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Glypican-1 (GPC-1) and other glypicans are a family of heparan sulfate proteoglycans.

These proteins are highly expressed on the cell membrane and in the extracellular matrix,

functioningmainly asmodulators of growth factor signaling. Some of them are abnormally

expressed in cancer, possibly involved in tumorigenesis, and detectable in blood as

potential clinical biomarkers. GPC-1 is another glypican member that has been found

to be associated with some cancers, and has increasingly interested the cancer field.

Here we provide a brief review about GPC-1 in its expression, signaling and potential as

a cancer biomarker.
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INTRODUCTION

As a second leading cause of human death, cancer still remains a major health problem in the
world (1). Research has revealed major oncogenic signaling pathways, including cell cycle, histone
modification, apoptosis, and other biological processes and cellular pathways (2, 3). Although these
are essentially important in understanding of the cancer development, most of these pathway
components locate intracellularly, making them neither efficiently accessible therapeutic targets,
nor ideal for clinical biomarker discovery.

The roles of the extracellular cues have been increasingly recognized in cancer development, in
which they can significantly modulate the hallmarks of cancer (4–6). Heparan sulfate proteoglycans
(HSPGs) which are mainly at the cell surface and in the extracellular matrix, have gained
considerable scientific interest (7–9). They become a new research topic in the cancer field (10, 11).

Glypicans are one of the HSPG families. These membrane-bound proteins participate in organ
development by modulating extracellular growth signals and morphogen gradient formation, and
are involved in human overgrowth and skeletal dysplasia problems (12). In some cancers, they are
highly expressed, associated with tumorigenesis, and regulating angiogenesis for cancer progression
and invasion (13, 14). Their causative role in tumorigenesis is supported by genetic evidence (15).

Like other glypicans, Glypican-1 (GPC-1) is recently found to be overexpressed in certain
cancers, and involved in the tumorigenesis of certain cancers (16, 17). Importantly, some studies
reported its level was increased in the peripheral blood of patients, holding a great promise as a new
glypican biomarker in the cancer field (8, 18).
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HEPARAN SULFATE PROTEOGLYCANS,
GLYPICANS, AND GPC-1

The HSPGs are glycosylated proteins composed of a core protein
with one or more covalently attached glycosaminoglycan (GAG)
chains. GAGs are linear tandem repeats of disaccharide units
that consists of an amino sugar (N-acetylglucosamine or N-
acetylgalactosamine) together with an uronic sugar (glucuronic
acid or iduronic acid) or a galactose. Currently, six GAGs have
been found: heparin (HP) and heparan sulfate (HS), chondroitin
sulfate (CS), dermatan sulfate (DS), keratan sulfate (KS), and
hyaluronic acid (HA), with different amino and uronic sugars in
their disaccharide units (19). Except HP and HA that are secreted
in free forms without covalent attachment to any proteins, the
other four GAGs are bound to a core protein at the Ser residue
of a Ser-Gly dipeptide sequence to form a proteoglycan (20).
HSPGs are widely present on cell membranes and in extracellular
matrices, depending on the structure and the tissue expression of
their core proteins. HSPGs are usually divided into three major
classes: the glycerophosphatidylinositide (GPI)-anchored type
which is at the surface of the membrane (such as glypicans), the
transmembrane type (such as syndecans), and the extracellular
matrix type (such as agrin and perlecan) (21). HSPGs act as co-
receptors for signal transduction, playing important roles in cell
growth, immune response, and tumorigenesis, etc. (10, 22, 23).

Glypicans are one of the HSPG families, including glypican-1
(GPC-1) through−6 (GPC-6) in mammals with the main
difference in the number of the HS chains and the protein
attaching site. These proteins are located on the cell membrane,
anchored by glycosylphosphatidylinositol (GPI) which is
cleavable by the lipase Notum (24). Glypicans are crucial for
cancer cell growth, metastasis, and angiogenesis of many human
cancer cell types (13, 15). Abnormal expression of glypicans
has been noted in multiple types of cancer. For examples,
GPC-3 is closely related to the occurrence and development
of tumors, such as human hepatocellular carcinoma, ovarian
cancer and melanoma (25–27). GPC-2 is associated with
neuroblastoma (28, 29).

GPC-1 is composed of a protein (558 amino acids) with
the attachment of three HS chains at S486, S488, and S490,
respectively. It has both a membrane-anchored form (by GPI at
S530) and a secreted soluble form (30). It can also be cleaved by
Notum (14, 31). GPC-1 ismainly expressed in the central nervous
system and the skeletal system during embryonic development,
and is expressed in most tissues in adults (32). Like other HSPGs
and glypicans, GPC-1 functions through binding of growth
factors, cytokines, enzymes, viral proteins, and other factors by
its HS side chains. It is involved in neurodegeneration and cancer
development (33–36).

GPC-1 EXPRESSION IN CANCER

Studies have shown that GPC-1 is abnormally expressed
in a variety of tumor tissues and is associated with the
cancer development. Earlier studies employed northern blot
and immunohistochemistry, and found both GPC-1 mRNA

and protein expression levels were elevated in the pancreas
with cancer, compared to normal controls and the pancreas
with chronic pancreatitis (37). This was further confirmed
by Kayed et al. who used quantitative PCR, and GPC-1 was
demonstrated to be mainly localized in pancreatic cancer cells
and adjacent fibroblasts (38). Moreover, the GPC-1 expression
was significantly correlated with pathologic grades and clinical
stages of the pancreatic cancer, and closely associated with the
poor prognosis of patients (39).

Increased expression of GPC-1, but not of other glypicans,
was also detected in cultured pancreatic cancer cell lines (16).
In this study, knockdown of GPC-1 expression in cells inhibited
the mitotic response to fibroblast growth factor−2 (FGF-2),
suggesting that GPC-1 might play an important role in the
initiation and progression of pancreatic cancer.

GPC-1 expression was also increased in breast cancer
tissues (17), ovarian malignant tumors (40), prostate cancerous
epithelial cells (41). Moreover, 98.8% of esophageal cancer
tissues demonstrated an overexpression of GPC-1 and its
association with a poor prognosis (42). However, the expression
of GPC-1 in colorectal cancer was controversial. Fernández-
Vega et al. reported that both GPC-1 mRNA and protein
expression levels were increased in colorectal cancer (43), while
De Robertis et al. found the GPC-1 mRNA was decreased in
metastatic colorectal cancer and non-metastasis colorectal cancer
tissues (44).

Possible mechanisms of GPC-1 expression in cancer might
involve microRNA expression and DNA hypomethylation.
Normally, microRNA-96-5p and microRNA-149 bind to the 3′-
UTR region of GPC-1 transcript to suppress its expression.
However, the expression of these two microRNAs is often
reduced in the pancreatic cancer (45). In addition, two important
regulatory molecules, KRAS and ecotropic viral integration Site 1
(EVI1), are two known drivers of the pancreatic carcinogenesis.
They both can upregulate GPC-1 expression, in which EVI1
suppresses themicroRNA-96 expression (46). Another important
mechanism is about the promoter hypomethylation occurring
in the GPC-1 gene in the pancreatic ductal adenocarcinoma,
in which the GPC-1 mRNA and protein levels are found to be
significantly increased (16).

GPC-1 SIGNALING IN CANCER

Glypicans mediate signaling in cell proliferation, differentiation,
and organ development, by interacting with cell membrane
receptors via its HS side chains, including Wnt/β-catenin,
Hedgehog (Hh), fibroblast growth factor (FGF), insulin-like
growth factor (IGF), vascular endothelial growth factor (VEGF),
and transforming growth factor-β (TGF-β), etc (13, 15). The
mode of action of GPC-1 is well exemplified in the FGF-2
signaling pathway. By binding to the HS chains of GPC-1, the
FGF-2 and its receptor FGFR are more efficiently assembled and
stabilized, and the ligand FGF-2 is protected from degradation.
Besides, the participation of GPC-1 in the assembly also facilitates
the dimerization of the FGFR, leading to the accelerated self-
phosphorylation that initiates the signal transduction in protein
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kinase B (PKB), mitogen-activated protein kinase (MAPK) and
other cellular signaling pathways (47, 48).

The altered cellular activities and biological processes induced
by GPC-1 might be through the modulation of the FGF-2
signaling, the well-known pathway in the regulation of cell
growth, survival, differentiation, and neovascularization,
tumorigenesis (49, 50). Qiao et al. showed that GPC-
1 expression enhanced the growth of brain endothelial
cells and sensitized them to mitogenesis induced by FGF-
2. Overexpression of glypican-1 resulted in increased
angiogenesis and radiation resistance in brain gliomas (51).
Interestingly, GPC-1 increased the level of microRNA-149
through activation of FGFR1, and this microRNA in turn
repressed other FGFR1 downstream regulations. This negative
feedback loop decreased the endothelial cell response to
the angiogenic stimulus of FGF (52). Although GPC-1 is
positively involved in the FGFR signaling, this effect might be
counteracted by its soluble form secreted in the extracellular
space (23).

GPC-1 not only regulates FGF-2, but also modulates the
VEGF-A signaling. VEGF is a key factor for angiogenesis, one
of the essential biological processes for tumorigenesis (53). Both
VEGF-A and FGF-2 are a type of heparin binding growth factors
(HBGFs) whose signaling strength and duration might be tuned
by GPC-1 (54). Both of their signaling were inhibited after GPC-
1 was knocked down in a mouse model of pancreatic cancer
(55). Moreover, hepatic endothelial cells isolated from mice
lacking GPC-1 demonstrated an attenuated mitogenic response
to VEGF-A (56).

In addition, the GPC-1 also modulates the TGF-β signaling
pathway (Figure 1). TGF-β signaling pathway is involved in
tumor initiation and progression by regulating cell proliferation,
angiogenesis, cancer cell stemness, epithelial mesenchymal
transition, invasion and inflammation (57). Here GPC-1 also
interacts with the ligand and the receptor to promote the TGF-
β signaling. Reduced GPC-1 expression attenuated the TGF-
β1 induced inhibition of cell growth, with suppressed Smad2
phosphorylation, and plasminogen activator inhibitor-1(PAI-
1) promoter activity in pancreatic cancer cells (58). Kayed
et al. analyzed more thoroughly the role of GPC-1 in the
TGF-β signaling, in which they found GPC-1 reduction led
to a shifted response toward TGF-β, activin-A and the bone
morphogenetic protein-2 (BMP-2) upon p21 induction and
Smad2 phosphorylation, resulting in inhibited pancreatic cancer
cell growth (38).

GPC-1 AS A CLINICAL BIOMARKER FOR
CANCER

As the GPC-1 anchored on cell membrane is cleavable and it
also has a secreted soluble form, it is detectable in the peripheral
blood system, prompting extensive studies carried out on its
potential as a clinical biomarker. In 2015, from the 48 proteins
identified in the exosomes derived from the cancerous tissue by
mass spectrometry and bioinformatics analysis, Melo et al. first
reported that GPC-1 could be used as a marker of pancreatic
cancer. Subsequently, detection of GPC-1 in human serum

FIGURE 1 | GPC-1 modulates signaling pathways in cancer progression. The HS side chains of GPC-1 bind both growth factors (such as VEGF-A, FGF-2, and

TGF-β) and their receptors, to facilitate their assembly for enhanced signaling in PI3K/AKT, MAPK, Smad pathways. GPC-1 can be cleaved by Notum and then

released into the extracellular space, which can compete with the GPC-1 anchored on the cell membrane to inhibit its function.
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TABLE 1 | Circulating GPC-1 as a diagnostic and prognostic marker for cancer.

Study (Reference) Cancer type Country Case # Sample type Sample preparation Detection method Antibody Results

Melo et al. (59) Pancreas cancer USA 190 Serum Isolation exosomes using

ultracentrifugation

Flow cytometry PIPA528055,

Thermo-Scientific

GPC-1+ exosomes (from PDAC, BPD

patients and healthy individuals)

revealed a near perfect classifier with an

AUC of 1.0 (95% CI: 0.956 – 1.0) a

sensitivity of 100%.

Lai et al. (65) Pancreas cancer USA 29 Plasma Isolation exosomes using

ultracentrifugation

LC-MS - Exosomal GPC-1 is not diagnostic for

PDAC, whereas a group of microRNA

in circulating exosomes is superior to

exosomal glypican-1 levels for

diagnosing pancreatic cancer.

Frampton et al. (66) Pancreatic

cancer

UK 27 Plasma Isolation exosomes using

ultracentrifugation

ELISA E9038h, 2BScientific Ltd There was no significant difference in

GPC-1 levels between normal pancreas

and PDAC tissues

Qian et al. (60) Pancreatic cancer China 28 Plasma Isolation EVs using

exoRNeasy Serum/Plasma

Maxi Kit

Flow cytometry GPC-1 antibody,

GeneTex, Inc

Compared with healthy individuals, the

levels of GPC-1+ EVs were significantly

increased in patients with advanced

pancreatic cancer.

Lewis et al. (18) Pancreatic cancer USA 20 Whole blood,

serum, or

plasma

Analysis of the biomarkers

glypican-1 and CD63 were

then performed directly on

the chip.

ACE

Immunoassay

Twenty PDAC patient samples could be

distinguished from eleven healthy

subjects with 99% sensitivity and 82%

specificity.

Yang et al. (61) Pancreatic cancer USA 46 Plasma Isolation exosomes using

ultracentrifugation

Nanoplasmonic

sensors

BAF4519, R&D Systems.

PA524972, Thermo Fisher.

GPC-1 alone, had a sensitivity of 82%

(CI, 60 to 95%) and a specificity of 52%

(CI, 30 to 74%) for PDAC detection.

Li et al. (45) Colorectal cancer China 102 Plasma Isolation exosomes using

ExoCapTM Kit

Flow cytometry Anti-GPC-1 antibody,

Santa Cruz.

The percentage of plasma GPC-1+

exosome was significantly higher in

CRC patients before surgical

treatment than that in healthy controls

and in CRC patients after surgical

therapy.

Campbell et al. (63) Prostate cancer Australia 41 Urine Urine cell sediments Immunofluorescence

assay

Monoclonal antibody,

MIL-38

Discriminated between prostate cancer

and BPH urine specimens with a

sensitivity and specificity of 71% and

76%.

Levin et al. (64) Prostate cancer Australia 15 Plasma

serum

Plasma and serum sample Luminex assay Monoclonal antibody, 3G5 Circulating GPC-1 was reduced in

prostate cancer patients vs. non-

prostate cancer patients.

Lucien et al. (67) Pancreatic cancer USA 93 Plasma Detecting extracellular

vesicles based on

calibration beads

Nanoscale flow

cytometry

PA5-24972, Thermo Fisher. GPC-1 was unable to discern

pancreatic cancer from BPD

Zhou et al. (68) Pancreatic cancer China 156 Serum Serum sample ELISA RayBiotech, ELH-GPC-1 The serum GPC-1 cannot be used as a

serum diagnostic biomarker for PDAC

patients, high levels of serum GPC-1

predict poor prognosis in PDAC

patients.
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exosomes was reported. In breast cancer patients, 75% had higher
GPC-1+ exosomes than the healthy controls. In pancreatic ductal
adenocarcinoma (PDAC), all 190 patient serum samples had
higher GPC-1+ exosomes than healthy individuals, exhibiting
a nearly perfect diagnostic value (∼100 and ∼100% in the
receiver operating characteristic curve). By the Cox multivariate
regression analysis, this study also reported the serum GPC-1
exosomes was an independent prognostic marker for disease-
specific survival (59).

There are also other reports that employed various
methodologies to evaluate the diagnostic potential of GPC-
1 in cancers. Qian et al. isolated the serum extracellular vesicles
(EVs) and found that the GPC-1+ EVs was significantly higher
in patients with advanced pancreatic cancer than those in
healthy controls (60). Lewis et al. developed an affinity capture
elution immunoassay to detect the exosomal GPC-1, which
distinguished 20 PDAC patient samples from 11 healthy subjects,
with 99% sensitivity and 82% specificity (18). Yang et al. used an
advanced multiplexed plasmonic assay and identified a signature
of GPC-1 and other four markers for PDAC detection, in which
the diagnostic sensitivity and specificity of GPC-1 alone reached
82 and 52%, respectively (61).

The biomarker potential of circulating GPC-1 was also studied
in other cancers. The percentage of plasma GPC-1+ exosomes
significantly increased in colorectal cancer patients than those in
healthy controls, and reduced after surgical removal (62). In the
urinary sediment samples from 125 patients with prostate cancer
and a group of healthy individuals, the sensitivity and specificity
of GPC-1 achieved 71 and 76%, respectively (63). Levin et al. also
measured GPC-1 in plasma and serum samples and found it was
significantly increased in prostate cancer patients as compared
to the health cohorts (64). Taken together, these reports suggest
that GPC-1 might be a useful marker for the diagnosis of prostate
cancer. All these studies about the circulating GPC-1 as a clinical
cancer biomarker were summarized in Table 1.

Nevertheless, there are also some studies that yielded
controversial results. In a report by Zhou et al. serum GPC-1
level was concluded to be a prognosis factor but not an ideal
marker for the clinical diagnosis of PDAC (68). Similar finding
was reported by Frampton Prado et al. (66). Lai et al. found the
plasma exosomal GPC- 1 level could not differentiate the PDAC
patients from the controls, while a panel of microRNAs in the
exosomes was a superior pancreatic cancer biomarker instead
(65). Moreover, Lucien et al. measured the GPC-1+ EVs in the
blood samples, and found they were not able to separate the
pancreatic cancer patients from those with benign pancreatic
disease effectively (67).

There are numerous reasons that might account for these
controversial results. First, GPC-1 is not a tissue-specific protein.
The human protein atlas database (https://www.proteinatlas.
org/) and the comprehensive human tissue proteome analysis
that GPC-1 is widely expressed in brain, gastrointestinal tract,
urinary, and reproductive systems (69). GPC-1 expressed from
the cancerous tissue is probably confounded by these normal
secretions from other tissues. Next, in many studies mentioned
above, the specificity of the GPC-1 antibody was not seriously

validated, which could easily generate false results (70). Many of
these antibodies were generated by synthetic short peptides or
protein fragments expressed in non-mammalian systems, thus
they lacked necessary modifications (especially glycosylations
and HS chains on GPC-1) and genuine structures. Ideally, the
immunohistochemical staining of GPC-1 should be validated
by Western blots with the same antibody, to show whether the
blots demonstrated any other non-specific bands andwhether the
results in these two methods were well correlated. In addition,
few studies had thoroughly examined the relationship between
the serum GPC-1 levels and the cancer tissue size, the percentage
of GPC-1+ cells, and the GPC-1 concentration of the total cancer
tissue homogenate. In addition, the release of GPC-1 relies on the
protease Notum which might not always be expressed in normal
amount and activity in cancerous tissues. Notably, many studies
used serum as the sample for GPC-1 measurement. The serum
differs from the plasma not just in the missing of fibrinogen
and other components, but importantly, contains a tremendous
amount of active clotting factors, each of which is a highly active
protease. It is not known whether any of them might cleave
GPC-1, leading to false results. Some studies used the EVs of
particular sizes from the plasma for the analysis. However, it
remains questionable whether these EVs represent the entire EVs
in GPC-1 expression unbiasedly. Besides, the EV extraction for
GPC-1 measurements has neither yet proven to be necessary, nor
feasible in clinical laboratories. Therefore, more thorough and
stringent studies are expected to establish whether GPC-1 in the
blood can be a clinical biomarker for certain cancers.

CONCLUDING REMARKS

Glypicans and other HSPGs are very important in the
modulation of growth factor signaling. They expressed
abnormally in some cancerous tissues, and causatively involved
in tumorigenesis. GPC-1 is a new glypican member that has
extensively been demonstrated to be increased in certain cancers.
Despite a few controversial results, the biomarker potential
of GPC-1 deserves further investigation. As membrane and
extracellular proteins are more therapeutically accessible and
bear more potential to be clinical biomarkers, GPC-1 and other
HSPGs will continue to interest the research field for better
elucidation of their mechanistic roles and diagnostic values in
clinical settings.
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