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Abstract

Transcranial direct current stimulation (tDCS) is a promising method for altering cortical

excitability with clinical implications in neuropsychiatric diseases. Its application in neurode-

velopmental disorders especially attention-deficit hyperactivity disorder (ADHD), is in early

stage and promising but its effectiveness has not been systematically examined yet. We

conducted a meta-analysis on the effectiveness of tDCS on the most studied neuropsycho-

logical symptoms of ADHD, which is the first reported meta-analysis of tDCS studies on

ADHD. Data from 10 randomized controlled studies (including 11 separate experiments) tar-

geting inhibitory control, and/or working memory (WM) in ADHD were included. Results

show that overall tDCS significantly improved inhibitory control. Sub-analyses further show

that dorsolateral prefrontal cortex (dlPFC) (but not right inferior frontal gyrus) tDCS and

anodal (but not cathodal) tDCS significantly improved inhibitory control with a small effect

size. Anodal dlPFC-tDCS had the largest significant effect on inhibitory control with a small-

to-medium effect size. Additionally, a significant improving effect of tDCS on inhibitory con-

trol accuracy (but not response time) and WM speed (but not accuracy) were found. Overall,

this meta-analysis supports a beneficial effect of tDCS on inhibitory control and WM in

ADHD with a small-to-medium effect size. TDCS seems to be a promising method for

improving neuropsychological and cognitive deficits in ADHD. However, there might be a

dissociation between neuropsychological deficits and clinical symptoms of ADHD and there-

fore, the significance of this meta-analysis for clinical purposes is limited. Future studies

should systematically evaluate the role of inter-individual factors (i.e., ADHD subtype, types

of the deficit) and stimulation parameters (i.e., site, polarity, intensity, duration, repetition

rate) on tDCS efficacy in ADHD population and examine whether benefits are long-term.
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Introduction

Attention-deficit hyperactivity disorder (ADHD) is the most common neurodevelopmental

disorder with an estimate of 11% prevalence in school-age children [1]. ADHD is primarily

characterized by symptoms of inattention, hyperactivity, impulsivity [2] and various cognitive

dysfunctions [3] that often persist into adolescence and adulthood. Apart from symptoms of

hyperactivity and inattentiveness, a wide range of cognitive deficits is observed in individuals

with ADHD such as problems in attention, inhibitory control working memory (WM), plan-

ning, problem-solving and executive functions [4–7]. Executive dysfunctions, especially inhib-

itory control and working memory, are pervasive and influential in ADHD pathophysiology to

the extent that ADHD was labeled a disorder of cognitive control [7, 8] but, cognitive deficits

in ADHD are heterogeneous [9–11].

A precise description of ADHD neuropathology is difficult to delineate due to its neuropsy-

chological heterogeneity [12, 13], and substantial overlap between ADHD and typically devel-

oping children [14]. However, based on neuroimaging and neuropsychological findings

relatively distinct brain regions can be identified to account for ADHD hallmark symptoms.

Poor inhibitory control resulting from executive dysfunctions (i.e., inhibition-based model)

and impulse-control deficits leading to hyperactivity (i.e., motivational dysfunction model) are

two influential theories for neural foundations of ADHD [15, 16]. These major symptoms

have been linked to frontostriatal circuitry and prefrontal cortex (PFC) abnormalities and can

be diverged in the “prefrontal hypothesis of ADHD” [17]. According to this hypothesis, pre-

frontal regions including the dorsolateral PFC (dlPFC), orbitofrontal cortex (OFC) and infe-

rior frontal gyrus (IFG) have altered activity in ADHD. Specifically, hypoactivity of the

bilateral dlPFC, right inferior frontal gyrus (rIFG) and OFC, as well as smaller prefrontal vol-

umes, are associated with behavioral deficits in ADHD [18–22]. Additionally, an adaptive

increase of posterior parietal activity accompanies the respective hypoactivity of frontostriatal

regions during performance of executive tasks [19]. These findings suggest that ADHD symp-

toms/causes stem from disturbances in large-scale brain networks [23, 24] and structural,

functional and neurochemical abnormalities in cortical and subcortical structures [13, 17, 25],

which should be considered in therapeutic interventions.

Pharmacological and non-pharmacological interventions have been among the most com-

monly used and recommended treatment options in ADHD. Pharmacological interventions

can broadly be divided into stimulant and non-stimulant medications [26, 27]. Non-pharma-

cological or psychological interventions can be categorized into behavioral interventions, cog-

nitive training and neurofeedback training [27, 28]. Stimulant medications have been so far

the most effective psychopharmacological treatment and adherence to treatment is reported

relatively high. Although current treatment options especially pharmacological interventions

have been relatively effective and successful, the efficacy of these treatment options has been

inconsistent in ADHD [27]. For example, the efficacy of pharmacological treatments is not

long-lasting enough [29] and suffers from the partial response or non-response [30], adverse

effects and relatively poor adherence [31]. On the other hand, neurofeedback training is found

to have limited effects on ADHD when rated by blind evaluators [32]. Due to the heterogeneity

of ADHD pathophysiology, symptoms and treatment response, there might be a need for new

treatment or complementary treatment options, especially regarding interventions based on

recent findings of the neuropathology of ADHD.

The significant role of brain abnormalities in ADHD symptomology encouraged research-

ers to probe new treatment options that target ADHD symptoms by modulating, altering and

remediating deficient neurocognitive brain functions. Transcranial direct current stimulation

(tDCS) is a non-invasive, painless, and well-tolerated brain stimulation technique that has
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been gaining increased popularity in human neuroscience research in both healthy and clinical

populations during last decade [33–35]. It induces a weak direct current applied to the scalp

which modulates cortical excitability by shifting resting membrane potential, [36] and can

induce both, acute and neuroplastic alterations of cortical excitability at the macroscopic level

[37]. In the motor cortex, it has been suggested that anodal stimulation increases cortical excit-

ability while cathodal stimulation decreases it [38] although such polarity-dependent effect is

not always linear and could be affected by external and individual difference factors especially

stimulation parameters such as current density, polarity, stimulation duration and/ or geomet-

rical montage of electrodes [39, 40].

TDCS has been applied for modulating a variety of cognitive functions [41–44] or improv-

ing symptoms/deficits in healthy and clinical populations [45] (for an overview see [46, 47]).

Its application in neurodevelopmental populations, especially ADHD, has gained attention in

recent years [48, 49] while the efficacy of the method in ADHD is still unclear and needs fur-

ther research. Different stimulation parameters and montages have been used in previous

studies and different symptoms and deficits have been targeted by tDCS which does not evalu-

ate the potential of this method in ADHD. Moreover, most clinical tDCS studies so far have

focused on adult populations and there is a great need for more research into their therapeutic

uses in pediatric patients [49, 50]. Considering the fact that pediatric brains still have to go

through various stages of neurodevelopment and have accelerated neuroplasticity compared

to adults [51], tDCS could be considered a potential therapy for some pediatric disorders, par-

ticularly when there are no other safe viable alternatives [52]. That being said, knowledge

about tDCS effects in ADHD, is still relatively limited and warrants further investigation espe-

cially through systematic review or meta-analytic studies.

To date, meta-analysis or specific systematic review is available for the effects of tDCS on

ADHD. The present meta-analysis, therefore, aims to investigate the effectiveness of tDCS on

neuropsychological deficits in ADHD. Moreover, we did further sub-analyses on the available

studies in order to (1) evaluate overall and deficit-specific efficacy of tDCS in ADHD, (2) iden-

tify the brain regions that are prominently involved in ADHD pathophysiology tDCS response,

and (3) examine stimulation parameters that are important for tDCS efficacy in ADHD. Since

inhibitory control and WM deficiencies are among the major neuropsychological deficits of

ADHD, [53] and mediated by the genetic risk for ADHD, [54], we performed a meta-analysis

on the effects of tDCS on inhibitory control and WM performance in respective patients.

Method

Our meta-analysis follows the guidelines of the Preferred Reporting Items for Systematic

reviews and Meta-Analyses (PRISMA) [55] which consists of a checklist intended to facilitate

preparation and reporting review/meta-analysis studies by identifying, selecting, and critically

appraising relevant research, and collecting and analyzing data from the included studies. A

brief version of the PRISMA checklist is available as supporting information (See S1 Table).

The following steps are based on the PRISMA protocol.

Eligibility criteria

To ensure a high level of methodological accuracy, only peer-reviewed published studies were

included in our analysis. Only studies on humans using tDCS in experimental designs with the

control condition (i.e., sham stimulation and/or baseline control) with reported full-text in

English were retained. Studies were included if (1) they had a randomized placebo- (sham50)

controlled or baseline-controlled design, (2) measured at least inhibitory control, and/or work-

ing memory performance, (3) reported data (text, figures, tables, appendices) which contained
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effect size values or mean and standard deviation values in order to calculate effect sizes. Par-

ticipants in the studies were required to be between 3 to 18 years of age (for childhood and

adolescence ADHD) and 18 to 65 years of age (for adult ADHD) and to have a clinical diagno-

sis of ADHD (any subtype) based on the Diagnostic and Statistical Manual of Mental Disor-

ders (DSM) or meet accepted cut-offs on validated ADHD symptom rating scales. Studies

which included patients under medication for ADHD treatment in either the control or the

active arm were not excluded.

Search strategy and study selection

A comprehensive literature search was conducted, including the PubMed database, Web of

Science, Medline, and Scopus with the final search updated on January 2019. Search terms

included attention-deficit hyperactivity disorder OR ADHD OR attention disorders AND

transcranial direct current stimulation OR tDCS OR transcranial electrical stimulation OR tES

(see Fig 1). Furthermore, a manual search was carried out over the reference sections of

retrieved studies and review articles. After removal of duplicates, the full text was assessed and

studies that were eligible according to the above-mentioned inclusion criteria were selected.

The final search identified a total of 241 articles with 1 additional article identified by reference

lists and recent reviews. Records were reduced to 28 articles after removing duplications. A

content expert examined each title and abstract for eligibility. 18 articles were excluded for not

meeting the inclusion criteria. Thus 10 articles remained for full-text assessment and data

extraction. 8 of these studies investigated inhibitory control and 5 studies explored tDCS

effects on WM performance. Articles were screened and selected independently by the first

and second authors. Respective study characteristics are summarized in Tables 1 and 2.

Outcome variables

We limited our focus on neuropsychological variables that were targeted in most ADHD stud-

ies using tDCS. Based on the most commonly available data, inhibitory control and WM were

identified as the variables for which the data were extracted. Inhibitory control and WM are

central components of ADHD executive dysfunctions, as proposed by causal models of

ADHD, [14, 53, 56] and encompass the most consistently impaired domains in ADHD [8].

Moreover, inhibitory control and WM are major neuropsychological deficits from the neuro-

scientific perspective, including the prefrontal-striatal model of ADHD [57]. For the meta-

analysis on inhibitory control, the following tasks were included: (1) Go/No-Go, (2) Stop Sig-

nal Task (SST), 3) Flanker, 4) Stroop, 5) Continuous Performance Test (CPT), and 6) Neuro-

psychological Development Assessment (NEPSY II). In the Go/No-Go task, inhibitory process

is reflected by the ability to inhibit a motor action in the case of specific number of “No-Go”

trial [58]. Similarly, in the SST, participants should stop responding to “Go” trials after the

stop signal is presented which shows the ability to inhibitory control. In the Stroop task, inhib-

itory control is reflected by the ability to suppress the meaning of a written word and focus on

the color [59]. For the Flanker task response, inhibition is measured by identifying the target

defined by its location while ignoring one or more distracting items that flank the targets in

the same or opposite direction [60]. In the CPT, which is primarily a test of attention, the

errors of commission and omission reflect inhibitory control ability [61]. Finally, in NEPSY-II

inhibitory control is measured by looking at a series of shapes or arrows and naming the shape

or direction or an alternative response, depending on the color or shape of the arrow [62]. For

the meta-analysis on WM, the following tasks were included: 1) N-back, 2) Digit Span, and 3)

Corsi block-tapping test. In the N-back task, subjects need to identify a stimulus that repeats

the one presented “n” items before its onset. In the digit span task, subjects are read or shown
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a list of digits and asked to recall them in order. In the Corbi Cubes test, the subject repeats

sequences of touches in different cubes (either forward or backward) [63].

Risk of assessment bias

Quality assessment of the included studies was performed using the Cochrane Collaboration’s

tool for risk of bias in randomized trials [64]. For each study, the authors judged the risk of

selection bias, performance bias, detection bias, attrition bias, reporting bias, and other biases.

Risk of bias was categorized as low, high or uncertain. The final rating was established through

consensus with the involvement of the senior author. The assessment of each study and the

percentage of bias are presented in Fig 1B.

Data extraction and statistical analysis

Hedges’ g was used as a measure of effect size. This effect size reflects the tDCS-induced differ-

ence compared to 1) sham, 2) baseline or 3) sham and baseline (i.e. posttest–pretest tDCS vs

Fig 1. (A) Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram of selection

of studies, (B) Bias assessment in individual studies. tDCS = Transcranial Direct Current Stimulation;

ADHD = attention-deficit hyperactivity disorder; IC = Inhibitory Control; WM = Working Memory.

https://doi.org/10.1371/journal.pone.0215095.g001
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Table 1. Characteristic of studies included in meta-analysis for the effecs of tDCS on inhibitory control.

# Authors N Mean age tDCS montage

(target/

reference)

Intensity Duration Polarity On-/off-

line

Control Task Outcome Hedges’

g

1 Allenby et al

(2018)

37 37.17 (range

18–56)

F3/Fp2 (25

cm2 both)

2 mA 3 days x

20 min

Anodal Offline Baseline

+ sham

CPT False positive errors 0.42

True positive errors -0.06

Response time -0.11

F3/Fp2 (25

cm2 both)

2 mA 3 days x

20 min

Anodal Offline Baseline

+ sham

SST Reaction time -0.18

2 Bandeira et al

(2016)

9 11.1 ± 2.8 F3/Fp2 (35

cm2 both)

2 mA 5 days x

30 min

Anodal Offline Baseline NEPSY II Total errors 0.12

Completion time 0.54

3 Breitling et al

(2016)

21 14.33 (range

13–17)

F8/mastoid (35

cm2 both)

1 mA 20 min Anodal Online Sham Flanker

task

Omission errors -0.11

Comission errors 0.46

Reaction time -0.14

Reaction time

variability

0.13

F8/mastoid (35

cm2 both)

1 mA 20 min Cathodal Online Sham Flanker

task

Omission errors -0.60

Comission errors 0.17

Reaction time 0.13

Reaction time

variability

-0.02

4 Cosmo et al

(2015)

30 31.8 ± 11.6 F3/F4 (35 cm2

both)

1 mA 20 min Anodal Offline Sham Go/No-go

task

(letters)

Correct responses -0.39

Omission errors 1.17

Comission errors -0.15

Go/No-go

task

(fruits)

Correct responses 1.09

Omission errors 0.44

Comission errors 0.24

5 Munz et al

(2015)

14 12.3 ± 1.4 F3+F4/both

mastoids (0.5

cm2 all)

0–0.25 mA

(oscillatory)

5 x 5 min Anodal Offline Sham Go/No-go

task

Reaction time 0.88

Reaction time

variability

0.83

6 Nejati et al

(2017)

experiment 1

15 10 ± 2.2 F3/F4 (25 cm2

both)

1 mA 15 min Anodal Offline Sham Go/No-go

task

Go accuracy 0.14

No-go accuracy 0.56

Reaction time -0.41

Stroop

task

Accuracy 1.11

Reaction time 0.98

7 Nejati et al

(2017)

experiment 2

10 9 ± 1.8 F3/Fp2 (25

cm2 both)

1 mA 15 min Anodal Offline Sham Go/No-go

task

Go accuracy 0.41

No-go accuracy 0.57

Reaction time -0.20

(Continued)
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posttest–pretest sham). When the effect size Cohen’s d was reported, the effect sizes were

extracted directly from the selected articles. Otherwise, d was calculated using means and

pooled standard error of mean, which were gathered from the results section, figures or tables.

From these effect sizes, Hedges’ g values were calculated to correct for effect inflation due to

small sample sizes [65]. In this meta-analysis, positive values reflect a tDCS-induced increase

of inhibitory control or WM performance, whereas negative values indicate a tDCS-induced

decrease of inhibitory control or WM performance compared to sham/baseline values. A

weighted average was calculated from these Hedges’ g values to determine the cumulative

effect size (Ē) and 95% confidence intervals. Subsequently, the Z-statistic and p-value were cal-

culated to investigate whether Ē differed significantly from zero.

For the main investigation on the effects of tDCS on inhibitory control in ADHD patients,

three meta-analytic steps were performed. First, an unsigned analysis, in which the general

effect of frontal tDCS, independent of polarity was analyzed. This analysis included 46

extracted effect size values. We further explored the effect of electrode montage by comparing

tDCS setups that primarily targeted the dlPFC (38 extracted effect size values) or the rIFG (8

extracted effect size values). Second, a signed analysis was performed in which the effects of

anodal (34 extracted effect size values) and cathodal tDCS (12 extracted effect size values) were

Table 1. (Continued)

# Authors N Mean age tDCS montage

(target/

reference)

Intensity Duration Polarity On-/off-

line

Control Task Outcome Hedges’

g

F3/Fp2 (25

cm2 both)

1 mA 15 min Cathodal Offline Sham Go/No-go

task

Go Accuracy 0.41

No-go accuracy 1.04

Reaction time -0.20

8 Soltaninejad

et al (2015)

20 Range 15–

17

F3/Fp2 (35

cm2 both)

1.5 mA 8 min Anodal Offline Sham Go/No-go

task

Go accuracy -0.05

No-go accuracy 0.03

Reaction time 0.23

Stroop

task

Accuracy 0.57

Reaction time 0.23

F3/Fp2 (35

cm2 both)

1.5 mA 8 min Cathodal Offline Sham Go/No-go

task

Go accuracy -0.54

No-go accuracy 0.73

Reaction time -0.02

Stroop

task

Accuracy 0.33

Reaction time 0.11

Reaction time 0.02

9 Sotnikova et al

(2017)

13 14.33 ± 1.3 F3 (13 cm2)/

Cz (35 cm2)

1 mA 30 min Anodal Online Sham Go/No-go accuracy (hits

+correct rejections/

total number of

stimuli)

-1.03

Reaction time 0.16

Reaction time

variability

-0.14

tDCS = transcranial direct current stimulation; F3 = left dlPFC; F4 = right dlPFC; F8 = inferior frontal gyrus; Fp1 = left supraorbital area; Fp2 = right supraorbital area;

online = task performance during tDCS; offline = task performance after tDCS; CPT = Conners Continuous Performance Task; SST = Stop Signal Task (SST).

https://doi.org/10.1371/journal.pone.0215095.t001
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determined separately. This analysis was then followed by an exploration of tDCS montage.

Finally, since the majority of outcome measurements investigated both, accuracy (i.e., amount

of correct responses or error rate) and speed (i.e. reaction time or reaction time variability) on

inhibitory control tasks, separate analyses were performed for these variables (27 and 19

extracted effect size values respectively). For the WM analyses, not enough observations could

be gathered for cathodal tDCS stimulation (n = 2) and therefore no separate analyses were

performed.

For all analyses, the sample distribution was checked for normality by the Kolgomorov-

Smirnov test. Additionally, total heterogeneity (Qtotal) was tested against the χ2 distribution

with n-1 degrees of freedom to determine whether the variance of effect sizes was greater than

to be expected from sampling error [65]. To further investigate possible effects of publication

Table 2. Characteristic of studies included in the meta-analysis for the effects of tDCS on working memory.

# Authors N Mean age tDCS montage

(target/

reference)

Intensity Duration Polarity On-/off-

line

Control Task Outcome Hedges’

g

1 Bandeira et al

(2016)

9 11.1 ± 2.8 F3/Fp2 (35 cm2

both)

2 mA 5 days x 30

min

Anodal Offline Baseline Digit span

forward

Amount -0.87

Digit span

backward

Amount -0.40

Corsi cube

forward

Amount -0.45

Corsi cube

backward

Amount 0.08

2 Nejati et al

(2017)

experiment 1

15 10 ± 2.2 F3/F4 (25 cm2

both)

1 mA 15 min Anodal Offline Sham 1-back task Accuracy 0.15

Reaction time 1.70

3 Nejati et al

(2017)

experiment 2

10 9 ± 1.8 F3/Fp2 (25 cm2

both)

1 mA 15 min Anodal Offline Sham 1-back task Accuracy 1.14

Reaction time 0.82

F3/Fp2 (25 cm2

both)

1 mA 15 min Cathodal Offline Sham 1-back task Accuracy 0.53

Reaction time 0.52

4 Prehn-

Kristensen et al

(2014)

12 12.1 (range

10–14)

F3+F4/both

mastoids (0.5

cm2 all)

0–0.25 mA

(oscillatory)

5 x 5 min Anodal Offline Baseline

+ sham

Digit span Amount -0.61

5 Soff et al (2017) 15 14.2 ± 1.2 F3 (3.14 cm2)/

Cz (12.5 cm2)

1 mA 5 days x 20

min

Anodal Offline Baseline

+ sham

QB (1-back)

task

QB score (errors

and reaction

time)

0.50

6 Sotnikova et al

(2017)

13 14.33 ± 1.3 F3 (13 cm2)/ Cz

(35 cm2)

1 mA 30 min Anodal Online Sham 1-back task Accuracy -0.99

Reaction time -0.05

Reaction time

variability

0.18

2-back task Accuracy -1.14

Reaction time 0.65

Reaction time

variability

1.06

tDCS = transcranial direct current stimulation; F3 = left dlPFC; F4 = right dlPFC; Fp2 = right supraorbital area; online = task performance during tDCS; offline = task

performance after tDCS; QbTest = Quantified Behavior Test.

https://doi.org/10.1371/journal.pone.0215095.t002
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bias, the fail-safe number, based on the Rosenthal method (α< 0.05), was calculated, which

gives an indication of the amount of null findings that are needed to render the cumulative

effect non-significant [66]. Data were analyzed using MetaWin 2.1[67] and IBM SPSS 22.0. All

statistical tests were tested against a significance level of α� 0.05 (two-tailed).

Results

Overview

In total, 11 separate experiments from 10 studies published from 2014—April 2018 were

included in this meta-analysis. In 8 of 10 studies (or 9 of 11 experiments), effects of tDCS on

inhibitory control was investigated [6, 68–74] and in 5 of 10 studies (or 6 of 11 experiments),

tDCS effects on WM were explored [6, 69, 74–76]. In what follows, we describe the effect size

obtained from studies to examine the efficacy of tDCS in ADHD major neuropsychological

symptoms (Please see Fig 2). Brief details of each study are also summarized in Tables 1 and 2.

Risk of bias

The authors’ judgment on the risk of bias is displayed in Fig 1B. Overall, the risk of bias was

low. However, uncertainty about the risk does exist, at least to a certain extent, for selection

bias, performance bias, and detection bias. Especially, for determination of the latter, informa-

tion was missing in the majority of studies. A selective reporting bias was observed for the

study of Munz et al. [72] since accuracy data for the experimental conditions are not reported

in the manuscript, nor in any appendices. In all studies, blinding of participants was reported,

but blinding of experimenters was not reported in two studies [70, 73]. We need to note that

true blinding procedure of participants requires debriefing at the end of treatment about the

active or sham mode of stimulation confirmed by statistical analysis. This was reported or con-

firmed only in three included studies implicating that blinding of participants should be inter-

preted with caution. All studies used randomization to allocate participants to different

experimental conditions.

Effects of tDCS on inhibitory control in ADHD patients

A significant cumulative effect size (Ē) of 0.197 (Z = 2.76, p = 0.006) was observed for a general

tDCS effect on inhibitory control, taking polarity not into account Kolmogorov-Smirnov’s test

of normality showed that the distribution of the effect sizes was not significantly different from

a normal distribution (lower bound p = 0.20) and total heterogeneity of the effect sizes was not

significant (Qtotal = 45.21, p = 0.463). The fail-safe number indicated that 221 unpublished

null-findings would be required to render the effect non-significant. Exploration of montage

showed that only dlPFC stimulation (l-dlPFC and bilateral) (Ē = 0.243, Z = 2.92, p = 0.004),

but not rIFG stimulation (Ē = 0.005, Z = 0.04, p = 0.971) yielded a significant increase of accu-

racy rates in inhibitory control task performance.

Subsequently, polarity-dependent effects were investigated. Studies using anodal tDCS

showed a significant Ē of 0.232 (Z = 2.72, p = 0.007), with a fail-safe number of 171 showing

that anodal tDCS significantly improved inhibitory control. This sample was distributed nor-

mally (lower bound p = .20) and showed no significant heterogeneity (Qtotal = 33.05,

p = 0.465). As for the stimulation polarity-independent analysis, this effect was driven by stud-

ies using a left and bilateral dlPFC montage (Ē = 0.255, Z = 2.66, p = 0.008), whereas the rIFG

montage did not yield a significant effect (Ē = 0.084, Z = 0.33, p = 0.745). In contrast to anodal

tDCS, cathodal tDCS did not show a significant overall effect (Ē = 0.089, Z = 0.63, p = 0.530).
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Fig 2. Meta-analysis and forest plot results including Hedges’ g and 95% confidence interval and Cumulative effect size of tDCS on

inhibitory control (top) and working memory (down).

https://doi.org/10.1371/journal.pone.0215095.g002
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Finally, an analysis was performed separating outcomes measures that focused on accuracy

or amount of errors compared to the speed of response. The results showed that tDCS signifi-

cantly increased accurate responses in inhibitory control tasks (Ē = 0.250, Z = 2.36, p = 0.019).

No significant cumulative effect was found for speed (Ē = 0.093, Z = 1.09, p = 0.278). For this

last analysis, a deviation from normality was observed (p = 0.031). Results are summarized in

Table 3.

Effects of tDCS on working memory in ADHD patients

No significant cumulative effect was observed for tDCS on working memory, without taking

polarity into account (Ē = 0.160, Z = 0.81, p = 0.418). Also, no effect of tDCS was observed

when only studies with an anodal montage were included (Ē = 0.116, Z = 0.53, p = 0.600).

However, when separating outcomes for accuracy and speed, a significant effect of tDCS on

speed was observed. TDCS led to a faster response time (Ē = 0.681, Z = 2.43, p = 0.015), with a

fail-safe number of 17. The sample was normally distributed (lower bound p = .20) and no sig-

nificant heterogeneity was seen (Qtotal = 5.88, p = 0.437). These results should be interpreted

with caution, given the low sample size (N = 7). Moreover, results showed that tDCS did have

no significant effect on accuracy of working memory task performance (Ē = -0.187, Z = -0.76,

p = 0.446). Results are shown in Table 4.

Discussion

ADHD is a major neurodevelopmental disorder with remarkable heterogeneity in symptoms,

etiologies, and treatment response. Recent studies have emphasized on executive dysfunctions

and brain functional abnormalities underlying ADHD pathophysiology [14, 20, 54, 57] sug-

gesting that modulation of cortical activity in the involved brain regions via tDCS might

Table 3. Meta-analysis results for the effects of tDCS on inhibitory control in ADHD patients.

Cumulative effect size Normality Heterogeneity

Analysis N Ē 95% CI Z p-v0alue Fail-safe number KS test p-value Qtotal p-value

Polarity-independent

All studies 46 0.197 0.057–0.336 2.758 0.0058 221 0.088 LB 0.200 45.21 0.463

dlPFC only 38 0.243 0.080–0.406 2.922 0.0035 97 0.077 LB 0.200 36.87 0.475

rIFG only 8 0.005 -0.261–0.271 0.037 0.9705 0 0.195 LB 0.200 6.411 0.493

Polarity-dependent

Anodal tDCS 34 0.232 0.065–0.400 2.723 0.0065 171 0.095 LB 0.200 33.05 0.465

dlPFC only 30 0.255 0.067–0.443 2.658 0.0079 56 0.085 LB 0.200 28.98 0.466

rIFG only 4 0.084 -0.422–0.589 0.325 0.7452 0 1 2.25 0.523

Cathodal tDCS 12 0.089 -0.189–0.367 0.628 0.5300 0 0.133 LB 0.200 11.27 0.421

dlPFC only 8 0.194 -0.212–0.600 0.937 0.3488 0 0.114 LB 0.200 7.06 0.423

rIFG only 4 -0.075 -0.635–0.486 -0.263 0.7926 0 1 3.01 0.390

Speed vs Accuracy

Accuracy 27 0.250 0.042–0.459 2.356 0.0185 36 0.096 LB 0.200 26.30 0.447

Speed 19 0.093 -0.075–0.261 1.085 0.2779 0 0.208 0.031 18.08 0.451

tDCS = Transcranial Direct Current Stimulation; dlPFC = dorsolateral prefrontal cortex; LB = lower bound; rIFG = right inferior frontal gyrus; Ē = cumulative effect

size; CI = Confidence interval; KS = Kolmogorov-Smirnov’s test of normality; Qtotal = total heterogeneity represented by Cohen’s Q; Significant results are highlighted

in bold. dlPFC refers to either left dlPFC or bilateral dlPFC (for detailed information refer to Tables 1 and 2 under tDCS montage column). 1KS test could not be

performed because of too small sample size

https://doi.org/10.1371/journal.pone.0215095.t003
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ameliorate neuropsychological symptoms [77]. Exploring the impact of tDCS especially on

ADHD neuropsychological deficits has significantly increased in the last few years. However,

no meta-analysis about tDCS efficacy in ADHD is available. We conducted a meta-analysis of

randomized, placebo-or-baseline-controlled trials of tDCS application in ADHD, which is the

first meta-analysis for ADHD patients.

Overall, results of this meta-analysis show that tDCS improved inhibitory control and WM

in ADHD. Further sub-analyses yielded the following findings: (1) tDCS has an overall signifi-

cant cumulative effect on inhibitory control in ADHD with a small effect size, (2) when the tar-

geted brain region is taken into account, only tDCS over the dlPFC had a significant effect on

inhibitory control (small-to-medium effect size), but not tDCS over the rIFG, (3) when stimu-

lation polarity was taken into account, only anodal, but not cathodal tDCS had a significant

effect on inhibitory control, (4) when both polarity and targeted region are taken into account,

only anodal tDCS of the dlPFC had a significant effect on inhibitory control with a small-to-

medium effect size, (5) and when analyzing inhibitory control outcomes separately, tDCS had

a significant cumulative effect on accuracy, but not speed (i.e., reaction time). With regard to

WM (6), tDCS had an overall significant effect only on performance speed but not on accu-

racy. In what follows we discuss tDCS effects on these two major target deficits, the stimulation

parameters that could yield to larger effects, and finally clinical and methodological implica-

tions for future studies.

tDCS effects on inhibitory control in ADHD

The significant overall effect of tDCS on inhibitory control in ADHD is in line with a previous

meta-analysis about the effects of this technique on a variety of cognitive functions (e.g., WM,

executive functions, language) [78–80] and neuropsychiatric populations [80–82]. Moreover,

the small effects size of the overall effect of tDCS found in our meta-analysis is consistent with

small-to-medium reported effect sizes in previous meta-analyses about the effectiveness of

tDCS [78, 82–84]. However, the effects of tDCS on inhibitory control were associated with

larger effect size when target area (i.e., electrode positioning) and stimulation polarity (anodal

vs cathodal) were taken into account.

Anodal dlPFC tDCS had the largest effect size (small-to-medium effect) on inhibitory con-

trol in ADHD populations, whereas anodal rIFG tDCS had no significant effect. For stimula-

tion over the dlPFC, both left and right dlPFC were targeted in different studies but the left

dlPFC was almost always stimulated with the target electrode. First of all, this is in line with

Table 4. Meta-analysis results for the effects of tDCS on working memory in ADHD patients.

Cumulative effect size Normality Heterogeneity

Analysis N Ē 95% CI Z p-value Fail-safe number KS test p-value Qtotal p-value

Polarity independent

All studies 18 0.160 -0.227–0.547 0.811 0.4176 0 0.111 > 0.200 17.36 0.430

Polarity-dependent

Anodal tDCS 16 0.116 -0.317–0.549 0.525 0.5996 0 0.107 > 0.200 15.46 0.419

Speed vs Accuracy

Accuracy 11 -0.187 -0.668–0.295 -0.762 0.4461 0 0.163 > 0.200 10.09 0.433

Speed 7 0.681 0.131–1.231 2.427 0.0152 17 0.130 > 0.200 5.88 0.437

tDCS = Transcranial Direct Current Stimulation; Ē = cumulative effect size; CI = Confidence interval; KS = Kolmogorov-Smirnov’s test of normality; Qtotal = total

heterogeneity represented by Cohen’s Q; Significant results are highlighted in bold

https://doi.org/10.1371/journal.pone.0215095.t004
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previous findings about significant involvement of the dlPFC in ADHD symptoms, especially

executive dysfunctions [16, 18]. Inhibitory control is a major component of dlPFC-supported

executive functioning [85, 86] which is impaired in ADHD. The dlPFC is hypoactive in

ADHD, which is associated with insufficient suppression of dlPFC signaling not only in the

resting state, but also during the performance of cognitive tasks [20, 87]. Recent meta-analyses

of neuroimaging studies about functional abnormalities in ADHD populations showed a bilat-

eral hypoactivity of the dlPFC [88] and reduced left medial frontal cortex activation [89] in

ADHD populations during inhibitory control, WM and attention task performance. This

hypoactivity of the dlPFC is assumed to underlie the attentional deficit, impaired inhibitory

control and executive dysfunctions in ADHD and therefore, the pathophysiological rationale

for the therapeutic application of tDCS is to increase dlPFC activation with anodal stimulation.

It further supports the “cognitive dysfunction or inhibition-based model” of ADHD which

suggests that inhibition-based executive deficits are a core deficit in ADHD [56, 90].

Secondly, it highlights the importance of stimulation site for the tDCS effects on inhibitory

control. Our findings showed that dlPFC tDCS and not rIFG tDCS is effective. Moreover, the

target area of the reference electrode impacts on tDCS effects on inhibitory control. TDCS

effects on inhibitory control were more effective when two specific regions were stimulated by

the target and reference electrodes. The left dlPFC-right OFC montage was the most effective

montage and all of the four experiments which used this protocol reported improved perfor-

mance. In contrast, the left dlPFC-right dlPFC tDCS montage, which was used in two studies,

did not improve any inhibitory control outcome measure. In two studies that targeted only

one prefrontal region (i.e., left dlPFC-Cz tDCS, left/right dlPFC- mastoid tDCS), inhibitory

control was also improved (see Table 5). Thirdly and in addition to the stimulation site, the

results of this meta-analysis demonstrate the importance of stimulation polarity in the tDCS

effects on inhibitory processes in ADHD. Anodal tDCS, especially over dlPFC yielded the larg-

est effect size for improving inhibitory control in ADHD. Even the two studies that reported

significant effects of cathodal tDCS on response inhibition, argued that cathodal tDCS over the

left dlPFC was probably effective in improving inhibitory control in ADHD by increasing

activity of the right dlPFC through the inhibitory link between contralateral dlPFC regions via

the transcallosal connections. That being said, further systematic investigations are still

required to more robustly specify the contribution of potential stimulation sites and polarity

on response inhibition in ADHD populations.

Additionally, the findings suggest that heterogeneity of ADHD subtypes and brain abnor-

malities should not be neglected in interpreting the tDCS effects. This heterogeneity could

explain why rIFG tDCS was not as effective as dlPFC tDCS in the present analysis. For exam-

ple, both, rIFG and left/right dlPFC abnormalities are shown to be associated with inhibitory

control deficits in ADHD [13, 18, 53]. However, a differential involvement of the dorsal/ven-

tral divisions within the lateral PFC is suggested in ADHD pathophysiology. Dorsal regions

(i.e., dlPFC) are suggested to support inhibitory control of cognitive processes, while more

ventral regions (e.g., rIFG) support motor domains of inhibitory control [18, 91]. This shows

that ADHD subtypes (i.e., inattention type vs hyperactive type) are important for variations in

tDCS effects and implicates that the rIFG tDCS might be well-suited for those groups of

patients with more hyperactive than inattentive symptoms. Moreover, dlPFC has a global con-

tribution to executive functioning and response inhibition regardless of modality [42]. This

global contribution of the dlPFC in all aspects of response inhibition might explain the signifi-

cant implication of the dlPFC, but not rIFG in ADHD inhibitory processes. Furthermore,

ADHD is a disorder with disturbances in large-scale inter-related brain networks [23, 24]. The

dlPFC is a crucial part of the prefrontal network and compared to other prefrontal regions, has

many connections with other cortical/subcortical areas [92, 93]. It is possible that dlPFC
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stimulation effectively hits the entire prefrontal network including the dlPFC-rIFG sub-net-

work, whereas, rIFG stimulation has more restricted effects. Such a global contribution of the

dlPFC to other prefrontal region functions has been shown for various executive functions

[42] which might be true for ADHD too.

tDCS and WM performance in ADHD

Our meta-analysis showed that tDCS does not have an overall significant effect on WM perfor-

mance accuracy in ADHD, although it led to significantly faster response time. To be more

specific, it was shown that anodal left dlPFC tDCS, but not cathodal stimulation improved

response time during WM performance in ADHD. This finding should be discussed consider-

ing physiological processes underlying inhibitory control and WM, task characteristics, and

results of previous meta-analyses about tDCS effects on WM. First of all, this result shows a

dissociation of tDCS effects on inhibitory control and WM. Such a dissociation has also been

shown for neuropsychological deficits in ADHD [53]. Inhibitory control is an executive con-

trol function [42] and requires executive attention to inhibit a prepotent response and moni-

toring, whereas memory tasks can deploy attentional resources [53]. Different effects of tDCS

on inhibitory control and WM thus could be attributed to different cognitive processes under-

lying WM and inhibitory control as well as target area-specific effects of tDCS, which need to

be studied in future systematically. Characteristics of the respective WM tasks can also affect

the results. For example, performance on the n-back task can still be faster while accuracy can-

not due to ceiling effects in case of near-optimal accuracy already without intervention.

Table 5. Characteristics of the stimulation site and polarity in the studies investigated tDCS effects on inhibitory control and working memory.

Inhibitory control

# Authors Stimulation target (site) polarity Performance improvement

1 Breitling et al (2016) right IFG—left mastoid Anodal No

2 Soltaninejad et al (2015) Left dlPFC—right supraorbital area (OFC) Anodal No

Left dlPFC—right supraorbital area (OFC) Cathodal Yes

3 Allenby et al (2018) Left dlPFC—right supraorbital area (OFC) Anodal Yes

4 Bandeira et al (2016) Left dlPFC—right supraorbital area (OFC) Anodal Yes

5 Nejati et al (2017) Exp 2 Left dlPFC—right supraorbital area (OFC) Anodal No

Left dlPFC—right supraorbital area (OFC) Cathodal Yes

6 Nejati et al (2017) Exp 1 Left dlPFC—right dlPFC Anodal No

7 Cosmo et al (2015) Left dlPFC—right dlPFC Anodal No

8 Sotnikova et al (2017) Left dlPFC—vertex Anodal Yes

9 Munz et al (2015) Left dlPFC–mastoid Anodal Yes (only RT)

right dlPFC—mastoid Anodal Yes (only RT)

Working memory

1 Soff et al. (2017) Left dlPFC—vertex Anodal Yes (both accuracy and RT)

2 Sotnikova et al (2017) Left dlPFC—vertex Anodal Yes (both accuracy and RT)

3 Nejati et al (2017) Exp 1 Left dlPFC—right dlPFC Anodal Yes (only RT)

4 Nejati et al (2017) Exp 2 Left dlPFC—right supraorbital area (OFC) Anodal Yes (both accuracy and RT)

Left dlPFC—right supraorbital area (OFC) Cathodal No

5 Bandeira et al (2016) Left dlPFC—right supraorbital area (OFC) Anodal No

6 Prehn-Kristensen et al (2014) Left dlPFC / right dlPFC–mastoid Anodal Yes

tDCS = transcranial direct current stimulation; dlPFC = dorsolateral prefrontal cortex; IFG = inferior frontal gyrus; OFC = orbitofrontal cortex.

https://doi.org/10.1371/journal.pone.0215095.t005
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Another factor that could be a source of variance of the tDCS effects on WM in the included

studies is the difference of stimulation sites which is an important feature of tDCS efficacy.

The stimulation montages of the studies on WM included anodal left dlPFC-right OFC tDCS

(two experiments), left dlPFC-right dlPFC tDCS (two experiments), and left dlPFC-vertex

tDCS (two experiments). Different montages used in these studies can explain the observed

effects and may explain why some studies demonstrated no effects on WM accuracy. In four of

the experiments, the reference electrode was positioned over regions that are involved in cog-

nitive performance (i.e., right OFC and right dlPFC). In this case, it might be speculated that

the cathodal return electrode compromises performance, and thus partially antagonizes anodal

tDCS effects over the target region. The other two experiments used unilateral protocols that

targeted the mere region of interest without positioning the cathodal return electrode over a

potentially involved region and interestingly, in these studies both WM accuracy and RT

improved, and prolonged effects outlasting the stimulation were also reported. Therefore, an

electrode positioning which avoids such antagonistic effects might be advantageous.

Recent meta-analyses and review articles about the effects of tDCS on cognitive functioning

showed mixed results regarding memory tasks. For example, a recent systematic review of 188

trials reported significant effects of anodal tDCS on RT only for executive functioning tasks,

but not memory tasks in both, healthy and neuropsychiatric populations [80]. Similar to our

finding, another meta-analysis of 12 tDCS WM trails found that tDCS significantly improved

RT, but not accuracy [78]. A more recent meta-analysis about the effects of tDCS on WM

(measured with n-back and digit span tasks) found a significant effect of anodal tDCS on accu-

racy and RT for offline, but not online tasks in healthy subjects; in neuropsychiatric popula-

tions, tDCS had a significant effect on WM accuracy (both offline and online) but not RT [84].

Finally, a recent meta-analysis of 61 studies investigated the effect of tDCS on cognitive tasks

in relation to task and stimulation parameters. They found that in contrast to offline-task per-

formance, online-task performance resulted in increased accuracy in clinical populations [94].

Interestingly, in 5 out of 6 studies included in our meta-analysis for WM, offline task perfor-

mance was measured in ADHD individuals. Thus, the non-significant effect of tDCS on WM

accuracy we found could be due to offline task performance in the majority of studies, which

might be less efficient. Nevertheless, the results of the effect of tDCS on WM in ADHD should

be treated with caution due to the limited number of qualified studies that did not allow us to

disentangle polarity- and area-dependent effect of tDCS.

Clinical and methodological implications

This meta-analysis found that modulation of the activity of brain areas involved in the patho-

physiology of ADHD with tDCS has a significant effect on response inhibition and WM, two

major executive dysfunctions in ADHD [14, 53, 54]. This suggests that tDCS over the dlPFC

might be suited as a potential therapeutic approach in ADHD, similar to other neuropsychiat-

ric syndromes which are responsive to this method [45]. Increasing evidence from clinical and

cognitive neuroscience describes ADHD as a disorder with functional/structural abnormali-

ties, especially of the frontostriatal circuitry and PFC. Accordingly, modulation of the involved

brain areas with non-invasive brain stimulation is a promising approach for improving neuro-

psychological symptoms in ADHD patients. The efficacy of this method might, however,

depend on ADHD subtypes/symptoms and stimulation parameters, which need to be investi-

gated systematically in future studies.

The findings of this meta-analysis have some important clinical and methodological impli-

cations to be considered for future tDCS studies in ADHD. The results of the included studies

showed beneficial effects of tDCS in ADHD, and at the same time indicate that effects of tDCS
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on ADHD deficits (namely inhibitory control and WM) are strongly dependent on 1) individ-

ual and inter-individual factors (e.g., type of symptoms/deficits) and 2) also stimulation

parameters (i.e., site or cortical target, polarity, intensity, duration, and repetition rate). For

example, heterogeneous ADHD subtypes in the analyzed studies (i.e., inattentive or hyperac-

tive) might partially explain the non-significant effect of anodal rIFG tDCS on response inhibi-

tion, since dlPFC activity contributes to response inhibition in all ADHD subtypes (especially

individuals with inattentive symptoms), while the rIFG is assumed to be specifically involved

in ADHD individuals with more hyperactivity subtypes. Therefore, the inter-individual vari-

ability is an important factor which generally affects the efficacy of tDCS [95] and might be

specifically relevant for the treatment of ADHD patients, that vary in subtypes. Furthermore,

findings of those studies that investigated tDCS effects on other ADHD deficits showed that

for those EF domains that involve motivational and emotional processing, tDCS over both,

prefrontal and frontopolar areas is more effective compared to dlPFC-only tDCS. For example,

the Wisconsin Card Sorting Test (WCST) is a well-documented measure of EF and primarily

measures cognitive flexibility. This task involves aspects of both, hot (e.g., task switching, disin-

hibition, WM) and cold EFs (i.e., executive control, inhibition) and results showed that only

when both, dlPFC and OFC were stimulated, cognitive flexibility improved. Therefore, the

common stimulation protocols in ADHD that primarily target dorsolateral frontostriatal net-

works may not be ideal for all executive dysfunction in ADHD, especially hot executive dys-

functions. This highlights the necessity of symptom-driven protocols implicating that for each

specific impairment (e.g., response inhibition, WM, selective attention, interference control,

cognitive flexibility, etc.) a specific stimulation montage that targets the most relevant cortical

region would be most appropriate.

Another important implication regarding the clinical efficacy of tDCS in ADHD concerns

stimulation parameters (i.e., intensity, duration, repetition rate, polarity, and site). The stimu-

lation intensities applied in the included studies ranged from 1 mA (seven experiments) to 2

mA (two experiments) and two experiments applied tDCS with 1.5 mA intensity. Findings

from other clinical populations showed that higher intensities of stimulation can result in

more prominent symptom improvement, for example in tinnitus [96], or cognitive

impairment in Parkinson’s disease [97]. This is in further accordance with physiological find-

ings of tDCS about larger tDCS after-effects in motor cortex plasticity as a result of tDCS with

higher intensities [98]. This was supported by the findings from two studies conducted on

adult ADHD. The study with 2 mA intensity reported significant improvement in inhibitory

control performance [68] while the study with 1 mA intensity reported no significant effects

on Go/No-Go task performance [71] despite the fact both studies targeted left dlPFC with

anodal tDCS. Stimulation intensity has, therefore, an impact on the effectiveness of tDCS,

which is not necessarily linear [99] and should be considered in clinical applications.

With regard to stimulation duration, the length of stimulation duration varied from 8 min

to 30 min and the longest duration of stimulation reported was five consecutive days of

30-min stimulation (Tables 1 & 2). The effects of different stimulation durations were not

addressed systematically in ADHD studies so far. Longer stimulation duration, similar to stim-

ulation intensity, could be an important factor to improve the efficacy of tDCS effects, includ-

ing clinical effects. Prolongation of stimulation duration for increasing efficacy of the

intervention works similarly well as enhancing stimulation intensity. One advantage of

enhancing stimulation duration compared to intensity might be that this does not increase the

probability of side effects like itching and tingling [33, 100], which might be specifically rele-

vant for studies in children. Findings from other neuropsychiatric disorders show that

repeated sessions of tDCS are more effective in reducing symptoms [33]. All studies included

in this meta-analysis except one [69] examined effects of tDCS after one single session. Higher
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clinical efficacy might be achieved with a longer duration of stimulation, and repetitive inter-

ventions, as shown for example in non-invasive brain stimulation studies in depression [101–

103].

Stimulation polarity is another important parameter that determines the efficacy of tDCS.

The physiological mechanism of tDCS effects, depending on the polarity, is the induction of

LTP- and LTD-like plasticity [36, 104]. Anodal tDCS induces LTP-like plasticity, based on sub-

threshold depolarization effects on membrane potentials, and respective enhancement of spon-

taneous neuronal activity, while cathodal tDCS has antagonistic effects [105]. In accordance

with the pathophysiological foundation of ADHD that includes underactivation of the lateral

and inferior PFC, anodal tDCS-generated excitability enhancement is conceptually a more

promising approach in ADHD. The findings of this meta-analysis are in accordance with this

assumption and showed that anodal, but not cathodal tDCS improved inhibitory control and

WM in ADHD which could be attributed to the stimulation-induced compensation for regional

cortical hypoactivity as well as alteration of functional cortical network connectivity following

anodal tDCS that improves cognitive performance [106]. Nevertheless, this does not mean that

cathodal tDCS is not of clinical interest in ADHD. Functional abnormalities in ADHD are not

limited to hyperactivation of specific regions but also hyper-sensitiveness of other regions, espe-

cially those involved in motivational and emotional processing [11]. Moreover, findings from

cathodal stimulation of the motor cortex showed that motor cortex excitability alterations

induced by tDCS are intensity-dependent and nonlinear [99] which is not well studied for non-

motor functions. It might be that cathodal tDCS over regions pathologically hyperactive in the

disease might also be beneficial, which has not been systematically explored so far.

The cortical target area or stimulation site, another important parameter, contributes to the

clinical efficacy of tDCS in ADHD. The contribution of this parameter was specifically clear in

the studies which investigated tDCS effects on ADHD WM deficits. Only when the potentially

involved cortical region (left dlPFC in WM) was stimulated with the target electrode, both

WM accuracy and RT significantly improved and the effects were long-lasting. In these cases,

the reference electrode was placed over a non-contributing area (i.e., vertex). In contrast, when

the reference electrode targeted homologous regions of the contralateral hemisphere (i.e., right

dlPFC or right supraorbital) the effects were not present or reduced to RT improvement only.

A comparable pattern but in a different way was observed for tDCS effects on inhibitory con-

trol. Here, tDCS effects were more effective when two specific potentially involved regions

were stimulated by the target and reference electrodes. The left dlPFC-right OFC montage was

the most effective montage and all of the four experiments which used this protocol reported

improved performance. In contrast, the left dlPFC-right dlPFC tDCS montage, which was

used in two studies, did not improve any inhibitory control outcome measure. This demon-

strates that the target area or areas significantly contribute to the tDCS effectiveness in ADHD.

To conclude, results from this meta-analysis support the cognitive benefits of tDCS in

ADHD. However, for these cognitive benefits to be clinically useful, effects need to be sus-

tained for longer durations. All of the studies included in this meta-analysis applied tDCS in

an acute and short-term mode with no follow-up examination which does not allow to infer

long-term efficacy of tDCS in improving ADHD neuropsychological deficits. Similarly, mea-

suring inhibitory control and WM was done either during stimulation or right/shortly after

intervention which hinders any robust conclusions about long-term effects of tDCS. One spe-

cific important note here is the dissociation between neuropsychological deficits and clinical

symptoms of ADHD, which means improvement in inhibitory control and WM after or dur-

ing tDCS does not say too much about the improvement of clinical symptoms. Moreover,

applying statistically-proven blinding procedures, which was not reported in most of the

included studies in this meta-analysis, is important for making firm conclusions about the
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clinical efficacy of tDCS. Therefore, the results of this meta-analysis should be interpreted with

caution, especially when it comes to the clinical efficacy of tDCS in ADHD. Nevertheless, we

need to note that the studies included in this meta-analysis are actually the first tDCS studies

on ADHD that primarily aimed to investigate whether tDCS has any beneficial effects on

ADHD symptoms or not. Despite short-term tDCS-induced cognitive benefits in ADHD, the

clinical efficacy of this technique needs further investigation in follow-up designs and in com-

parison to other interventions. Moreover, it requires stimulation protocols optimization using

the information about the individual neural activity associated with deficits and task execution

(individual level) and general stimulation parameters [49].

Safety of tDCS

There are unique issues concerning the safety, applicability, and ethics of tDCS application in

pediatric populations which is mainly due to limited available data from children compared to

the adult population [52]. However, the general safety of tDCS with standard protocols has

been proven by a large body of evidence in recent years and a recent review concluded that

application of conventional tDCS in human trials has not yet produced any reports of a Serious

Adverse Effect or irreversible injury [107]. In pediatric populations, no severe adverse events

have been reported, and even in children with epilepsy, seizures do not seem to worsen with

tDCS [52]. The most frequently reported side-effects within studies included in that systematic

review were headache, itchiness, and redness at the site of the stimulation. Similarly, no signifi-

cant side-effects were reported in the studies included in our meta-analysis. This is important

due to some concerns about the application of tDCS in children. One specific concern is about

current intensity due to children’s thinner skulls and the smaller distance between scalp and

brain. Computational models of current flow within the brain suggest that about 50% of the cur-

rent strength applied in adults result in respective effects in children [52] implicating that 0.5

mA applied in children results in similar physiological effects as 1 mA in adults [108]. From the

studies included in this meta-analysis, eight studies applied a current intensity of 1 mA or

lower, two studies applied 1.5 mA and one study applied 2 mA, and no significant adverse effect

was reported (See Tables 1 & 2). However, the caveat still stands that studies included in this

meta-analysis were not designed as safety studies and mostly included single session tDCS inter-

ventions. Therefore, systematic safety monitoring, especially for the clinical application of

tDCS, is recommended. Moreover, it is important to keep in mind that the developing brain

has “sensitive” or “critical” periods where the effects of interventions affecting the brain could

be stronger than usual. This suggests that the risk to induce maladaptive neural plasticity due to

tDCS might be high which necessitates the priority of dose-finding studies and longitudinal

monitoring of tDCS-induced neuroplasticity in pediatric ADHD population [49].

Limitations and future directions

Despite promising results and novelty, this meta-analysis has some limitations to be consid-

ered. First, despite that our meta-analysis found a significant effect of tDCS on neuropsycho-

logical symptoms (namely inhibitory control and WM) in ADHD populations, the efficacy of

this method on other executive dysfunctions, and clinical symptoms cannot be directly derived

from these results. Inhibitory control and WM were chosen because they are two common def-

icits examined in most ADHD-tDCS studies which allowed us to run a meta-analytic study.

Secondly, although we showed that anodal tDCS over the dlPFC has significant effects on IC

in ADHD, no effects were seen for cathodal tDCS and rIFG tDCS. However, given the small

number of studies investigating cathodal/rIFG tDCS, these results have to be interpreted with

caution. With increasing interest in the application of tDCS in ADHD, future research might
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be able to disentangle subtle protocol differences for ADHD subtypes. Thirdly, adaptation of

stimulation protocols based on symptom subtypes, ADHD subgroups, specific cognitive defi-

cits, and neuroanatomical differences is lacking in currently available studies and therefore, it

is difficult to rate the potential of tDCS in ADHD.

Future tDCS studies should systematically investigate the following lines of research, to

reveal the real clinical potential of tDCS for ADHD treatment. First, preliminary data suggest

beneficial effects of tDCS on other cognitive dysfunctions in ADHD including cognitive flexi-

bility, problem-solving, selective attention, and hyperactivity symptoms involved in ADHS [6,

70, 109]. Second, based on the findings of this meta-analysis, future tDCS studies on ADHD

populations, with a statistically-proven blinding procedure (especially double-blinded trials),

are recommended to target the stimulation area based on the symptoms subtypes. The above-

mentioned stimulation parameters are other important factors that might affect the efficacy of

the intervention and should be explored systematically. Lastly, future studies, especially those

with clinical implications, require examining the long-term efficacy of tDCS in ADHD. With

the expected increasing number of tDCS studies in ADHD populations, future meta-analytic

studies might be able to deliver a more realistic picture about the effectiveness of tDCS in dif-

ferent subtypes of ADHD. It is lastly of note that other modalities of electrical stimulation such

as transcranial alternating current stimulation (tACS), which has been shown to have neuro-

plastic effects beyond its impact on brain oscillations [110], or transcranial random noise stim-

ulation (tRNS) can be a potentially interesting avenue for future research in ADHD, which is

associated with abnormal brain oscillations [24].

Conclusion

The findings of this meta-analysis of tDCS interventions in ADHD suggest an improvement of

neuropsychological deficits (i.e., inhibitory control and WM) by tDCS. Stimulation polarity

and target area are relevant for the efficacy of tDCS in ADHD. Anodal dlPFC tDCS had a sig-

nificantly superior effect on inhibitory control compared to cathodal/sham stimulation and

anodal rIFG tDCS. TDCS significantly increased response accuracy of inhibitory control per-

formance and decreased response time in WM tasks. Although our findings suggest improving

effects of tDCS in ADHD neuropsychological deficits, the clinical utility of tDCS cannot be

firmly rated with the currently available findings. Application of this method as a therapeutic

intervention will require optimizing stimulation protocols based on general stimulation

parameters and individual and inter-individual factors for improvement of clinical efficacy,

exploration of clinical symptoms in addition to surrogate parameters, and achievement of sus-

tained clinical benefits by tDCS over longer durations of time. Thus, future research is needed

to more thoroughly explore and refine optimal stimulation parameters required for tDCS-

based cognitive improvement and implementing robust experimental designs in different

ADHD subtypes. Broadly speaking, the potential for tDCS as a non-invasive brain stimulation

technique to safely improve neuroplasticity and treat neurological and neurodevelopmental

disorders is encouraging. Future studies utilizing tDCS will further increase our understanding

of neural networks and how to treat their pathological states in ADHD and other neurodeve-

lopmental disorders including autism and learning disabilities.
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