods have been developed, which give satisfactory and accurate results in
testing metal alloys [18–20] but cannot be used with the same effectiveness in testing
building materials. The main problem lies in refracting mechanical waves from natural
defects and morphological elements, such as air voids and different types of aggregate
and cracks caused by cement shrinkage. All these built-in defects are considered part of
a healthy structure from the point of view of technical norms and standards used in civil
engineering. Nondestructive standards are closer to mechanical applications, and usage
of NDT acoustic techniques in building materials requires some precaution. Pulse echo
signals acquired from testing such heterogeneous materials naturally contain more noise,
due to the porous character, and the material slightly changes its acoustic impedance with
different moisture content [21]. What can be measured in homogenous steel elements
cannot be measured with the same accuracy and reliability in concrete elements, due to
material and physics limitations.

The impact-echo method is easy to use and does not require expensive instrumentation.
Combining classification models, or deep convolutional neural networks, can be used as a
powerful tool seen in this study [22]. Other applications can be found in testing concrete
pavements, which is done by a laser crack measurement system [23]. This system allows
the inspection of kilometres of highway but can only assess defects present on the top
layers of pavement. An array of impactors and microphones as receivers were used in
these studies for testing large areas of roads, or bridge decks [24,25] for the presence of
voids, and the delaminating of different construction layers.

These studies document the importance of the impact-echo in nondestructive testing
in civil engineering as an accessible tool, assessing large structures with relatively low
instrumental requirements.

The presented paper extends previous research in the impact-echo method and focuses
on the preferable combination of the impact force, handle type and tip shape with regard
to the resulting generated signals. It is therefore a methodological analysis of the physical
testing procedure itself and simultaneously of the involved instrumental equipment. These
experiments included a calibration and comparison of different combinations of signal
excitations and their influence on the resulting frequency spectrum.

1.1. Mechanical Wave

Vibrating the surface of a test specimen (from the applied impact stress) generates a
mechanical wave through the test medium. Using Figure 1a, we can define three types of
mechanical waves that propagate through the material: P-wave, S-wave and R-wave [26].
The P-wave represents longitudinal oscillation associated with tensile and compressive
stresses, and achieves the highest velocity compared to the other types of mechanical waves.
The S-wave represents transverse oscillation associated with shear stress, and the R-wave
is formed by oscillations propagating over the surface of the material, also called Rayleigh
surface waves [27]. When mechanical waves travel through a material, the P-wave is fastest
and has the highest energy, followed by the S-wave. If the used measuring equipment
is set incorrectly, the surface R-waves may be confused with the longitudinal P-waves
or the transverse S-waves. This is often caused by placing the receiving sensor close to
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a hitting position. This may lead to the emergence of frequencies before the resonance
frequency itself. Depending on the position of the receiving sensor to hit position, these
frequencies may reach even higher amplitudes than the resonance frequency—in such
a situation, a false classification will happen, because in most technical norms, the first
dominant frequency is assessed (for example, for dynamic modulus of elasticity [28], or
thickness of concrete pavement [29]). In measurements up to hundreds of signals, a human
operator can still distinguish such an error, but if we want to assess thousands of signals
automatically, a serious problem may occur.

Figure 1. Wave theory: (a) Differentiation of waves during signal generation [26]; (b) reflection and refraction of waves at
the interface of two different materials [30].

The movement of mechanical waves through different types of materials is influenced
by their value of acoustic impedance:

Z = ρ × Cp, (1)

Z—acoustic impedance (kg·m−2·s−1), ρ—density (kg·m−3) and Cp—velocity of the longi-
tudinal P-wave (m·s−1).

Mechanical waves propagate easily through a material that has a high acoustic
impedance value (solid materials, e.g., concrete Z = (6.9–10.4) × 106 kg·m−2·s−1) and
is completely absorbed or partially reflected in materials whose acoustic impedance value
is close to zero (for example, gaseous substances, air Z = 437 kg·m−2·s−1). This type of
mechanical wave interaction at the material interface is described in Figure 1b. At the
moment, when the mechanical wave hits the interface of two materials that have signifi-
cantly different acoustic impedance values (for example, a cavity containing air inside a
concrete mass), mechanical energy is absorbed or partially reflected [27]. This change can
be recorded and analysed.

The amplitude of the P-wave reaches the highest values when the angle of incidence of
the wave is perpendicular to the interface of two media with different acoustic impedances
Z1 and Z2. In this case, the following equation applies:

Rn = (Z2 − Z1)/(Z2 + Z1), (2)

Rn—refractive index for perpendicular incidence, Z1—acoustic impedance of the first
medium and Z2—acoustic impedance of the second medium.
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If Z1 is higher than Z2, the refractive index R is negative. If the incident wave carries
compressive stress, the reflected wave will conversely carry tensile stress. If Z2 is larger
than Z1, no change occurs. The refractive index depends on the angle of incidence [27].

In the case of the propagation of mechanical waves through a nonhomogeneous
material, mechanical waves are reflected and refracted at each material interface. Each
incident P-wave can be refracted, or reflected, again as a P-wave or S-wave.

1.2. Impact-Echo Method Principle

The impact-echo method is based on the controlled generation of vibrations using
mechanical impact and the subsequent detection of these vibrations from the tested element
(the method operates within the range of 3 Hz–20 KHz). The initiation of vibrations in
commercially used methods can be triggered by a number of steel hammers, which differ
in weight and diameter. Vibration detection is done by piezoelectric sensors, which convert
the mechanical wave energy into an analogue signal in the form of voltage U(t). This signal
in the time domain is processed using the fast Fourier transform, which can convert the
signal to the frequency spectrum U(f). This frequency spectrum can then be a subject of
further analysis. The method of spectrum processing differs according to the application
on a specific structure and according to the aim of the measurement [30]. The basic
composition of the impact-echo measurement is presented in Figure 2.

Figure 2. Diagram of the testing procedure using the impact-echo method [27].

If we simultaneously record the signal generated by the hammer (acoustic signal
generator), we will always receive two signals in any sensor-generator location. The first
signal in time is recorded on the hammer and then with a minor delay on the sensor located
on the test specimen. This delay is determined by the velocity and type of mechanical wave
that is preferred by the generator–sensor orientation. When testing standard laboratory
beam test specimens (shown in Figure 2), where the sensor is placed on the front face of
the test beam and the impact is directed at the opposite face, the longitudinal P-wave is
preferred and the time difference between the two measured signals can be used to derive
the velocity of the longitudinal wave Cp.

On the other hand, if the sensor is placed on the same surface as the point of impact of
the hammer, it is the surface (R-wave) and shear (S-wave) waves that are recorded. This
difference must be considered when designing and implementing NDT testing using the
impact-echo method.

An actual comparison of the recorded signals and their frequency spectrum is pre-
sented in Figure 3. The left graph shows the hammer signals on the vertical axis on the right
and the sensor signal on the vertical axis on the left. As can be observed, the first amplitude
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(V) of the hammer signal is 5× higher than the signal recorded by the sensor attached to
the test specimen. The right graph shows the frequency spectra of both recorded signals. It
is apparent that the dominant frequency of the test specimen is 5 kHz.

Figure 3. Comparison of sensor and hammer signals and their frequency spectrum: (a) Signal of receiving sensor attached
to test specimen; (b) signal of hammer sensor; (c) frequency spectrum of both signals.

1.3. Software Equipment and Programs

In the field of vibroacoustics, measured data are processed exclusively by software,
either provided directly by the manufacturer of the measuring apparatus or using licensed
or open-source libraries and toolboxes. In the case of this application, the limiting factor is
often the software license for which the manufacturer clearly defines its use. This creates a
situation where the measuring apparatus frequently requires the additional purchase of
similarly expensive software.

On the other hand, other methods can be implemented with the use of basic laboratory
equipment and can very well provide results equivalent to turnkey commercial systems.
This example can be demonstrated on the impact-echo method, where individual manu-
facturers offer sophisticated measuring instruments with mechanical impact generators
together with evaluation software.

This type of apparatus can be adequately replaced by relatively less expensive stand-
alone sensors—for example, by multi-channel digital oscilloscopes, which today provide
a sufficient range of recorded frequencies, bit resolution and sufficient data flow, and are
therefore capable of the continuous recording of even minute-long signals on the order of
MHz. The subsequent appropriate processing of the measured signals is then a matter of
selecting the suitable software that includes the necessary functions.

1.4. Fast Fourier Transform

Acoustic NDT methods often work with measured signals that consist of a change
in voltage U over time t. They can be divided into stationary or ergodic signals. These
signals can be expressed in many different ways; time and frequency representations are
important. In the Fourier transform, the signal is compared to a complex sine function,
and because it is performed over the entire time representation, the frequency spectrum is
independent of time. The analysis of such a frequency spectrum is one of the standardised
and useful tools for signal studying.

The discrete Fourier transform, inverse Fourier transform or fast Fourier transform, is
often discussed in the case of such processing. It is the most frequently used one in practice
due to its lower computing demands.
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The fast Fourier transform (FFT) algorithm was developed in 1965. The fast Fourier
transform [30] can be expressed as follows f (t):

F(ω) =
1√
2π

∞∫
−∞

f (t)e−iωtdt (3)

This transformation allows decomposition of the signal into individual frequencies
that comprise the signal. This is an approximate estimate of individual frequenciesω of
the short time interval of the signal t0.

An example of a signal recorded during impact-echo measurement and its frequency
spectrum created by FFT are presented in Figure 4. This graph also documents the typical
pulse signal in audible frequencies where signal attenuation occurs.

Figure 4. Example of a signal and its frequency spectrum created by FFT: (a) Signal from the sensor attached to test specimen;
(b) frequency spectrum of recorded signal with highlighted dominant frequencies and its parameters.

The resulting frequency spectrum can then be further evaluated and analysed. This
procedure is one of the most common tools of analysing signals from the impact-echo
method, as is documented by the list of foreign publications and standards [26,29,31–33].
The first dominant frequency, or its other harmonic frequencies, is the most frequently
evaluated element. The presence of defects, cracks, cavities or another material interface
with a significantly different acoustic impedance will influence the resulting frequency
spectrum, by shifting the dominant frequencies to higher or lower regions.

2. Equipment and Software Used

A Handyscope digital oscilloscope was used in the experiment and offers an optimal
tool for simple calibrations of even complex measurement procedures, such as modal
analysis, due to the relative simplicity of the instrumental part, as well as rich variability of
the programming part. The digital oscilloscope Handyscope HS3AWG-5 has a resolution of
16 bits and a maximum bus frequency of 195 kHz at the given resolution. This oscilloscope
is connected via a USB connector and can also be used as a multimeter or a signal generator
(see Figure 5a). A MIDI 446s12-type piezoelectric sensor supplied by ZD Rpety-Dakel was
used to record the generated signal (Figure 5b).
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Figure 5. Photos: (a) Three-channel digital oscilloscope; (b) MIDI-type piezoelectric sensor.

2.1. Hammer with a Piezoelectric Sensor

The experiment was conducted with a hammer with a built-in generator in various
configurations, as can be seen in Figures 5–9. Unlike a classic hammer for the impact-echo
method, the given hammer can record the energy of the generated pulse and the energy of
the response of the measured system to the generated signal.

Figure 6. Circular sensor with detail of the mounting in the hammer.

Figure 7. Hammer without a handle: (a) With a blunt tip; (b) with a sharp tip.
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Figure 8. Hammer with a handle: (a) With a blunt tip; (b) with a sharp tip.

Figure 9. Illustration of all extracted features in the signal by a proposed algorithm: (a) Recorded signal from a sensor
attached to test specimen with highlighted features (threshold value, signal energy—area above the threshold value, the
directive of signal attenuation, signal length); (b) frequency spectrum of recorded signal with highlighted frequency features
(dominant frequency, the amplitude of dominant frequency, prominence and peak-width at half-prominence).
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The calibration involved two tip variants and two variants with/without the handle.
The first tip variant was a blunt tip with a radius of curvature of 300 mm. This tip can be
seen in Figure 7a in combination without the handle and Figure 8a in combination with the
handle. The second tip variant was a sharp tip. This tip can be seen in both combinations in
Figures 7b and 8b. Calibration measurements were conducted on the test specimen using
both variants.

For this calibration, the sensor was placed in the longitudinal frequency fL measure-
ment orientation. Several impacts were performed until the movement of the specimen on
the mat started to enter the measured signal. This situation is already beyond the distortion
of the measured signal of the test specimen, and the typical generating mechanical impulse
is significantly lower; however, the aim of the calibration was to test the used instruments
under various conditions and therefore also included the disproportionate intensity of the
hammer impact. The measurement recorded both sensor and generator-hammer signals.

2.2. Feature Extraction

Over the course of the measurement with the acoustic impact-echo method, signals
are recorded in the form of a change in voltage over time. The experiment operated with a
digital oscilloscope resolution of 16-bit, so at the maximum USB transfer rate, we achieve
the highest possible recording frequency of 195 kHz with a recording length of 0.3 s. In
total, 3× 65 Ksamples are recorded. For objective machine assessment of the optimal setup
with variations in handle-tip-impact force, it is necessary to select suitable monitored
signal parameters. In general, this means a reduction in dimensionality [34], which entails
the search for a way to separate representative parameters, the so-called symptoms, from
the complex comprehensive information. The term symptom extraction is derived from
this. This method is widely used in machine learning. In the field of acoustic NDT, the
results of the work of Zhang and colleagues can be mentioned [35]. The mentioned study
uses a procedure of feature extraction to create a classification model for the detection
of artificially embedded cavities in a reinforced concrete precast. Their algorithm for
feature extraction focused on signal decomposition using wavelet decomposition and
the calculated energy of the signal and of the frequency spectrum. These values were
further supplemented by the value of the dominant frequency, the average frequency and
individual spectral moments.

The design of the algorithm in this paper, however, focuses more on the evaluation
of qualitative parameters of the signal and frequency spectrum particularly in order to
determine the suitability of the used tip-handle-impact force setup. Therefore, we monitor
a total of 9 parameters: Dominant frequency f 0, amplitude of the dominant frequency A0,
width of the dominant peak w0, relative amplitude in relation to the frequency spectrum
level P0, signal energy ES, signal duration ts, signal attenuation As, attenuation from the
frequency spectrum Af and signal-to-noise ratio (SNR).

The individual parameters are shown in Figure 9. The energy of the signal is obtained
from integration of the signal above the threshold value T, which is defined as:

T = F + |Sdt| × 2 (4)

where F is the average frequency and |Sdt| is the absolute value of the standard deviation
of the measured frequency. Signal duration ts is then defined by the signal area for the
values S > T. Attenuation from the frequency spectrum is the ratio of the amplitude A0
and the width of the dominant frequency w0. SNR is then obtained using the snr function
from the Signal Processing Toolbox [36]. An example of this type of evaluation is shown in
Figure 10. The signal-to-noise ratio value is given in dB.
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Figure 10. Illustration of signal-to-noise ratio function output.

2.3. Multi-Criteria Signal Evaluation

Each combination of the selected type of hammer, sensor or impact force can result in
a different quality of the generating impulse and thus in a different quality of the response
of the test specimen. This objective quality can be assessed in terms of readability of the
frequency spectrum, signal length, noise level of the recorded signal, etc. Optimisation
of these input parameters is often based on a heuristic approach, when the observed
response satisfies the requirements of the technician conducting the test, or of the technical
legislation governing the test. However, if we seek to objectively evaluate this decision-
making process and determine, for example, which combination is optimal for a given
technical purpose, the use of the feature extraction technique (mentioned in the previous
chapter) and subsequent multi-criteria evaluation of extracted parameters seems adequate.

If it is necessary to unambiguously decide and analytically compare different variants
with each other based on n-parameters, we can use the Multiple Criteria Decision Making
(MCDM) algorithm and, inter alia, the Analytic Hierarchy Process (AHP), which was
developed in 1970 by Saaty [37]. Utilisation of this algorithm can be observed in numerous
applications when it is necessary to select the most suitable variant according to the selected
weights of partial parameters. An example can be the search for the optimal route for
the transfer of oversized loads [38] by the team Wolnowska et al. This procedure was
also employed to evaluate the optimal NDT diagnosis method for testing the damage of
prestressing units in an extensive study by Hurlebaus et al. [39]. The utilisation of this
algorithm is such a sensitive matter as the determination of damage of prestressing units
documents the reliability and effectiveness of the AHP algorithm.

Let us assume that we are observing several different parameters on the acquired
signals A1 . . . An, for example, the deviation of the dominant frequency from the actual
resonant frequency of the tested specimen. This parameter can be designated f 1 . . . fn. The
measured deviations can be used to create a matrix of ratios between partial deviations, by
which we compare each individual deviation with all others. This matrix is also called an
estimation matrix for a given parameter and can be expressed as follows:

f1
f1

f1
f2
· · · f1

fn
f2
f1

f2
f2
· · · f2

fn
...

...
. . .

...
fn
f1

fn
f2
· · · fn

fn

·


f1
f2
...
fn

 = n·


f1
f2
...
fn

 (5)



Materials 2021, 14, 606 11 of 19

We therefore acquire a comparison matrix A = (aij), aij = fi/fj, i,j = 1 . . . n that comprises
only positive numbers and is governed by the condition:

ajk × akj = 1 (6)

Each ratio of the parameter fi/fj is then a separate weight and expresses the importance
of the parameter fj to fi. This weight cannot be determined precisely and must be estimated
based on the given application. Table 1 presents the recommended weight variances that
were defined by Saaty in his theory for adequate setting of the mutual importance of
individual monitored parameters.

Table 1. Saaty’s scale [37].

Value: 1 3 5 7 9 (2,4,6,8)

Importance: Same
importance

Slight
importance

Significant
importance

Very
significant
importance

Absolute
impor-
tance

Intermediate
Values

The resulting comparison matrix is then as follows:
1 1

w1,2
· · · 1

w1,n

w1,2 1 · · · 1
w2,n

...
... 1

...
w1,n w2,n · · · 1

 (7)

The product Si is then acquired for each row and is subsequently used for the calcula-
tion of the priority vector Fi of each parameter:

Si =
n

∏
j=1

Sij (8)

Ri = (Si)
1
n (9)

Fi =
Ri

∑n
i=1 Ri

(10)

The calculation of the partial weight bij of the parameter f of the signal A can be
acquired using the following formula:

bij =
MAX → bij =

aij−MIN(ai)

MAX(ai)−MIN(ai)

MIN → bij =
MAX(ai)−aij

MAX(ai)−MIN(ai)

(11)

In this case, it is essential to consider the requirement of a given parameter, where
it is necessary to define which values are preferred. For example, when evaluating the
deviation of the measured dominant frequency from the actual resonant frequency of the
specimen, it is desirable if the deviation reaches the lowest possible values. If we want the
resonant frequency to be sufficiently readable, we want the amplitude to reach the highest
possible value. Equivalently to the first example, it is also possible to determine the desired
amplitude value and to require the lowest absolute deviation from the required value of
the measured amplitude.

The partial score of the monitored parameter is then calculated using the formula:

aij = fi × bij (12)
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If we then have n number of A signals for which we monitor the 9 above-mentioned
parameters by expressing the total score of each recorded signal in a different combination
of handle/tip/impact force, the final score of each combination is the sum of the partial
scores of the monitored parameters.

3. Results
3.1. Data Acqusition

The voltage generated at the impact was used for the description of the impact
intensity for each configuration. The graphs in Figures 11–14 show the specimen response
to the generated signal in the time and frequency domains processed by the FFT. The left
graph is always in the amplitude–time region, where the horizontal axis describes the time
t(s) and the vertical axis the measured sensor voltage U(V). The right graph is the frequency
spectrum for individual responses, where the horizontal axis describes the frequency fL
(Hz) and the vertical axis describes the measured sensor voltage U(V).

Figure 11. Example of impact with a hammer with a blunt tip without a handle: (a) Signals from the sensor attached to the
test specimen with rising impacting force; (b) frequency spectrum of recorded signals.

The resonant frequency of the calibration concrete specimen, which was verified in
a laboratory, reached 4.6 kHz, which corresponds to the highest-frequency peak in the
frequency spectrum. The comparison of the measured results in Figures 11 and 12 indicates
a noisier signal when using a sharp hammer tip. Especially in the case of lower intensities,
signal noise occurs already from 10 kHz. The increased noise is caused by the crushing
of the surface of the test specimen by the sharp tip when the tip slightly penetrates the
specimen. This phenomenon does not occur with specimens that are harder than the
hammer material.

A comparison of results when using the handle is shown in Figures 13 and 14. Both
cases exhibit an evidently higher minimum impact intensity as the handle makes it im-
possible for the impact to be performed with a very low level of intensity. In addition,
substantial noise from the signal can be observed again in the variant with a sharp tip,
starting already at 7 kHz. Again, this is caused by disruption of the surface matrix of the
concrete specimen.
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Figure 12. Example of impact with a hammer with a sharp tip without a handle: (a) Signals from the sensor attached to test
specimen with rising impacting force; (b) frequency spectrum of recorded signals.

Figure 13. Example of an impact with a hammer with a blunt tip with a handle: (a) Signals from the sensor attached to test
specimen with rising impacting force; (b) frequency spectrum of recorded signals.
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Figure 14. Example of impact with a hammer with a sharp tip with a handle: (a) Signals from the sensor attached to test
specimen with rising impacting force; (b) frequency spectrum of recorded signals.

3.2. Feature Extraction and Comparision

A weighted multi-criteria comparison can be used to compare the effectiveness of
the used combination of tip-handle. The recording of all the signals presented above was
performed on the same test specimen, where the only change involved the handle of the
hammer and the tip, and the individual impact impulses were generated by different forces.
This approach offers a comparison of all performed impacts with each other and a design
of suitable weights of the monitored parameters for the evaluation of each acquired signal.

In this case, the monitored parameters include the dominant frequency, its amplitude,
peak width, peak prominence, energy under the curve and signal duration.

All performed measurements therefore included the acquisition of these parameters,
which were subsequently assigned a respective weight in relation to each other. As a result,
a multi-criteria comparison [37] is particularly effective as it allows us to define which
parameters are more or less important for us based on the set weights and simultaneously
enables us to qualitatively evaluate each acquired signal. This approach can be seen in the pre-
processing of some world publications, as an introductory tool for separating well-acquired
signals from signals with various anomalies, which are not suitable for further assessment.
The individual set weights of the monitored parameters are presented in Table 2.

Table 2. Weights set for signal classification of each hammer–handle setup.

Parameters A0 ∆f 0 * w0 P0 ES ts As Af SNR Demand Fi

A0 1.00 0.20 0.33 0.50 0.50 0.50 0.50 0.50 1.00 Max 0.05
∆f 0 * 9.00 1.00 0.50 0.33 0.33 1.00 1.00 1.00 3.00 Min 0.12

w0 3.00 2.00 1.00 0.20 0.17 0.50 0.33 0.20 2.00 Min 0.07
P0 3.00 3.00 5.00 1.00 0.50 0.17 1.00 1.00 0.20 Max 0.10
ES 2.00 3.00 6.00 2.00 1.00 1.00 1.00 1.00 0.33 Max 0.14
ts 2.00 1.00 2.00 6.00 1.00 1.00 1.00 0.17 0.25 Max 0.10
As 2.00 1.00 3.00 1.00 1.00 1.00 1.00 0.33 0.50 Min 0.10
Af 2.00 1.00 5.00 1.00 1.00 6.00 3.00 1.00 2.00 Max 0.19

SNR 1.00 0.33 0.50 5.00 3.00 4.00 2.00 0.50 1.00 Max 0.12
* Difference between actual resonant frequency of specimen and localised dominant frequency.
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When assessing the frequency spectrum, a correctly measured resonant frequency
is one of the most important parameters for the operator or technical diagnostician. As
illustrated in chapter 1.4, in the case of the frequency spectrum, it is common for the signal
to contain a frequency other than the resonant frequency in the given test direction. That is
why the weight of the dominant frequency parameter is highest when compared to other
monitored parameters. Conversely, the peak width has a lower weight than a correctly
measured frequency. The amplitude is important for the decision of which the measured
frequency is dominant in the frequency spectrum. It is therefore important for these two
parameters to be measured accurately to guarantee correct measurement.

In the presented case, we know the correct frequency of the test specimen, which is
exactly 4667 Hz. This parameter is fixed as it is still the same specimen, and the others may
differ significantly depending on the character of the impact, the impact force, the shape of
the hammer tip, etc.

The proposed ratios of the weights of individual parameters were based on experience
with the localisation of frequency peaks. For accurate assessment, it is key that the deviation
from the dominant frequency ∆f 0 reaches minimum values. This parameter is important
for the recalculation of other material characteristics such as element thickness, velocity
of longitudinal waves or dynamic modulus of elasticity of the tested material. If the test
specimen is vibrated by a small energy only, there is a chance that the natural frequency
of the specimen will not be recognisable in the frequency spectrum, which necessitates
the requirement for the highest possible signal energy. However, if the vibrating energy is
too high, the acquired signal may suffer from noise, and therefore, a sufficiently low level
of noise, expressed by the SNR value, is required. In the case of the proposed weights, a
sufficiently high SNR value is more important than the acquired amplitude, signal energy
or signal attenuation, which consequently balances out the high amplitude requirement.
This approach enables the set weights of the comparison matrix to be used for signals
acquired by the resonance method from various constructions.

If we process the performed measurement, we obtain a point evaluation of each
performed impact, which includes the evaluation of all the monitored parameters. If we
express the average point evaluation in each combination of handle tip, we obtain a point
evaluation, which indicates, based on the set parameter weights, that the best results are
achieved by the combination of blunt tip and handle. The partial score of the acquired
signals can be used to create a box plot, which is shown in Figure 15.

Figure 15. Boxplot of score distribution for each combination of tip and handle.

The sharp tip in both variants without a handle/with a handle exhibits a large variance
in its evaluation, which indicates that it is more difficult to generate the right intensity and
direction of impact with the hammer in this combination. By contrast, the blunt tip with
the handle exhibits only a small variance in the signal score between the values 60 and 90.
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This means it is easier to generate the ideal vibrating impulse with a hammer with a blunt
tip and therefore to obtain the ideal response of the test specimen.

3.3. Correlation of Extracted Features

The individual monitored signal parameters can also be compared with each other
using the correlation coefficient Rcoeff. This comparison is presented in Table 3. Expected
dependencies between the individual parameters can be observed in this case. The highest
correlation is achieved between signal energy and amplitude and prominence. Other
significant correlations occur between frequency attenuation and signal energy and the
prominence of the dominant frequency peak. The correlation of the signal-to-noise ratio
does not value 0.3, which is marked as a weak correlation based on Evans’ study [40].
Despite the fact that this value does not a reach high correlation with the other monitored
parameters, it is an important parameter in terms of readability of the frequency spectrum.

Table 3. Correlation table of all extracted features of signals.

Parameters A0 ∆f 0 * w0 P0 ES ts As Af SNR

A0 1.000 - - - - - - - -
∆f 0 * 0.296 1.000 - - - - - - -

w0 −0.168 −0.800 1.000 - - - - - -
P0 1.000 0.297 −0.169 1.000 - - - - -
ES 0.994 0.288 −0.154 0.994 1.000 - - - -
ts 0.214 −0.319 0.414 0.213 0.208 1.000 - - -
As −0.117 0.311 −0.269 −0.116 −0.117 −0.773 1.000 - -
Af 0.985 0.409 −0.299 0.986 0.975 0.157 −0.077 1.000 -

SNR 0.243 −0.164 0.281 0.243 0.207 0.209 −0.036 0.211 1.000

* Difference between actual resonant frequency of specimen and localised dominant frequency.

The correlation comparison also reveals that the parameters of amplitude A0 and
prominence P0 are almost interchangeable within the measured signals. Nevertheless, it is
important to note that the test specimen whose resonant frequency was measured was in
good condition and it can therefore be assumed that the frequency spectrum will reach a
very low noise level. However, if the measurement were performed on a test specimen that
had already been degraded (presence of cracks, exposure to frost or high temperatures,
etc.), it can be expected that the value of the dominant frequency amplitude A0 will reach
values other than the prominence P0 of the dominant frequency.

4. Discussion

The assessment of the signal acquired during vibroacoustic testing is an important task
that usually takes place at the manual level. The analysis of the acquired signals disregards
signals that lack the required information or which are not sufficiently readable. This pre-
processing is essential in automated data processing and therefore plays an important part
in the design of ever-evolving applications in the field of machine learning. The proposed
procedure utilises the technique of the extraction of specific symptoms in the time and
frequency domains, which are subsequently evaluated by a multi-criteria comparison using
Saaty’s methods.

The proposed procedure was applied to monitor the influence of the used impact
hammer, the used tip, handle and impact force on the quality of the measured signal using
a piezoelectric sensor during standard impact-echo testing.

The test specimen with the dimensions 100 × 100 × 400 mm was produced from
standard plain C40/45 concrete and was kept in a water bath under laboratory conditions
after formwork removal.

The proposed procedure allowed us to assess the acquired acoustic signals and deter-
mine whether they contain the required information such as resonant frequency, amplitude,
signal energy, frequency attenuation and signal attenuation. The procedure is valuable
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in the case of the automated processing of measured signals and their evaluation, which
enables the establishment of a threshold value of the signal score, which then contains a
sufficient amount of information to be included in further assessment.

The proposed procedure can be effectively applied to a series of measurements which
are expected to exhibit oscillation of the natural resonant frequency in the specified range.
The procedure was verified in the frequency range from 0.5 Hz to 20 kHz. Its use can
also be applied to ultrasonic measurements, although those measurements require slightly
different parameters, such as the velocity of ultrasound in a material. However, the
proposed procedure approaches signals without the inclusion of the frequency domain.

In the case of technical applications, hundreds of signals are often acquired, whether
they pertain to measurements of test specimens or measurements of test points on larger
structures such as walls, bridges or roads. If we accept that some measurements in these
applications can be conducted under sub-optimal conditions and exhibit a type of system
or random error in regard to the generation of natural vibrations, it is desirable to have an
automated procedure that will detect such erroneously measured signals. Otherwise, the
measurement may provide completely incorrect information and will therefore constitute a
false-positive error. Furthermore, this procedure adds the possibility to qualitatively assess
the conducted measurement and determine, for example, how successful the measurement
was with regard to different aspects (type of impact, sampling frequency, homogeneity of
generated pulses, position of generating impacts, location of the placed sensors, etc.).

5. Conclusions and Future Work

The presented paper’s main motivation is our current evaluation of IE measurement,
which heavily relies on the ‘manual’ approach. These results should act as a reference for
the measurement of real-life damaged test specimens or structures. Our future work will
focus on a case study to verify the designed algorithm as a tool to evaluate its accuracy
and ability to distinguish different characteristics of the measurement setup and acquired
signals itself. It is much harder to record the pulse-echo signal of deteriorated building
materials. Such a material has different attenuation and different acoustic impedance
with hand with different physical-mechanical properties such as density, compressive
strength and modulus of elasticity. The designed algorithm was used for simple pulse-echo
testing of the concrete beam under laboratory conditions but present a minimal functional
example, considered as the reference state. Future testing should focus on concrete of
different mixtures, age, water saturation and initial degradation state.
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