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Author’s view

Making the most of the immune 
system to tackle cancer needs the 
simultaneous or sequential modulation 
of multiple immunological mechanisms. 
The concept of combinatorial 
immunotherapy originates from the fact 
that it is virtually impossible to develop 
a single molecule that would impact all 
such mechanisms. Hence, efforts should 
be (and are being) refocused on the use 
of a palette of interventions1 to identify 
the most suitable synergistic approaches. 
Immunotherapeutic approaches can be 
combined not only in pairs, but also 
in triplets and quadruplets.2,3 In this 
setting, improved efficacy can certainly 
be attained, but the possibility that the 
combinatorial approach may result in 
synergistic adverse effects should be 
carefully monitored.

Transplanted tumors are no longer 
the workbench to test the efficacy of 
combinatorial immunotherapy, mainly 
because in this setting treatments are often 
curative and the predictability of using 
each agent in suboptimal conditions is not 

likely to render solid preclinical evidence. 
Rather, investigation should be based on 
transgenic mice that accurately mimic 
human oncogenesis, tumor progression 
and response to therapy. Many such 
models are available, though often they 
involve multifocal carcinogenesis with 
weak evidence of immunoediting,4 mainly 
because of the limited accumulation of 
mutations that may give rise to tumor-
associated antigens (TAAs) and short 
disease latency.

We have used a very aggressive model 
of multifocal hepatocellular carcinoma 
(HCC) based on the inducible, liver-
specific expression of human MYC.5 If 
deprived of doxycycline at birth, animals 
develop multifocal HCCs in 3–4 wk, 
and usually die before 8–10 wk of age. 
Importantly, in this model, a bidirectional 
transgene ensures that cancer cells express 
MYC together with chicken ovalbumin 
(OVA) as a surrogate TAA. Previous 
work had unveiled the strong tolerogenic 
properties of OVA as a result of its 
expression on the surface of cancer cells.5 

In fact, upon adoptive transfer to these 
mice, OT-1 T lymphocytes (which express 
an OVA-targeting TCR) become anergic 
along with TCR downregulation.

In this dire scenario, we tested a triple 
combination of immunostimulatory 
monoclonal antibodies,6 encompassing 
molecules targeting CD274 (best known 
as PD-L1 or B7-H1), tumor necrosis 
factor receptor superfamily member 9 
(TNFRSF9, best known as CD137 or 
4–1BB), and TNFRSF4 (best known as 
OX40 or CD134).7 PD-L1 and its receptor, 
programmed cell death 1 (PDCD1, best 
known as PD-1), were expressed within 
neoplastic lesions and conceivably were 
repressing antitumor immune responses.8 
CD137 and OX40 were also available for 
antibody ligation and these interactions 
are known to act as agonists for T-cell and 
NK-cell co-stimulation.9

To our surprise, our combinatorial 
immunotherapeutic regimen prolonged 
the survival of MYC- and OVA-
expressing mice. Such an effect was totally 
dependent on CD8+ T cells as well as on 
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NK1.1+ lymphocytes. Conversely, 
CD4+ T cells were dispensable, despite 
expressing the targets for all antibodies. 
The combinatorial administration of anti-
PD-L1, anti-CD137 and anti-OX40 mAbs 
mediated long-term antineoplastic effects 
in 20% of the animals. In this setting, 
the adoptive transfer of activated OT-1 
and OT-2 cells (which also express an 
OVA-specific TCR) is totally ineffective 
even when supported by intraperitoneal 
interleukin-2 (IL-2). However, adoptive 
T-cell therapy with activated OT-1 and 
OT-2 T lymphocytes combined with anti-
PD-L1, anti-CD137 and anti-OX40 mAbs 
achieved an impressive efficacy, resulting 
in the survival in more than 70% of mice 
at day 250. Of note, a mAb specific for 
cytotoxic T lymphocyte-associated protein 
4 (CTLA4) did not improve further 
the efficacy of our immunotherapeutic 
intervention in this model.

Experiments addressing the 
mechanisms underlying our observations 
revealed a dramatic infiltrate of tumor 
lesions by CD4+ and CD8+ T cells. Both 
such lymphocyte subsets expressed the 
targets of our immunostimulatory mAbs, 
namely, PD-L1, CD137, and OX40. 
Interestingly, the co-administration of 
anti-PD-L1, anti-CD137 and anti-OX40 
mAbs promoted the expression of their 
targets on T cells.

The cellular response orchestrated 
around interferon γ (IFNγ), perforin, 
and granzyme B is the ultimate effector 
mechanism of anticancer immunity 
and is significantly inhibited by the 
profound tolerogenic nature of the most 
tumors. The spontaneous immune 
reactivity against OVA is completely 
suppressed in our model, implying that 
the effector immune response elicited 
by the combinatorial administration of 

anti-PD-L1, anti-CD137, and anti-OX40 
mAbs must be directed to other TAAs. 
We also ruled out the possibility that 
such response may be directed against 
the bacterial protein that regulates the 
tetracycline-repressible expression cassette 
employed or human MYC. Hence, an 
immune response targeting other, weak 
antigens must be involved. The nature of 
such antigens, however, remains elusive.

As a whole, our work demonstrates the 
efficacy of a triple immunostimulatory 
mAb-based approach acting on 
interrelated target molecules (Fig.  1). 
The efficacy of such an approach 
mainly relies on the release of PD-1-
dependent immunosuppression coupled 
to dual, CD137- and OX40-driven 
co-stimulation.

The field of HCC therapy is potentially 
very fertile for immunotherapy. For 
instance, an anti-CTLA4 mAb has 
recently been associated with signs of 
clinical activity in HCC patients,10 and 
an anti-PD-1 mAb is currently being 
tested in a multicenter clinical trial 
(NCT01658878). Our proof of concept 
study based on murine models supports 
the therapeutic potential of triple 
immunostimulatory mAb combinations.7 
The addition of adoptive T-cell therapy 
further enhanced the efficacy of our 
approach, suggesting the value of testing 
immunotherapeutic regimens to the limit. 
Combinations are nowadays perceived as 
the most suitable strategy when seeking 
superior efficacy.
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Figure 1. Molecular mechanisms underlying the therapeutic efficacy of anti-PD-L1, anti-CD137, and 
anti-OX40 monoclonal antibodies. Interactions between a T lymphocyte and a cancer cell. In this 
setting, monoclonal antibodies (mAbs) targeting PD-L1 (B7-H1) are de-repressing T-cell activation 
while anti-CD137 (4–1BB) and anti-OX40 (CD134) mAbs provide robust co-stimulatory signals.
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